
PHYSICAL REVIEW E VOLUME 50, NUMBER 2 AUGUST 1994

Hamilton-Lagrange formalism of nonequilibrium thermodynamics
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The aim of this paper is to develop the field theory of nonequilibrium thermodynamics by
the Hamiltonian formalism and to prepare an alternative foundation for the theory. We give the
Lagrangian from which the Beld equations as Euler-Lagrange dHFerential equations can be derived.
We point to the canonically conjugated quantities and then we give the Hami&tonian. We deduce
the canonical Seld equations and we explain the Poisson-bracket expressions. From the Poisson-
bracket expression of the entropy density and the Hamiltonian we Snd that the entropy density is a
bilinear expression of the current densities and the thermodynamic forces. At the end of this paper
we deal with the invariance properties of irreversible thermodynamics. We show that geometrical
transformations do not lead to new conserved quantities. Finally we give a dynamical transformation
by which the Lagrangian is invariant and we see that the reciprocity relations are the consequences
of this inner symmetry. We think that this HamI&ton-Lagrange formalism of thermodynamics may
be interesting and important not only for thermodynamics.

PACS number(s): 44.60.+k, 05.70.Ln

I. INTRODUCTION

The Lagrange-Hamilton formalism is one of the most
effective and widely applied deductive methods in dif-
ferent disciplines of physics [1-7]. The great number of
publications [8-21] show that this formalism should be
the required basis of nonequilibrinm thermodynamics to
exploit its well-developed mathematical method.

Particularly we would like to mention Sieniutycz and
Berry's [8—10] and Anthony's [11] results in this field.
Sieniutycz and Berry endeavor to describe the most gen-
eral processes and they apply the reverse mathemati-
cal method of the Hamiltonian formalism because of the
mathematical difficulties. Starting from the conserved
quantities through Noether's theorem and the general
structure of the energy-momentum (canonical) tensor
they obtain the Lagrangian, the canonical equations, and
the Poisson-bracket formalism. Their Lagrangian is a
function of those physical quantities which describe the
thermodynamic field. The extremum of the action is for-
mulated as a restricted variational principle.

Another possible way is Anthony's method. Intoduc-
ing new field quaatities, he surmouats those difBculties
which appear in the case of the deduction of parabolic
type cMerential equations. He introduces a complex-
valued mathematical field, the so-called "field of thermal
excitation. " This function is an example to show how to
introduce to the theories a new field which has a formal
similarity to the quantum mechanical wave function.

We follow the usual way to develop the complete
Hamilton-Lagrange formalism of nonequilibrium thermo-
dynamics. However, for the sake of simplicity we restrict
ourselves to convection- and source-free cases and we ex-
amine only parabolic type equations of motion. But this
does aot mean that we are not able to solve more com-
plicated processes because the theory can be generalized

[32,39]. Nevertheless it is of fundamental importance
that the Hamiltonian formalism can be prepared in an
essentially complete form at all.

II. LAGRANGIAN OP NONEQUILIBRIUM
THERMODYNAMICS

In the development of the Hamilton-Lagrange formal-
ism the first step is to find the Lagrangian of the physi-
cal processes. In field theories the dynamics of a system
can be expressed by the Lagrangian which is generally
a function of time aad space and a function of the first
or higher order derivatives of the field quantities with
respect to time and space:

L = L(G(r, t), BG(r, t), ..., r, t)).

As a description of the dynamics of fields we accept
Hamilton's principle as a basic axiom:

CQ

bS = LdVdt = 0,
tg V

(2)

i.e., the variation of the action becomes zero for those
field quantities which belong to the real motion of the
system if the state of the system is described by given
field quantities at tq and t2. In thermodynamics those
systems which can be described by eqn~bbrium variables
outside the equilibrium are called local equilibrium sys-
tems. The equilibrium states dHFer in the spatial distri-
bution of the state variables.

The specific extensive field quantities are g;(r, t), the
currents of the extensive quantities are J;, and 0; are the
source densities. Let g~ ——s be the specific entropy and
we denote by I'; the following partial derivatives (i
2, ..., n):
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Bs

Bgi

system is [22,23]
3

L(&pi) &pi;t & &pi;zz) 'pi;yy & &pi;zz)

B2s
S'I =

BgiBgA:

I et &p, be four times difFerentiable field quantities (po-
tentials) which give the I';(r, t) in this way [9,10]:

1 By~I'i = gS, —L~;Ay~,Bt (5)

The Tl, quantities (T is the temperature) are the in-
tensive quantities for gi. Furthermore, let S;A, be the
following symmetric coefficient matrix [19]: ,'(e~—, V»;t —L&'&a~)'+ ~*V' (6)

where 0; are given functions. (The semicolons in the sub-
scripts mean partial derivatives with respect to t, x, y, z.

In the sense of the Hamilton's principle the Euler-
Lagrange equations are:

BL B BL B2 BL B BL+ +
By- Bt By ., Bx2 By.. By2 By..

where S, ,L&i are constant coeKcients, g is the mass

density, and b, is the Laplace operator (we use the Ein-
stein convection) .

The Lagrangian of the nonequilibrium thermodynamic
I

1.e.,

B2 BL =0 (7)Bz2 By;.„

c —1I c —1
&i 0&;k (O~~k &pj;tt —Lj k&pj;*zt j k&pj;yy

— j k&pj;zzt)

ct —1
Lik(Q~&k V j;tzz Ljk&pj +zest Ljkipj yyzz Lj k(pj;zzxz)

c —1L;k(g~, k
—&,;tyy

—L~kyi;**yy L~k&, ;yyyy Like, ;zzyy)

~—1
L&k(0~&k pj;tzz ~jk&pj;zzzz z&j k pj;yyzz z&j k'pj;zzzz)

If we take into account (5) we get [22,23]

gS„'r„., + Li„~r, = o-, , (9)

htS = (O„~be& + s.;„h«p, + A,„„htp;,„)d 2:, (13)
B 4

T Bxp

where

3; = L,I,XI, . (io)

which are precisely the transport equations for the cases
when the currents of the extensive quantities are $&yi = byi + y;.gbxg,

~t&pi;v = ~&pi;v + V'i;&&v~&t) (i4)

and the volume T' arose kom the volume T with an
infinitesimal deformation [22,23]

XI, ——VI'g
xg = zg+Bxg ~ (15)

are thermodynamic forces. The constitutive equations
(10) are called Onsager linear laws [24—31].

O„g is the canonical tensor of the 6eld, and vr, „and A;„
are the canonical coefBcients,

III. THE CANONICAL FORMALISM AND THE
ENTROPY PRODUCTION DENSITY

BL B BI
Op/ = Libby —yi ( + yi.gByi p, &v yi;vp

yf)(v
Byi;pv

We examine the total variation of the action if we re-
strict ourselves to source-free (o; = 0) and convection-
free cases:

BI 8 BI
7l gp l

Byi.p B&v Byi.v p,

(17)

~t~ = L(pi + ~pi & 0 i;p + ~pi;p) pi;t&v + ~pi;t&v)d
Tl

4
L(&pi& &pi;t» &pi;t&v)d»

T

BI
~i p.v =

Byi pv

On the basis of these using the total variation of the
action (5) with the Lagrangian

where d x = dzdydzdt = dz1dx2dz3dx4, and p, v =
1, 2, 3, 4. From this general form we obtain L = 2(~~,, '~~; —L"&~')' (i9)
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OL = ~s,.„'r„.
Oyi;t

(2O)

The Hamiltonian plays a very important role in the foun-
dation of the field theory of therxnodynamics and can be
written

we can obtain the canonically conjugated quantities
to yi, i.e., the canonical momentum densities are
[22,23,32,33]

F(p) = 2e 'p'S.&p&- (30)

with the Hamiltonian. After a short calculation we get

tained as a Poisson-bracket expression of the Hamilto-
nian. Moreover, the entropy has a central role in the
thermodynamics. That is why we pay attention to the
entropy production in particular.

In the interest of this we examine the Poisson-bracket
expression of

H(p, , Erp;) = 2(g S~p~) + g S~p~Li,;br@i,. (21)

If H is a function of p, , y;, y;.,„,y;.,„„(p,, v = 1, 2, 3) then
the canonical equations are in general

i.e.,

OF
Ot

(6F 6H 6H 6F t

E6y, 6p, 6(p, 6p, )
= -v(r, L,,vr, ) + vr, L;,vr, , (31)

yi;t =
Opi

(22) OF + v(r;L;, vr, ) = vr, L,,vr, ,t (32)

BH B BH B2 BH
p';t = — +

Byi Bzy B&pi;p BzpBzv Byi;pv
(23)

which is the entropy balance equation exactly. The ex-
pressions

If we take the given form of the Hamiltonian (21) we get
1 —18 = 2LO pi~ijpj& (33)

H
yit = )

Opi
(24) (34)

H
pi;t

pi

which are the canonical field equations of thermodynam-
ics [32,33].

It is usual to define the Poisson bracket in field theories
as [2,5]

where

t 6f bg 6g6f~
[»gl =

(6(p 6p 6(p 6p)
' (26)

f(O' V', p 'p;y ~ p~ p;p p;pv)

g(pi p;y~ 'p;p~) p~ p;p~ p;g ~) ~

(y, ,v = 1, 2, 3),

and

bf Bf B Bf B2 Bf
by Oy O-. Oy,.+ O-.O--Oy,.- (27)

bH
pi;t = [v'i& H] =

bpi

bH
p;, =[p;, H]=-

byi
(29)

The time derivative of a physical quantity can be ob-

The ~&, ~&, and ~& can be defined in the saxne way. Using
these notations the canonical equations (24) and (25) are
[32,33]

Ji = L;~vrj,

are the entropy density, the entropy current, and the On-
sager linear laws. So the entropy production is

Vr;L;,Vrj = X,Ji = ~.. (36)

We consider this result to be one of the most impor-
tant consequences of our Hamilton-Lagrange formalism
for thermodynamics [32,33].

IV. INVARIANCE PROPERTIES IN THE FIELD
THEORY OF NONEQUILIBRIUM

THERMODYNAMICS

Now we examine the invariance properties. If the equa-
tions of xnotion are invariant with respect to the transfor-
mations of r, t and certain transformations of field quan-
tities p(r, t), we speak about symmetry. We distinguish
two kinds of symmetry, geometrical symmetry and dy-
namical symmetry.

While the geometrical invariances have a general va-
lidity for each law of nature —they are related to the
symmetry properties of space and time —,the dynami-
cal invariances have no general validity; they are based
on special interactions and they are consequences of in-
ner symmetry properties of the system. Since we have
deduced the equations of motion &om the variation of
the action S, the suKcient condition for the equations of
xnotion is invariance of the action.

In the discussion of the geometrical invariance of the
equations of xnotion we have to examine the invarianee of
the action. If—in the sense of Noether's theorem —the



1230 KATAj IN GAMSAR AND PERENC MARKUS 50

total variation of the action btS is zero or equals a total
divergence then S is invariant and the 6rst integrals of the
Euler-Lagrange diH'erential equations of the variational
problem exist, i.e., we obtain conservation theorems.

After these we treat a geometrical invariance of the
action S,

S (pi) 'pi t)) pi pv) (37)

(y, , v = 1,2, 3, 4), specifically, the time displacement. So
we take the following infinitesimal transformation:

»g = bzg = bzs = 0,

bz4 ——bt = s = infinitesimal const,

by; =0,
byq. p = 0.

Generally, in the sense of Noether's theorem, we take into
account (13) and we expect that

V,'(V i)V';(Vs) (45)

then I, stands at the 6rst and I{. in the second position in
the arguments of I: I(l, k). The operator I equals 1 for
the starting sequence of (l, k). If we change the sequence
(k, t) we get I(k, l) = —1. After a long but elementary
calculation neglecting the second-order terms we obtain

Let us consider our Lagrangian (19) where L;t, is inde-
pendent of the space and time variables and the physical
quantities. We can give the following in6nitesimal trans-
formation [32,34]:

p,
' = Apt = [E —OT~tI(, )]pi, (44)

where A is the matrix of the in6nitesimal transformation,
E is the unit matrix, 0 is an infinitesimal (constant) pa-
rameter, and Tzt is the mixing matrix where the diagonal
elements are zero (Tqq —— . ——T„„=0). The operator I
carries such a property of the transformed field )p'; which
becomes apparent in the products. The I has two vari-
ables which are the indices of the y's. If we take, e.g. ,
the product of y' (&pt) = Apt and y', (ys) = A&ps,

(O„g»g+ vr;„sty; + A;„„stp,,„)

8
It p(Pi) &pi;t) +Pi)»v) btPi) at&pi;v)) (39)

Bz~

if the transformation is a symmetry transformation of the
equation of motion [1,6,32]. In the case of the transfor-
mation (38) the total variations of y; and y;,„are

,'(gS, ,'y—;,t —L,;A)g, ) = L (46).
This shows that the Lagrangian is invariant with respect
to the transformation (44), i.e., the equations of motion
of nonequilibrium thermodynamics have dynamical in-
variances. The Lagrangian (19) belongs to those irre-
versible processes in which the entropy production den-
sity is a bilinear expression (36) of the currents and the
thermodynamic forces,

btpi = v&i;tb&)

btV4;v = &pi;tv'&

Let K„be the following:

+p(&pi) &Pi;t) +V'i)»v) at%'i) btpi;v)

(4o)
s =X;J

Since the entropy production density is the gauge of the
irreversibility of the processes, we expect that 0, (46) is
invariant against the infinitesimal transformation (44).

We have to write the forces

= L(V' V';t &V")» (41)
X, = Vr, = V(gS;, '&..t —L,;~~., )

and the currents

(48)

where L is our Lagrangian (19) [32]. It is easy to see that
the action

S= L y;)y;,g)Ay; d z (42)

L(V"(r t) &'; (r t) 0"; (r t))

= L(V';{r,&), V';,.{r &), V';,„.(r &)) (43)

i.e., it is sufBcient to exaxnine the invariance of La-
grangian.

is invariant with respect to the infinitesimal transforma-
tion (38), taking into consideration the divergence ex-
pression.

Now we turn our attention to the dyna, mical invari-
ances. If the action is invariant with respect to a dynam-
ical symmetry in consequence of inner syxnmetry that
means xnathematically that

J; = L;t,Xt, = L;sV(gS „'(p, ,t —L,sE(p.~) (49)

with the potentials. So the transformed entropy produc-
tion density is

o' = V(gs, '[b;tyt, t —OI(l, m)T, , yt, t]

L,; [b; tb (pt —OI(l, m)T—,tAyt] j
&«', &(gS&,'[bt ~v ~;t —eI(&) m)Tt ~y;t]

Lt,s [b» b, )g —eI(l, m)—Tt, b,y ]j. (50)

Neglecting the second order terms we can see that the
entropy production is invariant if and only if Onsager's
reciprocity relations hold [32,34].

After this we can say that the linear laws and reci-
procity relations which have been proposed by Onsager
for more than 60 years cope also with a consistent mathe-
maticaQy model of nonequilibri~~m thermodynamics. Us-
ing the above results we can make the generalization for
nonlinear cases and for systems which are out of local
equilibrium [31,32,35-40].
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V. SUMMARY

On the basis of this paper we see that the state-
ment that the parabolic deferential equations cannot
be derived &om Hamilton s principle, i.e., the Hamilton
formalism of irreversible theories cannot be developed,
is completely incorrect. Our foundation of the theory
presents a good possibility of finding connections and

making comparisons with other Seld theories. The de-
scription of the irreversible and the reversible theories
has become the same.
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