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Time-resolved optic@ spectrum for transient resonant light scattering
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A general formula of the time-resolved optical spectrum for transient resonant light scattering is de-

rived systematically by means of the operator algebra within the formalism of nonequilibrium thermo
field dynamics (NETFD). The formula is applied to an analytically solvable model of the localized elec-
tron and phonon system, i.e., second-order light scattering due to the optically active three electronic
states whose intermediate state is dynamically modulated by the phonon interaction mode. The deriva-

tion of the analytical expression for a four-point function, needed to obtain the spectrum, is performed
with the help of the algebraic manipulations in NETFD, which showed the advantage of its methodolo-

gy with respect to nonequilibrium transient phenomena. The three-dimensional profiles of the Raman
and luminescence components in the time-resolved spectrum in the model are presented to show how the
stochastic character comes out in the fast modulation limit, and how the dynamical behavior of the pho-
non system causing the modulation of the intermediate electronic state comes out in the slow modulation
limit.

PACS number(s): 05.30.—d, 42.50.Ct

I. INTRODUCTION

The time-resolved optical spectrum of transient reso-
nant light scattering was extensively examined first by
Takagawara, Hanamura, and Kubo [1] in studies of the
second-order optical processes with stochastic models of
the intermediate state. Since then, there have been
several theoretical developments in the formulation of the
time-resolved optical spectrum [2—4]. Most of the inves-
tigations [2,4] were performed with the help of models of
stochastic processes [5], whereas the analysis in Ref. [3]
was done for an analytically solvable and nonstochastic
model for the intermediate state [6,7]. The calculations
in these papers were done with the help of the density
operator method.

In this paper, we will derive the formula of the time-
resolved optical spectrum of transient resonant light
scattering by means of the formalism of nonequilibrium
thermo field dynamics (NETFD) [8-13], which is an
operator formalism of quantum systems with dissipative
processes, and will apply it to the nonstochastic model of
a localized-electron and phonon system [3], i.e., the
second-order light scattering due to the optically active
three electronic states whose intermediate state is dynam-
ically modulated by the phonon interaction mode [14].
Among the merits of NETFD are a straightforward and
comprehensible treatment of transient phenomena and a
transparent algebraic structure (see, for example,
[15—19]). The formula of the time-resolved optical spec-
trum is derived along the lines of Ref. [4] by means of
algebraic treatments within NETFD which are very simi-
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lar to the ones in quantum mechanics. When a laser
pulse impinges on matter the incident photons are ab-
sorbed, causing an excitation of the state of the matter
system, say the states of localized electrons. The inter-
mediate state of the localized electron is modulated
dynamically by a phonon system. The scattered photons,
i.e., the photons emitted during the deexcitation, yield a
spectrum consisting of instantaneous Raman scattering
and of relatively long-time luminescence. The spectrum
can be calculated by considering a second-order optical
process.

In Sec. II, the method of NETFD is briefly explained.
In Sec. III, the formula of the photon counting rate for
the second-order optical processes is derived with the
help of NETFD. In Sec. IV, we apply the formula ob-
tained to the case of the three-state dynamical model for
a localized electron-phonon system. In Sec. V, the limits
of slow and fast modulations for the model are investigat-
ed. In Sec. VI, we present the profiles of the time-
resolved optical spectrum for several typical parameters,
which lead to a deeper insight into the nature of the
scattering process for the model of a dynamical inter-
mediate state. Section VII is devoted to discussion.

II. TECHNICAL BASICS OF NET% D

NETFD is a unified formalism of dissipative quantum
systems including all the aspects of nonequilibrium sta-
tistical mechanics, i.e., the Boltzm ann, the Fokker-
Planck, the Langevin, and the stochastic Liouville equa-
tions (see [13] for detail and references). It allows us to
deal with dissipative systems by algebraic manipulations
similar to the usual quantum mechanics.

Let us begin by listing the basics of NETFD.
(1) Any operator A is associated with its partner (tilde)

operator A. The tilde conjugation is defined by
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(A, A2) =A, A~,

(c, A, +c~A2) =c;A, +c2 22,
(A) =A,
(A )

(2.1}

(2.2)

(2.4)

where the A's are operators, and c, and c2 are c num-
bers.

(2) The tilde and nontilde operators at an equal time
are mutually commutative, and are related with each oth-
er through the relation

(2.5)

lm, if ) are given, respectively, by

(m, n lm', n'& =5,5„„.,

g lm, a&&m, nl=l .
m, n

(2.16)

(k, ~l ~ lm, r7) =(klAlm &&flit &

=&kl~lm &5,„, (2.18)

The matrix elements (k, il Birn, n ) and (k, l l A lm, n )
with the operator A consisting only of nontilde operators
reduce, respectively, to

(3) The expectation value of an operator A is given by
( ll Alo). Observable operators consist only of nontilde
operators.

(4) The thermal vacuums ( ll and lo) are tilde inuari
ant,

=5„.«l ~ln )'
=5„(nlA tl1),

where we used the property

(2.19)

lo&- = lo&, (2.6) ln&=ln& (2.20)

and are normalized as ( 1 lo) =1.
(5) The dynamical evolution of systems is described by

the Schrodinger equation (A'= 1 }

Note that the state lm, n ) satisfies

m, n = n, m (2.21)

—lo(r) &
= —4'"lo(r) & . (2.7)

We can represent the thermal vacuums as

lO(r) &
= y P„ (r)ln, m ) , (2.22)

We usually call the Schrodinger equation the Fokker-
Planck equation for coarse grained systems.

(6) The hat Hamiltonian, an infinitesimal time-
evolution generator 8"', satisfies

( +tot}— @tot (2.8)

&

llew"t=o

(2.9)

This is a manifestation of the conservation of probability,
1.e.,

Now, we introduce a set of the states [20]

(2.10)

This characteristic is named tildian. The tildian hat
Hamiltonian is not necessarily a Hermitian operator.

(7) The hat Hamiltonian has zero eigenvalue for the
thermal bra vacuum,

n, m

(2.23)

The normalization of ( 1 l0(t) ) reduces to

1=( llo(t)) =yy P„(t)(k,k ln, m )
kn, m

=g P««(t),
k

(2.24)

lo(t)) =yP„' (r)ln, m)
n, m

= g P„' (t)lm, n )
n, rn

where we used the orthonormality (2.16). With the help
of (2.21), we see the tilde invariance of the thermal vacu-
um lo(t)) in the following way:

lm, e) = lm ) lm),

where lm ) and le ) satisfy

atalm ) =mlm ), a a lR) =nlr7),

(mla a =(rnlm, (Ela if=(n ln,

the orthonormality

(2.11)

(2.12)

(2.13)

=g P„' (t)ln, m )

= lo(r)), (2.25)

where we used P*„=P„in the last equality.
When the hat Hamiltonian 8'"' in (2.7) can be divided

into two parts as

&mlm') =5 ., &nlrb'&=5„„., (2.14)
O'"=H+8' (2.26)

and the completeness

g lm &&ml=l, g ln&&el=1 . (2.15)

we can introduce the thermal vacuum ket vector in the
1nteract1on representation as

lo(r) ),=e' 'lo(r) ) . (2.27)

We see that the orthonormality and the completeness for The Fokker-Planck equation (2.7) then reads
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—~0(t) ),= —i8'(t) ~0(t) ), ,

where we used

pi(t) ittipi itt—i

(2.28)

(2.29)

g (I, I ~0(t)) =gg (I, I ~e
' 'S(t, to)e ~n, rt)P„„(to)

I n

=g (1~S(t,t )e' '~n, rt&P„„(t)

This can be formally solved in terms of the state of the
system at an initial time to as

=Q P„„(to)=1,

with

io(t))t =S(t, to)io(to) )t,
where we used (2.34), (2.37), and

(2.30)
& l~ mn &=/ &I T~mn &=/5, 5, „=5„.(243)

I I

S(t, t, ) =S'(t)0 (t, ),
where S(t) is specified by

(2.31)

O'=H' H', — (2.44)

Although the interaction hat Hamiltonian 8' has the
structure

d S(t)= —IP'(t }E(t},
dt

(2.32)

with the initial condition f(0)= 1. The thermal vacuum
~0(t)) in the Schrodinger representation can be expressed
by means of S(t, to) as

(I,T~e
' 'S(t, to)e '~n, rt), (2.45)

the hat Hamiltonian 8 does not, in general. Therefore,
one needs to calculate the matrix elements

~0(t})=e '~'S(t, t, ) e '~0(t, )) .

Since 8 should satisfy

&1~8=0,

(2.33)

(2.34)
S(t, t, )= g S'"'(t, t, ),

n=0
(2.46)

in order to obtain the overlap (2.39}. Expanding the S
matrix with respect to the order of 8' as

the interaction Hamiltonian 8 (t) in the interaction rep-
resentation has the property

&1~8 (t)=o . (2.35)

Then, (2.32) gives us

&1~I(t)= &1~0(t,),
leading to

(1(S(t,t, }=(1(.

(2.36)

(2.37)

This is a manifestation of the conservation of probability,
(1~0(t))=1. Note that the thermal bra vacuum in the
interaction representation t(1~ becomes the same as the
one in the Schrodinger representation:

(2.38)

=g ((I~S(t, to)~n &~ P„„(to), (2.48)

where we assumed that ~n, rt) is an eigenfunction of H
with a real eigenvalue E„,

we can deal with any order of processes induced by 8'.
See Appendix A for the first-order process (the linear
response) as the simplest example.

Note that when the hat Hamiltonian 8 has the struc-
ture

{2.47)

in addition to 8', the overlap (2.39) becomes the well-

known form

(I,T~O(t)) =g (I~S(t, t, )~n )(T~S(t, t, )~it)P„„(t,)

The overlap ( I,T~O(t) ) is given by

(I,T~O(t)) =g (l, 1 ~e
' 'f(t, to)e ~n, r7)P„„(t)0,

H[n, it) =E„[n,r7), H~n, r7)=E„~n,n ) .

Note that, in the case of (2.47),

S(t, t, )=S(t,t, )S(t, t, ),

(2.49)

{2.50)

where we put for the initial state

~0(t, ) & =g P„„(t) ~n, it),

with

(2.39)

(2.40)

where S(t, to) contains only nontilde operators and is a
unitary operator.

III. SECOND-ORDER OPTICAL PROCESSES

We now consider a system that is composed of a radia-
tion field (R) and a matter system (M):

g P„„(to)= 1, (2.41)

which is consistent with the normalization (1~0(to) ) =1.
We see that

8'"=8+8
A'=8, +IHI

with

(3.1)

(3.2)
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~RM HRM HRM

(3.3)

(3.4)

The Hamiltonians Hz and HzM describe the radiation
field and its interaction with the material system, respec-
tively,

HR =g tp„a„a„,
k

(3.5) FIG. 1. Setup of the system under consideration.

HRM=+gI, aI,Mi, +H. c. ,
t

k
(3.6)

where az (ai, ) denotes the creation (annihilation) opera-
tor for a photon with energy co&, and M„(M„)describes
the excitation (deexcitation) operator for the matter sys-
tem. The strength of the coupling between the photon
and the matter systems is specified by the complex
coefficient gz. The hat Hamiltonian PM is given when

the matter system is specified (see next section).
Let us investigate the second-order optical process of a

system with the setup sketched in Fig. 1. %e assume that
the incident laser pulse with a wave vector k, , which is
generated at time t0 and position r0, is scattered by a
matter system, and that the scattered light with a wave
vector k, is detected at time t and position r.

We find the related S matrix S' ' '(t, t p) in

fl
S ( t& tp ) = ( I ) f dt, f dt, f dt, f dt4PRM(t, )8RM( t2 )PRM(t3 )8RM( t4

4

y S(I 4—I)(t t )
1=0

(3.7)

(3 8)

where the superscript in S' '"'(t,
tp ) indicates the order m of HRM and n of H„M. The expression S' ' ' can be arranged

as
fl f2 t3

(t& tp) =f dt, f dt, f dt3 f dt4[HRM(ti )HRM(t2 )HRM(t3 )HRM(t4 )+HRM(t, )HRM(t2 )HRM(t3 )HRM( 4 )
'o 'o 'o 'o

+HRM(tl )HRM(t2)HRM(t3)HRM(t4)+t'C ) (3.9)

where t.c. indicates to take a tilde conjugation. The
thermal vacuum state l0(t) &, which is responsible for the
second-order optical process, is given by

lo(t) &""=e ' 'S""(t,t, )e 'l0(t, ) & .

Let us now take the initial condition

l&p, l, (3.14)

and the photon counting rate, detected at (r, t), is prop«-
tional to the expectation value P (t) of the matrix element
&p&lS'»2'(t, tp)lp, & with respect to the thermal vacuums
of the matter,

lo(t, )&=lp,. &lo (t, )&, (3 „)P(t) = &110(t)&""

where lOM(tp) & is the vacuum ket vector for the matter
system, and the incident pulse lp, & is supposed to be
given by

=&1Ml&p, le '~'0""(t, tp)e' 'lp, &loM &,

where lOM &
= l0M(tp) &.

%ith the assumption

(3.15)

Ip;&=+ f, (k)f,*(k')e ' '
'lk, k &,

k, k'
(3.12) M„lo &=0, M„lo &=0,

where r0 is the center of the incident pulse and
lk, k'&=aiiti, . l0, 0&. The scattered pulse lp, & inay be
given by

lp, &
= g f,(k}f;(k')e '"'+'" 'lk, k'&, (3.13)

which is the case, for example, when the electronic state
coupling to the radiation field is initially in its ground
state (see next section), (3.9) reduces to

SI»2I(t t )
—SI»2I(t t }+S'I»2I(t t )

k, k'

where r is the center of the scattered pulse. Then the
thermal bra vacuum becomes where

+S', (t, t, )+t.c. , (3.17}

f f
1 2 3 E (Mlf l &2f2 M3f3 +&4f4 )

Si ' (t tp)= f dti f dt, f dt3f dt4 g gag), gq gee Qk Q) Qk Qk
kl, k2, k3, k4

XMI, (t, )Mq (t2)Mi, (t3)Mi, (t4), (3.18)
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f2 E3
S'i' '(t, to)= f dt, f dt's f dt's f dt4 g golgi gz gi'e ' ' '' '' ''ai, alai

k1'k2, k3, k4

xM„(t,)M„(t,)M„(t3)MQ (t4),
f3

(t to}=f dti f dt's f dtif 4
kl, k2, k3, k4

XMi, (ti)Mi, (ti)Mg (tq)Mq (t4) .

(3.19}

(3.20)

(3.22)

where (I), (II), and (III) are given by

(I)= g gi',
,gg, gi,,gi',,f;(ki)f, (ks)f;(ki)f (k4)e

k), k2, k3, k4

The assumption (3.16) is not essential in the following formulation; however we will take this for simplicity. Then, the
photon counting rate (3.15) becomes

P(t)= f dti f dt's f dt's f dt 42 Re[(I) +(II) +(III)] (3.21)

=P, (t}+P,(t)+P, (t),

xe ' ' ' ' ' ' ' '
& litlMg (ti)M~ (tq)Mi, (tq)M~ (t4)IOjt), (3.23)

X gf,g~,g~,g~,f:(ki)f,(ki)f;(ki)f (k4)e
k), k2, k3, k4

'
& litlMg (ti)M~ (tq)M~ (tq)M), (t4)IOM),

(III)= g g~ gi, gi', gi, f;(ki)f, (ki)f (ki)f;(k4)e
k&, k2, k3, k4

'
& ll IM„(t,}M„(ti}M~gt (t, )Mtt (t4 ) I 0~ ) .

(3.24)

(3.25)

Here we introduced the symbol tt in order to remind us of the fact that the time evolution is generated generally by a
nonunitary operator. In deriving (3.21), we used the expressions of the matrix eleinents

&p, le
' "'a~ (ti)ai, (tq)n~ (tq)tti, (t4)e' "

Ip; &

=gg &k, k'le
' "'ap(t, )as, (t, )~„",(t, )n„(t4)e' ""lp,y')f;(k)f, (k')f,.(p)f,. (p')e'"' '"" """'"

k k'n r'

' 'f '(ki)f (ki)f (k )f'(k )e

&p, le
'

"'a&, (t, )&„"(t,)a„(t,)n„(t4)e " 'Ip, )

(3.26)

&p, le
' "'ai, (t, )nz (tz)ni, (ti)ai, (t4)e' " 'Ip; &

' 'f;(ki)f,(k, )f;(ki)f (k )e (3.27)

''f;(ki)f (ki)f; (k, )f;(k )e ' ' ' 3" ' 4" (3.28)

and the property

& iI~10&+& ll& I0) =2Re& ll AIO) . (3.29)

the expressions for the integrands (I), (II}, and (III} in
P(t) further reduce to

When the incident pulse is composed of only photons
whose wave vectors are parallel with a wave vector k;,
and when the detector is supposed to detect only photons
whose wave vectors are parallel with a wave vector k„
i.e.,

XF,(t, t, )F, (t, t, )F,'(t, —t,)— —

X & 1~IMk (ti)Mk (tq}Mk (t3)Mk (t4)IO~),
f;(k)=f;(k)&gy, , f, (k)=f,(k)5„((„, (3.30)

(3.31}
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ifl, it~ —t2 1+in,.(t3 i4)
s s 1

(3.32)

XF,(t, —r, )F,'(t, r; )F—;(t, t; )—

X(1M~Mk (t, )Mk (t2)Mk (t3)Mk (tq)~0~),

(3.33)

where we de6ned

g g„f,(k)e ' M„(t)

=F;(t t; )e —' '
Mk (i), (3.34)

I

g gk f; (k)e ' Mk(&)
k

with

=F;(t, r)e —' ' M„(t), -(3.35)
S

s s 1

XF(t, t—)F(r, r—)F'(r, t—)

X(1~~Mk (t, )Mk (t2)Mk (t3)Mk (t4)~0~),
FIG. 2. Energy diagram of the three-state model.

mediate state
~ 3, 3 ), and the photon with energy co, is

emitted from the matter with the transition of the local-
ized electron from the intermediate state ~3, 3) to the
final state ~2, 2). This is the typical situation of Raman
(ro; & co, ) or anti-Raman (co; (co, ) scattering. The energy
of the intermediate state is modulated dynamically (fre-
quency modulation) by the phonon interaction mode
which dissipates its energy to the rest of the phonon
modes. The modulation of the intermediate state causes
the emission of luminescence which greatly re6ects the
characteristics of the matter system.

We assume that the phonon modes besides the phonon
interaction mode are in the thermal equilibrium state
specified by a temperature P ' (ka=1). The interaction
mode can initially (at t =to) be out of the equilibrium
state. We also assume that the electronic state at the ini-
tial time t = to is in the ground state

~ 1, 1 ) .
The matter operators Mk for the model are given by

cu=ck, 0;=ck;, 0, =ck, , (3.36)
Mk C &C3& Mk C2C3 (4.1)

~o T
t; =to — — cos0;, t, =t ——cos8, . (3.37)

Here, we put k =/k/, k, =/k;/, k, =[K, [, ro= fro[, and
r = ~r~. The angles 8; (m/2~8; ~m. ) and 8,
(0~8, ~n/2) are shown in Fig. 1. The real function
F, (t) is the envelope function of the incident pulse,
whereas the real function F,(t) is the apparatus function
of the detector. The frequencies Q; and 0, represent, re-

spectively, the mean values of the frequencies constitut-
ing the incident and the scattered lights. The time t,. indi-

cates the moment when the incident pulse, generated by
the source at fo, comes to the matter, and the time t,
represents the instant when the photons, which are going
to be detected at t, are emitted from the matter. Note
that the existence of the apparatus function F,(t) allows
us to observe the time-resolved spectrum in spite of the
Heisenberg uncertainty principle with respect to time and
energy.

The general formula of the time-resolved spectrum of
the photon counting rate for the second-order optical
processes is given by (3.21) with (3.31)—(3.33).

IV. A. MODEL OF THK MATTER SYSTEM

Now let us apply the formula derived in the previous
section to an analytically solvable model of the localized-
electron and phonon system [3]. The localized electron
has three electronic states which are optically active, as
depicted in Fig. 2. The incident photon with energy co; is

absorbed by the matter with the transition of the local-
ized electron from the ground state ~1, 1) to the inter-

where ci (c.), with j= 1,2, 3, are the creation (annihila-
tion) operators for the jth electronic state. The time-
evolution generator 8'~ becomes

~M HM HM+~~ h ~

with

(4.2)

HM =H,(+Hph+H, ) ph,

H,~= g coicjcj., Hzh=cuab b,
j=1

He) ph =g& 6C 3C3

ft~h = —~[(1+2n )(b b +b b )
—2(1+n )bb

—2nb bt] —2xn,

(4 3)

(4.4)

(4.5)

where b (b) is the creation (annihilation) operator of the
interaction mode of the phonon system, and n is the equi-
librium number of the interaction mode,

e"—1

(4.7)

The damping generator A~h describes the dissipative time
evolution of the interaction mode due to the coupling
with the rest of the phonon modes, which are assumed to
be in a thermal equilibrium state with a certain tempera-
ture P

For simplicity, we will assume that the initial condition
for ihe matter system is given by

(4.8)
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where l 1,1),~ means that the electronic system is in its
ground state, i.e.,

leading to

c,c, l 1, 1 ),&=1, (4.9) & lib'bio, „)=n . (4.14)

ctc-lj,j),~=0 (for j=2,3), (4.10)

n

1+n ' (4.12)

where n is the initial phonon number of the interaction
mode.

With the thermal state condition (4.12},we can obtain
moments with respect to the corresponding thermal vac-
uum l0»), e.g.,

& 1 lb'bio, „)=f & 1 lb'b'lo» &

=f & 1 lb'b'10„&

=f & 1 lbb'lo, „&, (4.13)

and the initial thermal vacuum l0 z) for the interaction
mode is specified by the thermal state condition

bio,„&=fb'lo»),
with

—i8(t —t )p

1103.(f Ep) l'8
] h(E fp)=e ' e

—iB (t —t )Xctc eJ 3

where m3j N3 COj and

(4.15)

(4.16)

+e1-ph Hel-ph ~el-ph ~ l (4.17)

The matrix elements in (3.31)—(3.33) can be treated as

At the second equality in (4.13), we used the commuta-
tivity between the tilde and nontilde operators, i.e.,
[b,b ]=0, and, at the third equality, the thermal state
condition (2.5), i.e., & lib =& lib.

Taking to as the time at which all the representations
(the Heisenberg, the Schrodinger, and the interaction rep-
resentations} coincide, we see that the deexcitation opera-
tor MJ(t} of the matter system, for example, has the form

&1MlM~(t, )Mtt(t, )M (t, )Mtt(-t, )lo )=e ' ""' "+'""'" "'&1 lctc e
' "-p""' "'ctc e

' "-"'" "'

Xctc e "'" ' 'c~c e el-Ph 4 0 l0 )2 3 3 1 M

&1MlMk (t, )Mk (t2)Mk (t3)Mk (t4)lOM) =e " ' ' " ' ' g'(t& t2, t2 ——t3, t3 —t4', 0, 1;1,1;1,0),

(4.18)

(4.19}

&1MlMk (t, }Mk (tz)Mk (t3)Mk (t4)lOM) =e " ' ' " ' ' g(t, t2, t2 t3—, t3 t4—;1,0—;1,1;1,0), (4.20)

where we introduced

g (, 2, 3', A„A,;A2, A2;A3, A3} XF,(t, t, )F,'(t, t—, +r+p)F—,'(t, r t, )——
=&1MlG(t„A„A))

XG(t2, A2, A2)G(t3', A3, A3}lOM ), (4 21)
XF;(t& —r —

lt4
—o —t;),

(II}'=e ' ' g(r, p, o",0, 1;1,1;1,0)

(4.26)

with

G(tj; AJ, AJ ) = exp( i8,'~'phtj },— (4.22)
XF;(t, r p o —t—;),—— (4.27)

XF,(t, t( }F,'(t, +r t—()F(*(t) r—/l t;)

Here, for simplicity, we further assume that the pho-
non interaction mode is in thermal equilibrium with the
rest of the phonon modes, i.e., n =n. Then we have
8M lOM )=0 which leads to

(4.24)

XF;(t& —r—p —o' —t; }, (4.28)

where we introduced the notation

(III)=e ' ' g(r, p, o;1,0;1,1;1,0)

XF; (t, ti )F,(t, +r —t, )F (t, r—p t;)———

or

@,'Jj'ph l0» ) =0 (for A .= A =0) . (4 25) and

t27 P t2 ~37 ~ ~3 t4 7 (4.29)

Inserting (4.18)—(4.20) into (3.31)—(3.33), we obtain EQ, =Q, —~» . (4.30)
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~ ~ ~ ~ ~ ~ ~ ~
1 3 3 )l

12, 2&

8,'h'= ,g-(A, +A, }(.b'b —b'b),

Ah= A (b . b+b b)+II

(4.32)

(4.33)

I ~ ~ ~ ~ r ~ ~ ~ \ ~ ~ ~ ~ ~ ~ ~:

~ ~ ~ ~ ~ I ~ ~ ~

Y
—li, &)

Y

--.- -*- 13 3)s

= i 12,2) where

=A., (dhd +d. dh. )+2ans, ,

=0"+2]tns

Kpj

(4.34)

(4.35)

(4.36)

~ e 13,3&
s = 1+ A —p.fg

2 1 j2

(4.37)

'4 ~ ~ ~ ~ ~ ~ ~ ~ ~ 0+ 1 2 2 ) +4n
2K

(4.38)

FIG. 3. Diagrammatic expressions of the second-order opti-
cal process for the three-state model. The solid line represents
the time path among the electronic states described by nontilde
operators, and the dotted line by tilde operators.

J J

The operators d, dj~, d. , and dj are de5ned by

d ts —( g
—1 )]svb v

(4.39)

(4.40}

where we have introduced the thermal doublet notation

In Fig. 3, we give a graphical representation of
(4.26)—(4.28). We chose to look at the complex conjugate
for easy comparison with Ref. [3], i.e., (I), (II), and (III)
above correspond, respectively, to (III), (II), and (I) in
Ref. [3].

In order to evaluate

dJd"=
d1

and the matrix

C

2i

b
$P=

b

(a, —A., )/c (a +A,, )/c

(4.41)

(4.42)

g(t]tt2st3jA„A]', A2, A2', A3t A3)

further, let us rewrite the time-evolution generator 8'h'
in (4.23) as

(4.31)

with

a =—A +z(1+2n),lg
2

c =2@(1+n ) .

(4.43)

(4.44)

with Then we have

g(t] t2 tt3jAs]tA]jA2tA2jA3tA3) —g(t]tt2st3j1, 2, 3)

tNp'i, —tPp'i, —f)] ] A. . . ,
l )e e e e e

with

2itns]t] 2nns2t2 2tttTs3t3=e e e 5 t, , t2, t3&li2t3 (4.45)

II II II

$(t„t2,t3;1,2, 3)=(l]]I~e ' 'e ' 'e ' '~OM),

where we used the properties

[Bah', fth ]=0, therefore [PI]h', A" ]=0,
ltd p \ ] tA p t2 tPp t3

~ (1) (2) - (3)

Me e e =1

(4.46)

(4.47)

(4.48)

Solving the difFerential equation for S(t„t2,t3, 1,2, 3) with a lengthy but simple algebraic manipulation (see Appendix 8
for details}, we finally arrive at

1,
g 'T, P~ 0',

7

0 ;0010 =g ~p o',
1 0,

0
;1,1;1,0

1

(4.49)
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where

s(1)
g+(~,p, tr)= exp '2ttn

( 1} ~+s(1)o

1
ns(1) '

1 K—(o, 1;C ) 1 —
1 & 1 K(p, O;C2)[1 K—(~, kl;C, )] (4.50)

Cl =C2K '(p, ,O; C2 ),
C2=s(1)+[C2—s(1)]K '(o, 1;C2),

(4.52)

(4.53)

with

K(t, m;C)=1 —
I 1 np —'(m)[C —s(m)]Je (t), (4.51)

where m = —1,0, 1.
Assuming that the time resolution F,(t) of the detector

at r is equal to the width F;(t) of the incident pulse which

is supposed to have the Gaussian-form envelope function

C3 =n——1

e 2&tp(m—)t

(4.54)

(4.55)

(4.58)

s(m)=s (A =m)= 1+ m —p(m}lg
2K

' 1/2

(4.56)
we obtain as a final result for the photon counting rate

P (t„bQ„bQ, )=P,(t„bQ„EQ,)+P2(t„bQ„bQ,)

p(m)=pj(A, =m)= 1+ m +4n m
lg
2K +P,(t„hQ„EQ,}, (4.59}

(4.57) with

P((t„hQ„LQ;)=2Ref dr f dp f do e
' ' +" +' ' "+

Tf((t„g,p„g)g (~,p, tr),
0 0 0

P2(t„hQ„EQ;)=2Ref d~ f dp f do e " ' rI2(t„r,p, cr)g (t,p, o),
0 0 0

00 00 iLLQ v+iLLQ, .0P2(t„hQ„bQ;)=2Re dr dp der e ' ' rI2(t„rp tr)g+(wp tr),
0 0 0

where we introduced the functions

(4.60)

(4.61)

(4.62)

' 1/2
$2

Tf((tq&'T&P, tr )=
2m'

2

exp — [ ,'(~+o ) t,—]+—,'(r—+p) +—,'(o+p) (4.63)

'r)2( t~ & 7 & P, tr )=
' 1/2

$2

2'
$2

exp — [ t (r+o )] + ((~—+p t, ) + —,'(o+p—t,)—— (4.64}

r)3( tt & T&p, O' )=Y/2( fq & 7
& p, tr )

Here, we put the origin of time at t; =0 with the condi-
tion that the distance between the light source and the
matter is long enough, and that the detector is quite apart
from the matter, i.e., r0, r ~ ao, t0 ~ 00 t ~ 00 keeping
t, finite [see (3.37)].

The result (4.59) is in complete correspondence with
those derived by means of the density operator method
where the phase-space method was used to solve the mas-
ter equation of the system [3].

U. SLOOP AND FAST MODULATION

The effect of the phonon modulation can be character-
ized by the parameter [5]

(4.65)

I

For a slow modulation, a )&1,whereas for a fast modula-
tion, a «1.

A. Slow modulation

In the case of slow modulation (a))1), g+(~, pv) in
(4.50) reduce to

gz(~, p, o ) = [1+n nh (~,p„o—)] 'e

e 2&t&T(&+cr} y e ftlt0[h—(r p
—o }]I1

1+n 1=0

g+n(n+1)a=
2K

(5.1)
with

(5.2)
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l (& ~ )
—e

—i[+g —2ni(1+2n )]v —i [g —2ni(1+ 2n )]rge

(1+n )(1 e 2rr—ig)(1
—i[g —2rri(1+2n)]gr)

respect to the random process (5.8), we obtain the
Fokker-Planck equation of the system as

X ( 1
i—[+g —2ni(1+2n)]v

)

=e e
—i [kg —2~i(1 —2n)]~ —i fg —2'(1+2n))u

We see that (5.2) with (5.4) can be derived by

(5.3)

(5.4) with

(5.14)

(5.15)

1 —(I,Elk(+" ll, X)
g (~ i2 tT )

— g e t)lgoe ' el-ph

1+n I=o
—.«, flB,',+,'„'lI, E)

(5.5)

(5.16)

where we used the characteristics of the Ito multiplicane

tion

with

( l, T~ 8',J)'ph
~ l, l ) =g A 1 2a—i [n + ( 1+2n )1] .

( AdQ(t) ) =0 .

This Fokker-Planck equation gives us

(5.17)

The expression (5.5) indicates that, for slow modulation,
the scattered light consists of the superposition of each
light scattered by the intermediate electronic state, cou-
pled to the I-phonon state ( l = 1,2, 3, . . . ), with the
weight e@"l(1+n) of the canonical ensemble.

g~(~, y, ,a }=exp[[+ing 2ica ]—r]

X expI [ ing——2)ca ]0 j . (5.18)

Note that the Langevin equation for c3 of the Stratono-
vich type is given by

B. Fast modulation
dc3(t)= i [(—co3+ng)+g dQ(t)]oc3(t) . (5.19}

In the case of fast modulation (a((1), as can be seen
in the investigation of Appendix C, the modulation of the
phonon system can be taken into account by a random
force operator dQ(t)=dQt(t) of a stationary stochastic
process, i.e., a quantum Gaussian process,

(5.7)

g (dQ(t)dQ(s))=g (dQ(t)dQ(s))

2~2~2e —2~I sldt ds (5.8)

The latter correlation reduces to

g (dQ(t)dQ(s)) =g (dQ(t)dQ(s))

=4ita 5(t s)dt ds—, (5.9)

d~Of(t) ) = iaaf, dto ~0f—(t) ),
with

A'f, dt =ngA dt+gA dQ(t) gA dQ(t) . —

(5.10)

(5.11)

The symbol o indicates the Stratonovich stochastic multi-
plication. The stochastic Liouville equation (5.10) can be
written in the form of the Ito type equation [11—13], for
the extreme limit a~ ao, as

d Of(t) ) = iJVf, ~0f(t) ), —

with

&f,dt =Sf,dt i2ita A dt . —

(5.12)

(5.13)

Taking the random average ( . . ) of (5.12) with

in the limit of sc~~, i.e., the limit of extremely fast
modulation yielding a quantum %iener process.

The time evolution of the system is described by the
quantum stochastic Liouville equation of the Stratono-
vich type [11—13] as

This shows that, for fast modulation, the system reduces
to the model of phase modulation investigated by Kubo
when he introduced the stochastic Liouville equation
[21,5] (see also [22]).

VI. PROFILES OF TE4%E-RESOLVED SPEC1RUM

In Figs. 4-14, we list the profiles of the time-resolved
optical spectrum in the model of the three-state localized
electron and phonon for typical parameters. The profiles
P(t„hQ,) are shown with the axes b,Q, and tg,a. The
former is the distance of the frequency 0, from the ener-

gy separation ~32 between the intermediate and the final

electronic states. The latter is the time when the matter
emits the absorbed light. The origin of the time axis, i.e.,
t, =0, represents the moment at which the peak of the in-

cident pulse is scattered by the matter.
For every profile, we fixed the parameter 5 at the value

5=0.5, which is the width of the envelope function of the
incident pulse, and of the apparatus function of the de-
tector. The other parameters for each profile are listed in
Table I.

%'e put EQ; =1.0 for Fig. 4, and EQ; = —1n0 for Fig.
5, while the other parameters are the same. %e see that
the former intensity of the spectrum is larger than the
latter. This is because, in the former case, the incident
pulse is absorbed and/or scattered extensively by the
matter, since there are a lot of modulated intermediate
electronic states in the energy region larger than co32 cor-
responding to the number of phonons of the interaction
mode. On the other hand, in the latter case, only the tail
of the incident pulse, which is in the energy region larger
tha11 c032 is absorbed and/or scattered by the matter. We
observe also that, in the former case, rhe Remen and
luminescence components are hard to distinguish, and
that, in the latter case, they are well separated. The Ra-
man component is found in Fig. 5 as a Gaussian profile
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11 and 12 have, respectively, just the same value of a as
the cases of Figs. 10 and 9, but their profiles are not like
each other. Rather, the profiles of Figs. 11 and oo
simi ar, as o o'1 do those of Figs. 12 and 10. Therefore one
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APPENDIXDIX A: LINEAR RESPONSE
OF MA.i.a;RIAL SKIj;MS

0
Os

FIG. 14. EQ;= —1.0 =, = . , = . , =0F . . ;=—. , g =1.0, 2~=10.0, n=1.0, =0., a=0. 141.

Let us consider the linear res onp
o t e system specified b 8. S'

mation of the thermalerma vacuum is given by

g~p(t)) e
—dbf(&l( ' 0t t, e 'p(t, )),

with

(1)S (t, to)= i f dt Dg~(t'

(Al)

(A2)
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the linear response of an observable

Q(t) =g Q„(t)+Hc. (A3)

and that the field is given by

Reg„al(t)=Regl', al', (t)=lg„al,l cos(co„t+&)(1}.

is given by

5(Q{t})= —gg f dt'@z l,(t, t') Re[gl, al, (t')],
q

(A4)

APPENDIX B: DERIVATION OF g~(t»t»t3)

Rewriting the function S ( t 1,t2, t 3, 1,2, 3 ) defined by
(4.46) as

with

l,(t, t')=1'( lstl[Qq(t), Ml, (t')]lost )+c.c.

Qrt

s(t„t„t3;1,2, 3)=( litle
' 'l03r(t2, t3;2,3)),

(A5)
with

(81)

Here, we assumed that the state of the external radiation
field is the coherent state defined by

II Il

lo (t„t„2,3)&=e ''e ''lo ), (82)

&2l, la ) =al, la), (A6) we have

Qtt

S(t„t2,t3;1,2, 3)=2k, , ( 1 ldtld, e ' '
loM(t2, t3;2, 3) ) (83)

=c 1—al —
Al f (tl, t2, t3,'1,2, 3)—(al+A1)lc

S(tl, t2, t3, 1,2, 3}
C 1 tl&t2&t3&1&2&3

(84)

where

in[1 r+—re ' '] S(tl, t2, t3', 1,2, 3},
dt&

(85)

fl(tl, t2, t3, 1,2, 3)f (tl, t2, t3,'1,2, 3)=
f2 tl, t2, t3',

with

fl(t 1 &t2&t3, 1,2, 3) fl(t2, t3', 2, 3)
Q e 311

f2(tl, t2, t3,'1,2, 3) ' f2(t2, t3, 2, 3)

and

[c —(a, —
A, )1]f,(t 2t 32, 3)

r =r(t2, t3;1,2, 3)=
[c —(al —Al)]f1(t2, t3,2,3)+[c+(al—A 1)]f 2(t 2t 3, 23)

(86}

(87)

(BS)

Here, f, (t2, t3, 2, 3) and f2(t2, t3;2, 3) are defined through
the relation

dl
~t lour(t2, t3, 2, 3))
C4 i

I

which are defined by

y l(tl )l'=B (t1& t2&t3'&1&2&3)""bl(tl )",

y, (t, }"=b,(t, )"B '(t„t2,t3;1,2, 3)'", (812)

fl(t2&t3&2&3) fi» fi»= f (, , 23) e ' 'e ' 'b'lost&,
with the help of the time-dependent Bogoliubov transfor-
mation

and are given by

f (t t ~ 2 3) Ql Q2 Q2 Q3 Q3

(8lo)

B(t
„
t„t3;1,2, 3)1' = Zi 0

0 Z~

1 f (t„t2,t3; 1,2, 3 }—
X —1

In deriving (85), we introduced the annihilation and
creation operators with

(813)

(814)Z, Z2= [1 f(t„t2,t3, 1,2, 3)—]

Here, f(t„t2,t3;1,2, 3) is given by (86), and the time-
dependent operators b (t }1"and b (t)" are defined by(811)

y l(tl }
y, (t, )"= ¹, y, (t, )"=(y¹(t, ) p, (t, )), —

Yl 1
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bl(tl)"=e ' 'b"e ' '=(b t(t]) —bl(t])) .
—ft', i, — ft', f,

(815)
The di(ferential equation {85)can be solved as

S(t»tz, t3,'1,2, 3)=[1 r+—re ' '] (818)

The annihilation and creation operators satisfy

yl(t) )10st(tt, t3, 2, 3) ) =0, (816)
I

with r being given by (88).
With the help of the time-dependent Bogoliubov trans-

formation (813), we can rewrite ft", de6ned in (4.35), in
terms of the annihilation and creation operators as

al+A, (
Xl, f& V1, t&

al —A

+ZIZ2 1—

+Z)Z2 f (t), t~, t3&1,2,3)— ai+Ai
V l, f j Vl, tl

ate+A, i
y~i, f r ~i, t +t.c. , (820)

where

(821}

is defined through the relation

Fi(ti)"=e ' '}'i,e ' ',

APPENDIX C: THE A.UTOCORRELATION OF gb (t)b(t)

(C 1)

~ith the help of the thermal state condition (4.11), the
autocorrelation of the operator gb b can be calculated as

(gb (t}b(t)gb (s)b(s)),
={1 „igbtt(t)b (t)ghat( )b (s) i0 „)gn (t—) (s)

=g n (s)[1+n (s)]e +' ', t s~,

(822) where

Here, we dropped the subscript j, for simplicity.
The expression (820} is the normal ordered form of the

generator ft", whereas the expression (819}is the diago-
nalized form of the generator. Note that, in the usual
quantum mechanics or quantum field theory, the opera-
tor which diagonalizes a Hamiltonian and the operator
which defines the normal ordering are the same. It is a
special feature in transient nonequilibrium situations that
the diagonalizing operator for the time-evolution genera-
tor within NETFD is difFerent from the normal ordering
operator.

n (t) = {1 h~b (t)b (t) ~0 h) =n +dine (C2)

with b, n =n —n. In the stationary case, i.e., hn =0, the
autocorrelation reduces to

(gb (t)b (t)gb (s)b (s) ),=g n (n+ 1)e

t ~s . (C3)

We see that the parameter o: is the ratio of the intensity
of the correlation, g +n (rT+ 1), and the relaxation rate of
the correlation, 2x.
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