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Marangoni eonveetion in binary liquids
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We consider Marangoni convection in a binary liquid. The effect of crispation is considered and it is
seen that above a certain critical crispation, only long wavelength rolls can be formed via the stationary
instability. Oscillatory instability is allowed and hence a codimension-two point exists. In fact, by vary-

ing the crispation a line of codimension-two points can be generated but they do not terminate on a
codimension-three point.

PACS number(s): 47.27.Te, 47.20.—k

I. INTRODUCTION

For a thin layer of fluid heated from below, the onset
of convection is more likely to be surface tension driven
than buoyancy driven. As the fluid layer thickness in-
creases, the surface tension effect yields to the buoyancy
effects. The surface tension driven convection is the
Marangoni effect [1—3] and the stability of the fluid film
is determined by the dimensionless Marangoni number M
which is proportional to d, where d is the film thickness.
The Rayleigh number is proportional to d, and hence
for small values of 1, the Marangoni effect dominates.

If the top surface of the fluid is free, then the fluctua-
tions of the surface have an important effect on the stabil-
ity. Its effect is estimated through a crispation number
Cr and for Cr greater than a critical value, the long wave-
length fluctuations dominate and the instability sets in as
very long wavelength rolls [4—6]. The principle of ex-
change of stabilities is not proven but it is generally be-
lieved that, when heated from below, the instability is
never oscillatory [2,3].

The problem of Marangoni convection in thermosolu-
tal system with a free boundary has been tackled recently
and it was found that the M vs a (a is the wave number at
the onset of convection) can be quite interesting with the
existence of crispation numbers Cr& and Cr2 such that the
convection was always in the form of long wavelength
rolls for Cr&Cr2 and the effect of crispation was com-
pletely absent if Cr & Cr, . The various different situations
have been studied by Dandapat and Kumar [7]. These
authors addressed the question of Hopf bifurcation as
well. It was generally concluded that for heating from
below, it is not possible to have a Hopf bifurcation except
possibly in a narrow band of frequency. The possibility
of a meaningful codimension-two point consequently did
not exist.

In this work, we consider the binary liquid mixture.
The Soret effect becomes a very important factor and the
separation parameter g which is a measure of the Soret
effect in a parameter which can be varied externally. We
find that for g(0, oscillatory Marangoni convection does
indeed occur. The standard codimension-two point exists
and in the presence of the free surface fluctuations, a line
of codimension-two points are formed. However, this

line of codimension-two points does not end in a
codimension-three point. This is due to the fact that the
high frequency branch does not correspond to positive
Marangoni number.

In Sec. II we set up the governing equations and dis-
cuss the boundary conditions. The stationary instability
is tackled in Sec. III. An approximate technique is
developed in Sec. IV which helps us to discuss the oscilla-
tory instability in Sec. V.

II. EQUATIONS AND BOUNDARY CONDI-I-IONS

The governing hydrodynamic equations will be the
Navier-Stokes equation for the velocity field and the
diffusion equations for the temperature and concentration
(of one of the components, which we take to be the
lighter component) fields. These take the forms

+(V V)V= — +g+vV V,
Bt p

+(V.V)T=AV T,
Bt

k~
+(V V)C=D V C+ ViT

Bt ~In

(2.1)

(2 2)

(2.3)

S=S + T+ C+ar, ac, (2.4)

where So is the surface tension at some reference temper-
ature and concentration. The parameters a and P one

~here V, T, and C are the velocity, temperature, and con-
centration fields; v, A, , and D are the kinematic viscosity,
thermal diffusivity, and mass diffusion coeScient; kz is
the thermodiffusion coeScient; T is the mean tempera-
ture in the cell; I' is the pressure; p the density; and S the
acceleration due to gravity. We now have to supplement
the equations of motion by constitutive relations [8-10].
To do so, we note that we are going to describe an insta-
bility which is being driven by surface tension forces and
not by buoyancy forces. Consequently, the required rela-
tions involve the variation of surface tension S with tem-
perature and concentration and we introduce the expan-
sion
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then defines as

& as
so BT' (2.5a)

1 as
s, ac' (2.5b}

and in general we expect a, P) 0. The conduction state
is described by

w = +u +U at the top surface,811 817 8't}

Bt ax By
(2.15)

where u and U are the x and y components of the velocity.
Dimensionless variables are introduced by scaling all

distances by d, time by d /v, velocity by A, /d, 5T by
(ET)l /(1+I ), and the variable C+(kT/T )Thy

kT (gT)l
T ]+I

V=0,
the hydrostatic pressure distribution is

P = —pgz +const,

the no-mass current is

kTj=— VC+ VT =0,
T

(2.6)

(2.7}

(2.8)

The dimensionless 5T is denoted by 8 and the dimension-
less 5[C+(kr/T )T] by P in what follows, while we will
adopt the convention that u, U, w, and g and also x, y, z,
and t will be taken to be dimensionless whenever they ap-
pear henceforth. The bounding surfaces being infinite in
extent, we expect the perturbations u, U, to, rt, 8, and P to
be periodic with some wave number k (k„kz).

If we linearize the equations of motion [(2.1)—(2.3)]
about the conduction state, we find from Eq. (2.1) that

and linear profiles for temperature and concentration
fields are

8 2 V5P——vV V=-
dt p

T = Ti+Piz,
C =Ct+p2z,

(2.9}

(2.10)

since fluctuations in p are being dropped. Taking the curl
of this equation twice and using the incompressibility
condition leads to

where P, and P2 are constants and T, and C, are the con-
centrations at the lower plate which we take to be at
z =0. To fix the constants P& and P2, we need to consider
the boundary conditions at the top surface, which we
take at z =d. If the environment has a temperature To,
the top surface a temperature T2, and the heat flux at the
top surface is H, then

V ——vV w=0.
at (2.16)

a
u ——V H=w,2 (2.17)

Straightforward manipulation of Eqs. (2.2}and (2.3) yield

VT= —(T2 —To)Hz, at z=d .

Using Eq. (2.9), V T =P,z, and hence

pi = —( T, +pid —To )H,

or

H ~
I' hT

1+Hd 1+I d

(2.11)

(2.12)

———V $= ——V8,o 8 2 1

L dt L (2.18)

where L =D/A, is called the Lewis number and o =v/A,
is the Prandtl number. The linear set of equations will
support a time dependence of the form e~' and thus the
structure of m, 8, ((), and g will be (taking into account the
periodicity in x and y)

p2 kT

1 Tm
(2.13)

where )AT = T&
—To (the temperature difference between

plates) and I'=Hd. An insulating boundary corresponds
to I =0. From Eq. (2.8), we are required to have

tt, v, w = U(z), V(z), W(z)
8=8(z)
P=@(z)
g=A

i(k&x+k y)
(2.19)

We now need to examine whether the above conduction
state is stable to convective perturbations. The perturba-
tions occur in velocity (v), in temperature (5T), in con-
centration (5C) and in the height of the layer, i.e., fiuc-
tuations at the top surface which is free. These fluctua-
tions we denote by g which is going to be a function of x,
y, and t, and consequently the equation of the top surface
becomes

z =d+rt(x, y, t) . (2.14)

The z component, w, of the velocity at the top surface
must satisfy

Inserting the above forms into Eqs. (2.16)—(2.18), we ob-
tain the equations of linear stability analysis as
(D =d/dz)

(D a)[p (D a)—]W =0-, —

[op —(D —a )]8=W,

(2.20)

(2.21)

—p (D —a ) 4= ——(D —a )8. —CT 2 2 ~ 2 2

L L
(2.22)

The boundary conditions are now to be specified. On the
lower plate (which is fixed and thermally conducting}, we
have
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W=DW=S=DC=0 (z =0) . (2.23)

On the top surface, we must have (boundary conditions,
too, must be linearizedin U, V, W, 8, 4, and A)

where g is the separation parameter
[g= ( kT/T )(P/a)] and the Marangoni number M is

given by

W=pA . (2.24)
asod ATM=

pvA,
(2.28)

(2.25)

The stress tensor in a Quid is

BU; Bvi.
T, = P5, —+pv"+

Bi 8

and the force balance at the top surface yields, for direc-
tions normal to the surface,

T;Jn;n =2S/R,

and for directions along the surface,

It is reasonable to assume that the mass flux across the
surface is negligible and hence

D4=0 .

So being the value of the surface tension at z =1. The
task is to solve the eigenvalue equation for p [Eqs.
(2.20)—(2.22}] under the boundary conditions given in

Eqs. (2.23)—(2.28). The conduction state will be unstable
whenever Rep ~0. If Imp =0 when Rep =0, we have a
stationary instability, and if Imp0 when Rep =0, we
have a Hopf bifurcation or overstability.

III. STATIONARY INSTABILITY

In this case we ask for the condition which gives a zero
eigenvalue for p in Eqs. (2.20)—(2.22). These equations
now take the form

as
T;~n;t~ =

ax~

where [ n; ] is the unit normal, I t; ] the unit tangent, and
R the radius of curvature, which is given by

(D' — ')'W=0,

(D —a )8= —W,

(D —a )4'=—W
I.

(3.1)

(3.3)

Cr(D 3a p)DW—=a —(B+a )A, (2.26)

where Cr =pvA, /Sod is the crispation number and
B =pd g/So is the Bond number. The tangential com-
ponent of the force balance leads to

(D +a )W+Ma (1+/)(8 —A)+Ma $4=0, (2.27)

R '= + 7l
ax ap

to linear order accuracy. Using the force balance along
the normal and the Navier-Stokes equation, we get, at the
top surface,

Using the boundary condition that D =DW=0 for z =0
and W =0 on z =1, Eq. (3.1) yields for W,

aC —SW= A, sinhaz az cosh—az+ z sinhaz, (3.4}

where C =cosha and S =sinha.
Solving for 8 from Eq. (3.2) and using the fact that

8=0 on z =0 and on z = 1 [from Eqs. (2.11) and (2.26)]

De+re=r~ = Cr
(D 3a )DW, —(3.5)

a (B+a )

we arrive at

3 1 aC —S 1 28=B2sinhaz —A, coshaz — (az sinhaz —z coshaz}+ (az coshaz —z sinhaz)
2a 4a S 4a

(3.6)

where

82=LA ),
with

E= (B+a )[(a C +S +aCS)+I (a +S +aCS)]—Sa I'Cr
4a $(B+a )(aC+I S)

(3.7a)

(3.7b)

From Eq. (3.3), we obtain, on using the boundary conditions DC=0 on z =0 and z = 1,

A)4=C,coshaz +C2sinhaz—
1 1 aC —s 1

z coshaz — (az sinhaz —z coshaz)+ (az coshaz —sinhaz ~,
2a 4a 4a'
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with

3Ai
Cq=

4Q L

and

(3.9a)

ary convection is given by Eq. (3.10). For /=0, we ob-
tain the standard result for the single component fluid, as
expected.

Anticipating a long wavelength instability, we expand
the various terms in powers of Q, as follows:

Ci= (aC —S)
4Q ~LS~

Using the solutions obtained for 8' 8, and 4, we now
need to satisfy the boundary condition in Eq. (2.27) and
this yields

8a(a —SC)(8+a )

a(a —SC)(8+a )(aC+I S)

a a a 1+I /3'B—a —(1+I ) 1+ + +
3 5 B 2 1+I

(S~ a~C—)(B +a z) +Sa C Cr

Q~ Q~B
=8Q Cr 1+ + +

120 Cr
+ [(S aC)(—B+a )+8a CCr]QC+I S

M B+QttM 8 +a
[ ( )z

L QS

+aS(2S —a —aCS)) =0 . (3.10)

B+Q~ (aC+I'S)t C(aC —S) +aS(2S —a —aCS)J
QS

QS 3Q 2
Q

2
Q

2

9
8(1+I') 1+ + + +

10

The critical Marangoni number for the onset of station-
I

This leads to (for I =0)

Q Q QM= — '1+ + + 1—
3 C(1+/)+ QB 5 8 2

72L

15
(1+1( )+8(1+g }Cr+ —+

L B 30

8 Cr(1+/)+
+ ' . (3.11)

Clearly, the value of M at Q =0 will be a minimum if

Cr)Cr =(8 /120) I+g—1 9L
(1+/)(1+8/5) .

2M=-
s 3

7

Cr(1+ /)+
72L

provided Cr )Crz is given by

(3.12)

or

2 B

Cr (I+/)+
72L

80
1+f+P/L

8 2@i
120 3 L I+/

Thus, we have the situation that if Cr & Cr&, then there
is only one minimum in the M vs Q curve and
M, =SO/(I+/+//L) with a, =1.99; and if Cr)Crz,

This will be the onset point of convection if this is the
only minimum or if it is the lower of the two possible
minima —the other being at a 6nite value of Q. This
minimum is totally insensitive to the value of Cr for low
Cr ( ( 10 ) and is very well approximated by
80/(1+/+//L) for I =0. Thus the convection occurs
as long wavelength rolls (i.e., a =0) with the threshold
M, given by

I

the only minimum is at M, given by Eq. (3.12); and for
Cr& & Cr & Crz, there are two minima, but the one given

by 80/(I+/+//L) is the lower and thus gives the
threshold value of the Marangoni number.

IV. AN APPROXIMATION

8= g B„z",
n=0

(4.1)

and then restrict ourselves to only three terms so that the
boundary conditions are met at z =0 and z =1 and Eq.
(3.2) is satis6ed in the mean. The boundary condition at
z =0 leads to B&=0. The boundary condition at z =1
leads to

(2+I )B,B +8,(1+I )=-
S(B+a )

(4.2)

In this section we will consider the stationary convec-
tion in an ordinary fluid and develop an approximation
scheme that will turn out to be useful for the Hopf bifur-
cation and should also turn out to be very useful for
treating the nonlinear problem. In the absence of the
second Quid, the governing equations are given by Eqs.
(3.1}and (3.2). The solution for W is, as before, given by
Eq. (3.4). It is in the solution of Eq. (3.2) that we intro-
duce the approximation by assuming that the solution for
8 can be expanded in a power series in z (0(z ( 1), so
that
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and the requirement of satisfying Eq. (3.2) in the mean
leads to

a a A

3
—288+ 8= (S —a)

a&S
(4.3)

One now needs to satisfy the boundary conditions of Eq.
(2.27) at z = 1 (note in this case, /=0) and that leads to

a~ a~I
4a (CS —a) 1+ + + I

3 12
(4.4)

less efficient than heat diffusion) and work to leading or-
der in I.. We also make the approximation that the
Prandtl number cr )&1. This latter approximation is true
for almost all binary mixtures except He- He mixtures
and even for the helium mixtures it is not a sensitive pa-
rameter if ~g~ &&1. The simplification obtained in this
limit, on the other hand, is enormous and makes
the results visually transparent. Returning to Eqs.
(2.20) —(2.22), we note that if we scale p by o, then po ~p
in Eqs. (2.21) and (2.22), while p~p/ir in Eq. (2.20).
Consequently, to the lowest order in 1/o, the equation
for W can be taken to be

(S —a) +4 1+
6 B+a (Di —gi}zff'=0 . (5.1)

This is to be compared with the exact answer that can be
read off from Eq. (3.10) as

Sa(CS a)(B+—a )(aC+I'S)
(S —a C)(8+a )+Sa CCr

The 8 equation can be written as

(D b)8—= —W, (5.2)

where b =a +ice (we have set p =ice), and for L ((1,
the 4 equation becomes

If we consider the long wavelength instability, i.e., a =0,
the expansions of the two expressions are as follows: ia)4= —(D —a )O. (5.3)

a a aM= —', (1+I') 1+ +

2 2a a +3(1+I ) 12(1+I )

The governing set of equations for the oscillatory insta-
bility for o ))1 and I. ((1 are consequently given by
Eqs. (5.1)—(5.3). The boundary conditions to be satis6ed
are, onz =0,

(4.6) W =DW=S=D4=0,
and on z =1,

(5.4)

B a a
M,„„,= —,'(1+I') 1+ +

Cr
a B
120 CI

I'a /3
I+I (4.7)

So long as the instability acts as an infinite wavelength
one, we see that the critical Marangoni number is the
same in both cases. %e now cross over to the other ex-
treme, where Cr =0. In this case (for I'=0)

W=iuA,

Cr(D 3a )DS'=—a (8+a )A,
D8+ I 8= A,
D4=0,
(D +a )%+Ma (1+/)(e —A)+/Ma 4=0 .

(5.5)

The solution of Eq. (5.1) satisfying the given boundary
conditions on Wis

M= 4a (CS —a)(1+a z/3)

(S—u)'

leading to a, =2. 11 and M, =81.8, while

(4.8)
aC —S8'= A, sinhaz —az coshaz+ z sinhaz f

(5.6)

where

M Sa C(CS —a)
cxRci (S3 3

(4.9)

leading to a, =1.99 and M, =80.1. Vile have checked to
see that over the entire range of parameters the approxi-
mate M obtained from Eq. (4.4) is within 5% of the exact
M as given by Eq. (4.5).

i~Cr 2a"S —2a C
u'(8+a'} aC —S

2tcoCr a C
a(8+a ) S

V. OSCILLATORY INSTABILITY
The solution of Eq. (5.2) is tried according to Sec. IV as

In this section we make the usual approximation for
the binary liquid, namely, I.«1 (the mass diffusion is

O=B (z +B~z

The fourth equation of the set of Eq. (5.5) leads to

(5.8)
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(1+I )B,+(2+I }B =I A = W
r
le
r

A, [$—aC+f (aC —S)]le
r

A, (f —1}(aC—S) .
lCO

(5.9)

The satisfying of Eq. (5.2) in the mean leads to

b 2B-,+b B =A (S-a)'+(f 1)(ac-S)'
QS QS

Thus,

(5.10)

and

B1

A1

B2

A1

b2 —2 (aC —S)(1—f)+(2+I ) +(f —1)
3 1co aS aS

b2 b2

2
(2+I )+(1+I') 2—

3

b2
(aC —S)(1 f) +—(1+I ) +(f —1)

EN 2 aS aS
b (2+I )+(1+I')(2—b /3)
2

(5.11)

(5.12)

To solve for Eq. (5.3) in the same style, we note that D4 must vanish on the boundary z =1 and hence we use
@=const (C, ) to the lowest order; now to satisfy Eq. (5.3) in the mean, we must have

aicoCI= —(2—a l3)Bz+ BI .

The last of the boundary conditions in Eq. (5.5) now yields

(5.13)

(Dz+az) w~ = Ma'('+&) Dez=1
z=1

—/Ma 41,

Ma (I+/} /Ma a 2 a 2

2— B2 — B1 (5.14)

leading to

(1+/}a

I2a (CS —a}+2a(1—f}[(a —1)SC+a]]

2S . (aC —S) 1+ b + (S —a) +(f 1)
(aC —S)

ltd 3 a 2 a 2

2b b2
2+ +I 2+

3 6

fa
A1EN

2
a B a B2 2—
3 2

—
2

(5.15)

For I'=0, we get

b2
4a {(CS—a}+(1—f)[(a —1)SC+a]] 1+

3
1+%+ le

If Cr~0, then 1 f~0, and we have—

f b2
(1+/)2Sa (aC —S) 1+ + [(S a) +(f —1)(aC —S) ]-

1co 3

2

1+
3

(5.16}
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Q2
4a (CS —a) 1+

3

2

(S —a) 1+P+ 1+
l co 3

(5.17)

Equating real and imaginary parts, the critical Marangoni number Mo for the oscillatory convection can be written as

co = —3$(1+a /3) /(1+/), (5.18)

a4a (CS —a) 1+
3

(S —a) (1+/)
The critical Marangoni number for stationary convection when Cr =0 and I =0 is obtained from Eq (3 10) as

(5.19)

8a (SC —a}CS

(1+/)S(S3—a3C)+ +[C (aC —S} +aSC(2S —a —aCS)]
L

(5.20)

&s is obvious from Eq. (5.18), the oscillatory instability
can occur only if g & 0 and study of Eqs. (5.19) and (5.20)
reveals that )=0 is the codimension-two point in the lim-
it of L ~0 (i.e., to the leading order in L). For P & 0, the
onset is oscillatory, with a critical wave number of 2.11,
which leads to

Q
2

2 1+ Cr a (aC —S)
3

B}=
S(B+a )(1+/)(S —a)

2Cra (1+/) aC —S 1 1

B+a (S —a) S f 1+a /3

(5.25)

(5.26)

co = —18.75$/(1+/),

M = 81'8
(1+1t )

(5.21a)

(5.21b)

2

[(a —1)SC+a] 1+
6Cr a

(B+g }S (aC —S)(CS —a}
(5.27)

2lco CI Q

(B+a )S(aC —S)
(5.22)

As for the Rayleigh convection, Mo increases as f be-
comes more negative and the codimension-two point is at
/=0.

We now turn to the situation where Cr%0. Since
Cr/(B +a ) is always « 1, we can safely linearize in this
variable and immediately we see that

4(1+g)Cr a
(B+a }g(S—a)

(5.28)

As is obvious, the shift in the actual threshold for the
oscillatory convection and the change in the frequency is
miniscale, but the change in the codimension-two point is
significant. For all Cr&Crz of Sec. III, we have the
threshold for stationary convection given by Eq. (3.12).
Thus, the codirn. ension-two point occurs when this criti-
cal value matches that given in Eq. (5.21b), i.e., for

Q
4a (CS —a) 1+

3
M=

(1+tP)(S —a)

1 —co A}
1 —B}

or

80 2 B

Cr(1+/)+
72L

4Q m (CS —a) 1+Br
1+CD+ A&co

1+ (S —a)
3

1 —120Cr/8
5 120 Cr

3L B

3L Cr
5 B

(5.29)

where

=2
}

Cra [(a —1)SC+a]
QS(B+g )(aC —S)(CS —a) 1+
3

(5.23)

(5.24)

Thus for Cr&Crz, a line of codimension-two points is
generated. However, this line does not terminate in a
codimension-three point, since the second oscillatory
branch does not correspond to a positive value of M.

To see the truth of the above statement, we note that
Eq. (5.23) leads to a second real value of co for A~ &0,
i.e., / &0. This real value is 0( A, 'A

~
'

) and is a high
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frequency branch. We immediately infer from the first of
Eq. (5.23) that M will become negative as 1 —co A& is
0 ( 1 —A z

'
) and A z

' » l.
To summarize, we have seen that, depending on system

parameters, both stationary and oscillatory convection
are possible in Marangoni convection in binary liquids.
In a real situation, we will always have a combination of
Marangoni and Rayleigh effects [11]. However, if the
thickness of the fluid layer is very small, the Marangoni
e8'ect is expected to dominate. We also expect the
Marangoni efFect to dominate if the surface tension be-

comes a very sensitive function of temperature, e.g., when
the fluid considered is close to a second order critical
point. In the case of stationary instability, the crispation
number plays an important role in determining whether
long wavelength rolls will be formed or not. For a range
of crispation numbers, the initial Marangoni numbers for
zero and finite wave number convections are very close
and thus should lead to an interesting pattern selection
problem [12]. For the oscillatory instability, the chang-
ing crispation number leads to a line of codimension-two
points.
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