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In magnetic fluids, sound waves are coupled to the magnetic variables since the magnetization oscil-
lates with the fluid density. Here, explicit formulas for the velocity and the damping of sound are deter-
mined from the hydrodynamic equations. Thermal expansion and heat diffusion are also included. The
magnetic Seld is not restricted to be homogeneous; arbitrary magnetic forces are allowed in the analysis.
The ambiguities inherent in the notion of pressure are sho~n to have no effect on the sound propagation.
The sound velocity and the heat diffusion constant are derived to be anisotropic. This is a truly macro-

scopic result. The underlying mechanism is not any model assumption on the magnetic fluid particles,
but demagnetization, i.e., the coupling of the wave geometry to the Maxwell equations.

PACS number(s): 47.35.+i, 75.50.Mm, 62.60.+v, 05.70.Ce

I. INTRODUCTION

One should expect that sound propagation in magnetic
fluids is very difFerent from sound in normal, nonmagnet-
ic fluids. In normal liquids, the velocity of sound is usu-

ally stated as u2=(tip/Bp), where p is the pressure. In
magnetized materials, p is not uniquely defined, so this
definition cannot be applied here [1,2]. In addition, there
is the variation in M: With particle-diffusion times being
slow, the density wave of sound takes the magnetic parti-
cles with it and induces an oscillation in the magnetiza-
tion. Due to the Maxwell equations, this magnetization
wave is accompanied by waves in the magnetic field H
and the magnetic induction B, i.e., sound is coupled to
electrodynamics.

On the other hand, from experiments it is known that
sound in magnetic fluids is essentially the same as in the
carrier liquid. Neither a magnetic field as such, nor field

gradients causing a ponderomotive force density, have
any noticeable influence.

In this work, sound propagation in magnetic fluids is
studied theoretically, based on the hydrodynamic equa-
tions of motion. It turns out that u is a function of the
magnetic field, but the effect is small. Basically, u is

given by the compressibility, just as in normal liquids.
The velocity shift derived here is anisotropic; it de-

pends on the angle t/i between the magnetic field and the
wave vector of the sound mode k. This is due to demag-
netization effects, i.e., to the coupling to the Maxwell
equations. This mechanism had never been considered
before. It is truly hydrodynamic in nature; no model as-
sumptions are made on the shape or behavior of the mag-
netic monodomain particles suspended in the liquid car-
rier. The fluid would be treated as being homogeneous
and isotropic —were it not for the magnetic field, which
breaks the isotropy and, if inhomogeneous, also the
homogeneity. Considering the long wavelength of sound,
the continuum assumption should be a valid approxima-
tion even for materials as complex as magnetic fiuids. On
the other hand, ignoring the anisotropy induced by the
magnetic field amounts to violating the Maxwell equa-

tions. Previous theories, which treated sound as a purely
mechanical phenomenon without any relation to electro-
dynamics, are thus not reliable, cf. Sec. VII below.

The paper is organized as follows: In Sec. II, the mag-
netic fluid hydrodynamic equations of motion are intro-
duced in their general form, and in Sec. III, they are
solved for the quiescent equilibrium state. In Sec. IV,
they are linearized around equilibrium, and the variation
of the magnetic variables 5M, 5H, and 5B is studied.
The final equations and their solutions are to be found in
Sec. V. In Sec. VI, these solutions are discussed. Order
of magnitude estimates of the predicted effects are also
given. The theory is compared to previous works in Sec.
VII. Section VIII contains the conclusions.

II. GENERAL EQUATIONS

Despite the long history of magnetic fluids research,
their equations of motion have still to be established in a
generally accepted form. In most theoretical models, in-

compressibility is assumed [3,4]. As in other liquids, this
is usually an excellent approximation, but of course not
applicable to the study of sound. Some theoretical ap-
proaches [5,6] take the mass continuity equation in its
general form, and add a viscous term proportiona1 to
divv to the Navier-Stokes equation. Although, in these
works, the constraint of incompressibility is formally re-
laxed, they are still not good enough to deal with sound:
In a compressible fluid, the pressure (whose gradient
enters the Navier-Stokes equation) is a true dynamic vari-

able, and needs to be determined. To do so in the pres-
ence of the magnetic field requires an appropriate treat-
ment of the electromagnetic contributions to the internal
energy —something that has been done just recently
[1,2]. The application of this formalism to magnetic
fiuids [7] finally provides the equations of motion as need
ed for the study of sound.

Even when the proper definition of the pressure is in-

cluded, the hydrodynamics of magnetic fluids still con-
tains one more unsettled point, namely, how to account
best for angular momentum conservation, and the inter-
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nal rotational degrees of freedom. But fortunately, a
correct treatment of the angular momentum is not a
necessary prerequisite for the study of sound, cf. the dis-
cussion at the end of this section, below.

Hence, the equations to be analyzed here can be taken
in the following form [5—7].

(i) The continuity equation of the mass density:

p = —div(pv } .

(ii) The Navier-Stokes equation:

the elective volume viscosity, and they cancel:
V rot[ ] stays zero.

III. EQUILIBRIUM STATE

As the equilibrium reference point, the quiescent liquid
at rest is taken: v0=0. This leads immediately to
Mo~~Ho. However, the magnetic field Ho is allowed to be
nonuniform, as this will nearly always be the case in prac-
tice. The arising ponderomotive force density is balanced
by a nonzero pressure gradient [7]:

p = —Vp+rIV v+gV divv+poMVH+rotvI„Q, (2)
Vpo =poMo VHo%0 (6)

where p is defined as

p =Ts+gp —e+ —,'(H B+poM H) . (3)

The pressure p has the differential [2]
dp =sdT+p d(+poM d H, or, in terms of the chosen in-
dependent variables p, T, and B:

Here, T is the temperature, s the entropy density, g the
chemical potential, and e the density of the total energy,
including the fields. The magnetic field variables H, B,
M are defined as usual, in the SI system of units. g is the
shear, g the volume, and vf„ the rotational viscosity. Q is
the vorticity.

(iii) The quasistationary magnetic field equations:

dp = s+p dT+p dp+p dBag ag ag
ap

I~

+poM dH .

With the help of Eq. (7), Eq. (6) can be rewritten as

0=Vpo poMoV—Ho

(7)

divB =0, rotH =0 .

On the time scale of electrodynamics, sound is a static
phenomenon: u &&c, where c is the velocity of light.

(iv) The heat difFusion equation:

as+p aT
V7'o+p

a Vpo+p aB VBo .ag ag
ap

(8)

T= V2T+ B—
p .

cv cv pa
(5)

In this equation, A, is the heat conductivity, c„ the
specific heat at constant volume, a the coeScient of
thermal expansion, and E the pyromagnetic coeScient:
K= —T(aM/aT) Ji )0.

As the set of independent variables, the mass density p,
the temperature T, and the magnetic induction 8 are
chosen throughout.

The balance of angular momentum is already incor-
porated into the Navier-Stokes equation (2), hence its last
term [8]. This term is sometimes also stated as [5,6]
rotrI„(ru —Q), where co is the rotational velocity of the
suspended magnetic particles, or as [4] rot(s —SQ)/r„
where s is the density of the internal angular momentum,
and 0 some density of moment of inertia. But obviously,
in any case the term in question reads "rot[ ]." As
only the divergence of the Navier-Stokes equation will be
used in the subsequent analysis [cf. Eq. (10), below], this
term does not contribute. The diSculties associated with
the concept of an internal angular momentum [9] do not
affect longitudinal excitations.

Sometimes it is argued that the sound damping should
increase simply proportional to the well-known effect on
the viscosity i} [4]. This increase in the effective viscosity,
as observed in shear experiments, is due just to the rota-
tional degrees of freedom, i.e., to the rot[ . ] term. In a
compressional motion, the same term also contributes to

Of course, in equilibrium V To =0. Note that the (VHo)
terms cancel in Eq. (8), whereas B as one of the chosen in-
dependent variables comes into play. At this point, the
pressure has already dropped out of the theory, and so
have all problems concerning uniqueness, or measurabili-
ty [2]:p is a function of the density, the temperature, and
the magnetic field, and can always be expressed in terms
of these variables, cf. Eq. (3}. On the other hand, this
function is more or less arbitrary; variations in the pres-
sure as such are not independently measurable.

Employing now the Maxwell relations for the second
derivatives of the free energy, Eq. (8) is brought in its
final form:

uoVpo=AtVBo .

Here, the abbreviation Af, =p(aM/ap)r ii is introduced,

and u o =P(ag/aP)z. ii is Put in analogy to the velocity of
sound u in normal liquids. Equation (9) is the static equi-
librium solution for a magnetic Quid in an arbitrary mag-
netic field.

IV. LINEARI&A, TION AROUND
THE EQUILIBRIUM STATE

The equations of motion are linearized around the
equilibrium solution, and the time derivative of Eq. (1}is
combined with the divergence of Eq. (2), with the result
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p uoV 5p s p
2 Bs

Bp
V25++~V25B

5B=

aM aM
5p+ 5T (1—cos g)

Bp
(14)

+ (m+0) z.—V p+ V po
—V —(v V)po

po po
'

po

—(Vuo)(V5p)+(VJK)(V5B)=0 . (10)

In linear order, only the field-parallel component of 58
contributes in Eq. (10): 5B =58 b, where b is the direc-
tion of the undisturbed field.

The last four terms of Eq. (10) are nonzero, since in
magnetized materials the density is not necessarily uni-
form in equilibrium. However, given the generally low
compressibility (i.e., high velocity of sound) of liquids,
Eq. (9) is now used to assume that the equilibrium varia-
tion is small compared to the one in the sound wave:

i Vp, [ =, iAt VB, i «kp, ,
1

uo

where k is the wave vector. From this single assumption
it follows that

1+ y —p, cos g
M
B

where the susceptibility y/p=(BM/BB ) r has to be tak-
en at the point Bo. g is the angle between the undis-
turbed magnetic field Bo and the wave vector k. The fact
that a nonzero 5M is accompanied by field variations 5H
and 58, and Eq. (13) relating these three quantities, has
never been noted before when discussing waves in mag-
netic fluids. The structure of Eq. (14}, due to the
Maxwell equations rather than a microscopic model, is
thus a completely new result.

U. FINAL EQUATIONS AND THEIR SOLUTIONS

With Eq. (14}, the derivation of the linearized equa-
tions is complete: 5B is expressed in terms of 5p and 5T,
and the set of two coupled differential equations (10}and
(5) is closed:

p
—u V 5p aV 5T— —V p=O,2 z 2 (ri+L) z

V2po «~Vzp~, V (v V)po &&~V'p~,2 1

po Po

~ ill,

T V5—T+ bp =0 .
CyK

(16)

~(Vuo)(V5p)~ &&~uoV 5p~, ~(VJK)(V5B)~ &&~JktV 5B~ . The constants are

BM
5 + BM 5T+ BM

Bp dT dB

+ bX(58Xb} .
B

(12}

Hence, the last four terms of Eq. (10) are all negligible.
As a result, arbitrary magnetic field gradients do not
a8ect the propagation of sound, even when they induce
strong force densities and strong pressure gradients (cf.
the numerical estimate in Sec. VI, below). The analysis
presented here is therefore generally applicable; it is not
restricted to homogeneous fields.

To finally close the set of two equations, Eq. (10) and
Eq. (5), 5B has to be determined as a function of 5p and
5T. To do so, the Maxwell equations (4) are used. We
observe that, when oscillating with the density, the mag-
netization is still in equilibrium. The magnetic relaxation
time ~ is only about ~=10 s, and therefore co~&(1 for
the whole acoustic frequency range up to 20 kHz. This
leads to the ansatz

and

a =s p(Bsldp)+—ypJKK/T

b = [ I ypJKKa/c—v ]/(apyc),

a = 1+ypK /( Tocv )

u =uo

y denotes the anisotropy

(1—cos 1()r=
1+ g —p cos 1(

M
8

(i) A pair of sound modes: The propagating variable is
u /u =5plpo= —a5T. It has the dispersion relation

Equations (15) and (16) have exactly the same structure
as in normal, nonmagnetic Suids. They have therefore
the two following familiar solutions.

The static Maxwell equations demand div5B=O, and
rot5H =0. These equations have the plane wave solution

a)=+uk —i k. (g+g)
2po

u is the velocity of sound,

(19}

5H = —(5M.k)k,
58= —po(5M k)k+@05M= —po(5MXk) Xk,

(13}

with the direction of the wave vector k=k/k. The inser-
tion of Eq. (13) into Eq. (12}yields

u =u —ab.2 — 2
y

(ii) Heat diffusion: The diffusing variable is
5T= —5p u „/a. It has the dispersion relation

co — /Dk (21)
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D is the diffusion constant

D= y

cvK u 2
(22)

In these equations, the effect of the magnetic field is felt
only through the contributions proportional to the pa-
rameter y. Being anisotropic, they are interesting in
principle. But they are usually very small. This is dis-
cussed in the next section.

VI. DISCUSSION
AND ORDER OF MAGNITUDE ESTIMATES

ao
~uo

apo

aopK

Tocvapo

y
pJKK + pAt2

Toapo po

aopAtK

~vpo

where ao=s —p(Bs/Bp); y from Eq. (18) is the anisotro-

py parameter.
Let us approximate A by M =gHo, and take [10]

y=0. 1, HO=10 A/m,

po=1.5X10 kg/m, a=3X10 I/K,
K=SX10 A/m, To=300 K,
ao=ci, =3X10 J/Km

Then we have pJKK/( Toapo) = 10' (m/s), pAl /po= 10'
(m/s}, azpJKK/(ci po) = 10 (m/s), and aopK /
(Tock' apo) =10 ' (m/s) . As the sound velocity in mag-
netic fluids has approximately the same value as that in
the carrier fiuid (u =1400 m/s}, all these contributions
yield only a very small velocity shift: 5u =10 u —the
same order of magnitude as the dependence of the ther-
modynamic coefiicients on the magnetic field (cf. Appen-
dix}, which is usually neglected. The propagation of
sound waves in magnetized liquids is thus essentially

The longitudinal collective modes in magnetic fluids
differ only very slightly from the respective ones in nor-
mal liquids; their structure is not changed at all. The
dispersion relation co=+uk —iD, k, and also the sound

damping D, =(r)+ g) /2po are exactly as in a nonmagnetic
normal fluid. The physical reason, of course, is that
sound is a wave in the density, rather than in the field-

dependent pressure. Due to the low compressibility of
liquids, a nonzero ponder omotive force density—
rendering the pressure in the Navier-Stokes equation
essentially inhomogeneous —does not considerably affect
the equilibrium density distribution, cf. the estimate
below.

The velocity of sound u has some anisotropic magnetic
contributions though. Rather than from p, they stem
from the dependence of the magnetization on the temper-
ature and the density (and vice versa} and are thus given
in terms of various thermodynamic coefBcients:

u =u —ab2 — 2
y

unaffected by the magnetic field.
The anisotropic magnetic shift in the velocity of sound

might be observable, however, if one searches for it with
the help of a resonance chamber. A quality factor of 10
should be achievable in a sound resonance experiment.
Then, a change in the direction of the applied magnetic
field wi11 result in a detuning of the resonance. This
method allows us to obtain information on the magneti-
zation from sound experiments.

The second collective mode in magnetic fluids studied
here, heat diffusion (which is, due to thermal expansion,
also a density diffusion}, is also slightly altered in the
presence of a magnetization. The ratio of temperature to
density variation of the diffusion mode is
5T/5p= —ur/a= —[1—y5, ]uo/ao, and the diffusion
constant is D=Auo[l —y5z]/[ci, (uo —ao/apo)], where

5i z stand for a number of terms of a magnitude of about
10 . As diffusion cannot be brought into resonance,
these contributions will probably never be observable.

Finally, the inequality Eq. (11}has to be checked. Let
us assume the field gradient to be ~VB

~
=10 T/m. This

yields a force density ~poMVH~=10s N/m that far
exceeds gravity. But, with Eq. (9), ~Vpo~= 1 kg/m and

~ Vpo~ && k po is well fulfilled for all acoustic frequencies.

VII. COMPARISON TO PREVIOUS WORKS

Up to now, only a few authors have attempted to inves-
tigate the propagation of density waves in magnetic
fiuids. In 1975, Parsons [ll] published a much-cited
study which, however, seems to not capture the relevant
physics. He treats the domain spin of the suspended
magnetic particles in the spirit of the director in the
theory of nematic liquid crystals, i.e., as a broken-
symmetry variable. Undoubtedly, the magnetic relaxa-
tion times in magnetic fluids are long enough to allow de-
viations of the magnetization from its equilibrium value
to be experimentally observable. But nevertheless, under
symmetry transformations, magnetic fluids are isotropic
liquids in a magnetic field, not liquid crystals [8].
Parsons's ansatz is therefore not a priori convincing.

On the other hand, Parsons ignores all features dis-
cussed in this work. He assumes the existence of a purely
mechanical pressure and does not pay attention to elec-
trodynamics, or the Maxwell equations. Parsons's pre-
dictions have proven diScult to verify in experiments.

Tarapov [12] studies a variety of small-amplitude
waves in isotropic magnetic fluids. His ansatz is quite
general; the dynamic Maxwell equations are included in
the set of equations of motion. But there are a number of
ambiguities in his treatment of the thermodynamics. The
entropy is taken as one of the independent variables, but
the magnetization is assumed to be a function of T, not of
s; the relation between T and s, with and without the
magnetic field, respectively, is not clarified. In defining
the thermodynamic coefBcients such as the compressibili-
ty or the specific heat, the independent magnetic variable
is not specified. The formula for the sound velocity de-
pends crucially on these details, cf. Appendix. Therefore,
Tarapov's work gives much insight into the complexity of
the problem, but is not very useful for obtaining explicit



KATJA HENJES

results.
The same conclusions have been reached by Gotoh,

Isler, and Chung, who carried out a series of ultrasound
experiments in magnetic fiuids [13—17]. They find
Parsons's theory inapplicable [13], and take Tarapov's
work as the starting point for their own theoretical model
[14,15]. Unfortunately, they do not resolve the uncer-
tainties in Tarapov's derivation and retain a large number
of adjustable parameters.

They also report a strong dependence on the fluid his-
tory [13,16] and unusually long response times, compara-
ble to the formation of aggregates [17]. These results in-
dicate that ultrasound in magnetic fluids probes the inho-
mogeneities associated with the formation of chains or
clusters. Anisotropies recorded with ultrasound there-
fore seem to depend on a completely different mechanism
than the anisotropy in the hydrodynamic velocity of
sound predicted here; they cannot be compared.

This remark also apphes to the work of Taketomi [18].
His ideas on cluster dynamics are interesting and valu-
able for a discussion of ultrasound damping. But he
neglects any dependence of the thermodynamic variables
on the magnetic field, which is wrong on a hydrodynamic
scale. His approach is thus a microscopic model rather
than a macroscopic theory; it cannot be applied to sound.

VIII. CONCLUSIONS

Sound propagation and heat diffusion in magnetic
fluids are studied theoretically, starting from the hydro-
dynamic equations of motion. The Geld is treated as a
homogeneous, isotropic liquid, exposed to an arbitrary
magnetic field. The longitudinal collective modes do not
change their structure in the presence of a magnetic field,
even if it is inhomogeneous. For the sound velocity, the
sound damping, and the heat difFusion constant, explicit
expressions are derived. The velocity of sound is shifted
slightly from its simple-liquid value, due to the depen-
dence of the magnetization on the density and on the
temperature. The correction to the sound velocity is only
about 10 u, but might be observable in a resonance ex-
periment. It depends on the angle between B and k, cf.
Eq. (18). This anisotropy is derived from the Maxwell
equations; it reflects the demagnetization factors of the
wave.
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APPENDIX: H vs B

There seems to be no efFect of the magnetic field for
k~~8, since 5B =0 in that case [Eq. (14), cosf= 1]. But
this is not true. From Eq. (13), a wave parallel to the
magnetic field (k~~1) acts as an excitation at constant 8,
whereas a wave perpendicular to the magnetic field (klb)
is an excitation at constant H. All fluid parameters de-
pend on that difference:

t)g
Qo —p'apB

Bs
cv —T

8

Bg + @JAN'

H

Bs

t) T

(A 1)

etc. Of course, the theory can also be formulated with H,
instead of B, as the chosen independent variable. The
thermodynamic coeScients are then redefined in terms of
partial derivatives at fixed H. In that formulation, the
anisotropy parameter y will change to (y —1). Contrary
to the equations above, the effect of the magnetic field
then seemingly disappears for klH, i.e., 5H =0.

But a comparison of Eqs. (17) and (Al) shows clearly
that the final results do not depend on the choice of for-
mulation, and are exactly the same in both cases:

2

=p —(y —1) =u (H) .
8

In principle, al/ thermodynamic coeScients are functions
of the magnetic field and dependent on whether the par-
tial derivatives are defined at fixed H or fixed B. There-
fore, the question of the field-induced effects has to be
studied very carefully; it cannot be answered by discuss-
ing single terms added to the simple-liquid result.
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