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The dynamics of a reacting perfect Quid immersed in a background host medium is modeled and
studied in several particular situations. Reaction events —which in')ve interaction of Quid particles
with themselves and with the background —are described by a density dependent source term in the
mass continuity equation. Mechanical interaction with the background introduces additional terms
in the continuity equations for xnomentum and energy. We analyze the efFect of reaction events
in sound propagation and study the appearance of nonequilibrium structures, such as wave fronts,
paying particular attention to the consequences of the combined action of transport and reaction
processes. We also develop a numerical discrete velocity model for the simulation of the reacting
Quid, which can be used for comparison with the analytical results.

PACS number(s): 05.60.+w, 47.10.+g, 47.54.+r, 47.70.Fw

I. INTRODUCTION

The dynamics of physicochemical systems whose
components undergo transport processes and interact
through reaction events —during which they are "cre-
ated" or "annihilated" —has been the subject of a great
amount of work during the past two decades (see, for in-
stance, Ref. [1] and references therein). Besides their ob-
vious interest in many applications [2,3], such systems are
paradigmatic of self-organization in nonequilibrium pro-
cesses [4] and therefore their study transcends the limits
of physics and chemistry and applies also to areas such
as biology [5] or economics [6].

Whereas a great variety of reaction models has been
considered —describing, for instance, chemical, nuclear,
or birth-death events —the transport xnechanisms taken
into account have been mainly restricted to difFusion
processes. Reaction-difFusion mathematical models have
been proposed by modifying ad hoc the difFusion equa-
tion, introducing appropriate density dependent source
terms. The typical form of the reaction-di8'usion equa-
tion for a single species system is

Btn —DV n = F(n),
where n(r, t) is the species density, D is its diffusivity,
and F(n) describes the reaction processes. For chemical
reactions, this function is usually taken to reproduce the
source terms in the corresponding rate equations of spa-
tially hoxnogeneous chemical kinetics. Although reaction-
difFusion equations are proposed heuristically, their con-
struction can be justified to some extent in the kame of
microscopic or mesoscopic kinetic models [7].

Much work was devoted to the study of the mathe-
matical properties of equations such as (1) [8], as well as
to their application to real systems [4,5,9]. Their success
in reproducing the complex evolution of such systems is
indeed impressive. On the other hand, in spite of their
relevance in some applications, the study of reacting sys-

tems where transport cannot be coxnpletely described by
difFusion has received relatively little attention.

A convenient way to incorporate convective transport
to a difFusing species consists in superposing to difFusion
a given velocity field v(r, t). In mathematical terms, this
is achieved by adding a convection term V (nv) to the
difFusion operator on the left-hand side of Eq. (1). In the
absence of reaction events, convection is known to dras-
tically modify diffusive transport, giving place to mean
square displacements which vary with time as (x2) t
with a g 1 [10]. When reaction processes are considered,
convection can strongly afFect the stability of nonequilib-
rium patterns associated with the reaction-difFusion un-
derlying system [11]. Even when diffusion is completely
neglected, particles can be thought of as driven by the
velocity field, and their motion can be consequently cal-
culated. Within this approach, much efFort has been
devoted to the simulation of realistic velocity fields for
complex flows, as in turbulence [12].

However, all these formulations for reacting and con-
vecting fluids treat the density of reacting particles as a
passive scalar, in the sense that they do not take into
account the efFect of reaction on transport but consider
that the reacting particles are merely transported by the
velocity field. In this paper, instead, we are interested
in studying the full interplay of reaction and transport
processes for convecting Huids, as usually done for dif-
fusing systexns. Therefore, we shall consider the more
realistic situation in which the whole Quid is involved in
reactions, so that these events not only modify the den-
sity as a passive scalar but —through their in6uence on
the density —they afFect also the evolution of other hy-
drodynamical fields, namely, the Quid velocity and the
temperature.

The ultimate aim of our work consists in describing
the evolution of an arbitrary set of chemical species ac-
tively involved in transport and reaction processes. This
is a rele~~t problem associated, for instance, with at-
mospheric dynamics [13] and with nonstationary experi-

1063-651X/94/50(2)/1171(13)/$06. 00 50 1171 1994 The American Physical Society



1172 DAMIAN H. ZANETTE

ments on chemical kinetics [14], where macroscopic fluid
motion —due to stirring, convection, or simply the ki-
netics of the involved reactions —naturally occurs. Par-
ticularly important situations related to those systems
concern combustion phenomena [15], shock waves in re-
acting fluids [16], and the evolution of charged diluted
gases, such as plasmas or electronic and ionic beams [17].

This approach, however, requires us to treat simulta-
neously the evolution of the whole set of relevant hydro-
dynamical 6elds and therefore it constitutes a rather dif-
ficult mathematical problem. Thus, as a 6rst step in its
solution, we shall describe the relatively simple situation
of a reacting perfect fluid interacting with a background
host medium through mechanical and chemical processes.
The effect of reactions will be added to the hydrodynami-
cal equations in the same spirit used to propose reaction-
diff'usion equations such as Eq. (1). We shall mainly focus
attention on the consequences of the strong interaction
of reactions and transport involved in the model, analyz-
ing the appearance of nonequilibrium structures in some
particular situations. A numerical scheme for simulation
of the system will be presented and we shall compare
numerical results with our analytical calculations.

This paper is not supposed to contain an exhaustive
analysis of reacting Quid dynamics or to refer to particu-
lar experimental situations, but to present a preliminary
approach to this very wide problem in the kame of some
reasonable simplifying assumptions, along the lines used
in the study of reaction-diffusion systems. The relevant
results obtained in this latter area suggest that reacting
and convecting fluids deserve to be thoroughly analyzed.

II. MODEL

Gonsider a Quid immersed in a host medium whose hy-

drodynamical state —characterized by homogeneous den-

sity, vanishing mean velocity, and constant temperature
To—is not affected by the evolution of the guest fluid.
This condition is met if, relative to the immersed Quid,
the host medium can be thought of as a very dense gas
of heavy particles [18]. The guest Quid is considered to
be perfect, in the sense that it is in local thermal equi-
librium. Thus, in the absence of the host medium, its
hydrodynamical state would be governed by Euler conti-
nuity equations [19].

Guest-host interaction consists basically of mechani-
cal and chemical processes. The former correspond to
momentum and energy exchange which, at the hydrody-
namical description level, translate into a relaxation of
the velocity u(r, t) and the temperature T(r, t) of the
guest Quid toward those of the background gas. Such re-
laxation processes can be modeled at various levels of so-
phisticati. on. Here they will be described by linear terms
in the evolution equations for velocity and temperature.
In this approximation —which at the kinetic description
level can be justified in the kame of Bhatnagar-Gross-
Krook models [2Q] we describe velocity relaxation by
a sort of "kiction" term in the linear momentum 43.1-

ance —pu, whereas a formally analogous term —A(T —To)
stands for temperature relaxation in the energy balance.

Here we shall consider that chemical reactions afFect
only the number density n(r, t) of the guest fluid. In-
deed, individual reaction processes are not expected to
modify the macroscopic Quid velocity u. Furthermore,
for the sake of simplicity in this first approach, we do
not take into account chemical thermal effects. These
could, however, be easily incorporated into the model at
a further step. Thus reaction processes can be modeled
as a source term in the density continuity equation, as
a function F(n), which in general depends on the Quid

density. Other relevant quantities, such as reaction con-
stants and the background density, enter F(n) as control
parameters. This kind of approach is the usual one when
considering reacting and diffusing systems [1].

Within this, model, Euler continuity equations for a
force-&ee Quid can be written as

Bin + V (nu) = F(n),
O, u+ (u V)u = —p 'Vp —pu,
0&T+ u VT = — TV u —A(T —To).2

(2)

Reaction processes do afFect the evolution of pressure
through the modification of the Quid density [cf. the term

pF(n)/n in Eq. (3)].
The remainder of this paper is entirely devoted to the

analysis of some basic phenomena associated with the
model equations (2). Some of them, such as, for in-

stance, wave fronts, have been suggested by numerical
results obtained within the simulation scheme described
in Sec. IV. Others, such as sound propagation, are stan-
dard steps in the study of ordinary fluid dynamics [19].
We shall pay particular attention to the combined efFect

of reaction and transport processes.

Here p = mn is the mass density, with m the mass of a
Quid molecule, and d is the spatial dimension. For the
perfect fluid, the pressure p is given by p = nkT, with k
the Boltzmann constant.

In principle, p and A will be considered as constants.
It is worthwhile to note that, given a speci6c guest-host
interaction model at microscopic level, these two quanti-
ties are not independent. In fact, they can be calculated
as mean values over the cross section characterizing the
interaction. However, for the sake of generality, and since
the present analysis is always developed at a macroscopic
description level, we consider p and A as independent pa-
rameters.

According to the mass-action law of chemical kinetics,
F(n) will typically be a polynomial in n [1], whose co-
efBcients are given by the rate constants and the host
medium density. For other reaction processes, however,

F(n) could adopt a variety of forms [3,5]. Along with
convective terms on the left-hand side of Eqs. (2), the
source F(n) introduces nonlinearity in the problem.

For future reference, it is convenient to derive the evo-
lution equation for the Quid pressure p = nkT. From
Eqs. (2), we obtain

/2Oip+u. Vp= —
i

—+1
i

pV u

—A(p —nkTo ) + —F(n) .p
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III. BASIC PHENOMENOLOGY

In this section, we study analytically the model de-
scribed by Eqs. (2). In the first place, we consider the hy-
drostatic state and its stability. This motivates also the
study of sound propagation in the reacting Quid. Then,
in the &arne of some limiting cases, we analyze several
noneqnibbri»m structures, which arise as a consequence
of the complex interaction or reaction and transport.

Plane sound waves are solutions to Eqs. (7) of the form

I N'
u'

& = g U y exp[i(k2: —~t)].
I

In order that those equations have nontrivial solutions
for the amplitudes N, U, and P, k and ur must satisfy a
dispersion relation which we can write as

A. Hydrostatics and sound propagation

In general, the hydrostatic state of a Quid is defined as
a time independent state with vanishing velocity 8& = 0
and u = 0. In Eqs. (2) this implies the following condi-
tions:

0 = i~ + [F'(np) —p —A] ur

+i F'(np)(p+ A) —pA —u)p2 (u

A(up2 F'(np)(up2

.1 + 2/d 1 + d/2

F(n) =O, Vp=O, T =T, (4)

Therefore, the hydrostatic state is spatially homgeneous,
the fiuid density is a root of the function F(n), say np,
and its temperature equals that of the host medium. The
corresponding pressure is pp

——npkTp. In contrast to the
case of an ordinary fiuid, the hydrostatic state is here
well defined, as chemical reactions and guest-host inter-
action determine the values of density and temperature,
respectively. Of course, such a state exists only if the
reaction kinetics has a stationary solution, i.e., if F(n)
has at least one root.

The stability analysis of the hydrostatic state in the
linear approximation leads us to consider sound propaga-
tion in the Quid. Indeed, in an ordinary perfect Quid, in-
finitesimal perturbations around that state cause the rel-
evant fields n(r, t), u(r, t), and T(r, t) to oscillate around
their equilibrium values, giving rise to sound waves which
propagate without attenuation at a well-defined velocity
c = g(l + 2/d)kTp/m.

In order to perform the linear stability analysis of the
reacting Quid around its hydrostatic state, we suppose
that density, velocity, and pressure differ &om their equi-
libri»m values np, up ——0, and pp in vanishingly small
quantities, indicated by primes:

n(r, t) = n, + n'(r, t),
u(r, t) = u'(r, t),
p(r, t) = pp + p'(r, t)

Inserting these into Eqs. (2) and (3) and neglecting non-
linear terms in the perturbations, we get

Bfn + npV ll = F (np)n
t~ pp +p p~ ) (6

(2
Bgp = —

~

—+ 1
~ pp V . u —A(p —n kTp)

)
+np 'ppF'(np) n'.

Here F' indicates the derivative of F(n) with respect to n
and pp

——mnp. As is usual when analyzing sound propa-
gation [19],we have considered the evolution of pressure
instead of that of temperature.

Here up ——ck is the &equency of a wave of wave number
k in an ordinary perfect Quid, which moves at velocity
c = g(1 + 2/d)pp/pp. In fact, for p = A = 0 and F(n) =
0, the solutions to Eq. (8) are the usual u = 0, +up.

When the frequencies p and A, and F'(np) do not van-
ish, Eq. (8) is a full third-degree polynomial equation for
u, to be analyzed numerically. However, some general
facts on its roots can be studied in an analytical way.
In the first place, we have to observe that if F'(np) ) 0
the hydrostatic state is unstable, so that at least one of
the solutions of Eq. (8) has a positive imaginary part In.
fact, if the derivative of F(n) is positive at the equilib-
rium point np, it follows immediately that np is an unsta-
ble state of the homogeneous chemical kinetic equation
n = F(n). Now, since neither spatial inhomogeneity nor
velocity and temperature relaxation affect the local den-
sity so as to neutralize the effect of chemical reactions,
none of these processes can change the unstable character
of such an equilibrium point. Therefore, stable hydro-
static states —for which it makes sense to study the evo-
lution of small perturbations in a linear approximation-
are characterized by F'(np) ( 0. Hereafter, we restrict
the analysis to this case.

For Np M 0 the three roots are pure imaginary num-
bers, with negative imaginary parts —p, —A, and F'(np).
In this long-wavelength limit, then, the system is purely
dissipative and no sound propagation occurs. Waves are
overdamped by the relaxation of velocity and tempera-
ture and by chemical processes which tend to maintain
the density in its equilibrium value np. This situation
takes place up to a critical wave n»mber k, at which the
imaginary parts of a pair of roots, say ~q and u2) collapse
to a single value. From this point on, these two roots
have the same (negative) imaginary part and their real
parts are equal in modulus and opposite in sign. Mean-
while, the third. root ~3 is still purely imaginary. Thus,
for wave numbers greater than the critical value, there
is sound propagation with attenuation, caused again by
mechanical interaction with the background and by re-
action processes. For very large wave numbers, the real
parts of cuq and ~2 approach the values they would adopt
in an ordinary perfect Quid, i.e., +cup. Their imaginary
parts, as well as u3, tend to constant finite values,
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B,n+ V. (nu) = F(n),
Bgu+ (u. V)u = —-'vp2 n —pu,

(10)

Cill 0

0.0

1=2

0.5
I

1.0

COO

I

1.5 2.0

with vp ——/2kTp/m
An interesting situation for studying Eqs. (10) is the

limit p -+ 0. In this frictionless case, those equations ad-
mit spatially inhomogeneous stationary solutions. Such
structures, whose existence would not be possible in an
ordinary Quid, are a direct consequence of the interplay of
reaction and transport. For small nonzero p, the struc-
tures are expected to form and then decay towards a
homogeneous state, due to velocity relaxation. For the
sake of simplicity, we consider that the Bow has plane
symmetry along the x axis. Density and velocity satisfy
then

FIG. 1. Dispersion relation for sound propagation in the re-
acting Suid. This plot corresponds to the solution of Eq. (8),
with F'(np) = —2, p = 0.5, and A = 0.8, in three dimensions.
Full and dashed lines respectively represent real and imagi-
nary parts of the kequencies cu; as functions of the frequency
of sound waves with the same wave number in a perfect ordi-
nary Quid, ~0 ——ck.

1 2dA
up 2VO

with u = u x. The second of these equations relates
density and velocity according to

u = +vpgln(np/n),

Im(tdI, 2) M F'(np)/2(1 + 2/d) —p/2 —A/(2 + d),

(Cls M LF (np)/(1 + d/2) —iA/(1 + 2/d),

for k ~ oo, and are therefore negligible with respect to
the real parts of uq 2. In this limit, sound propagation
takes place in a time scale much shorter than attenuation,
hence resembling the situation in an ordinary Quid.

Although it is difFicult to obtain the critical wave num-
ber k, analytically, it can be easily shown that it is of the
order of c ~ max(p, A). As a consequence, if both p and
P tend to zero, the purely dissipative region desappears.
In this situation, sound propagation does occur for all
values of k and the only attenuation effect comes &om
chemical processes, through density relaxation.

Figure 1 shows the real and imaginary parts of the
solutions to Eq. (8), calculated for F'(np) = —2, p = 0.5,
and A = 0.8. This plot summarizes the typical behavior
of the three roots, as uo ——ck varies.

B. Nonequilibrium structures
in the isothermal frictionless limit

In contrast to the previous analysis, kom now on we
shall take into account the full nonlinear character of
Eqs. (2), due both to the convection operator u. V' and to
nonlinearity in F(n). Therefore, in order to simplify the
problem, we restrict hereafter the analysis to the case
where the Buid temperature T(r, t) equals that of the
background Tq. This isothermal situation is met if tem-
perature relaxation is fast enough, i.e., if A —+ oo. In this
limit, the only relevant hydrodynamical 6elds are density
and velocity; the first two of Eqs. (2) reduce to

where the integration. constant no can be identi6ed with
the density at the points where u = 0. The velocity is well
defined if no & n at every point, indicating that particles
tend to accumulate in the regions with low values of u.
The undetermination of its sign is due to the symmetry
of spatial inversion.

Inserting Eq. (12) into the first of Eqs. (11) yields an
autonomous equation for the spatial dependence of the
density:

dn, Qln(np/n)
dx ln(np/n) —1/2

In order to iBustrate some typical features of this one-
dimensional dynamical system, we show in Fig. 2 a
graph of dn/dh as a function of n, for the case F(n) =
(nq —n)(nz —n)(ns —n). This particular choice of F(n)
is motivated by the relevance that such a reaction model,
namely, the Schlogl model [21], has had in the study
of structure formation in reacting and difFusing systems
[1,22]. For nq & n2 & ns, the corresponding spatially
homogeneous evolutionary problem n = F(n) has two
stable equilibrium states nz and n3 and an unstable one
n2. In the present problem, with no ) nq, this bistable
model exhibits all the typical characteristics of more gen-
eral cases.

Consider 6rst the loop labeled 1 in Fig. 2. It is delim-
ited by the stable state nz and a root of dn/dx at np.
Note that this root appears whatever F(n) is. In fact, it
is due to the zero of ln(np/n) in the numerator of Eq. (13)
for n m np. Therefore, the behavior of dn/dx near np is
independent of the reaction model. The loop represents
a stationary solution which for x -+ +oo asymptoticaIly
approaches the stable state nq. In intermediate regions
it has a bump at whose maxima~ the density attains the
value no. At the maximum the velocity vanishes and it
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FIG. 2. Spatial derivative of the density n(z) as a function of n for a stationary, isothermal, frictionless Suid with planar

symmetry, from Eq. (13). The reaction function is F(n) = (nz —n)(n2 —n)(ns —n) with nq ——0.8, nl ——0.5, and ns = 0.3.
The density at the points where velocity vanishes is no ——1. Arrows and labels inside circles refer to the solutions analyzed in
Sec. III B.

is positive at the left and negative at the right. As a nat-
ural consequence of this Hux toward the b»mp, particles
accumulate continuously. This accumulation, however,
is limited by a reaction which induces the density to ap-
proach the stable value n~. It is precisely this competi-
tion of reaction and transport processes which gives rise
to this nonequilibrium structure.

The fact that in this solution the density approaches
the stable value nq for large ~z~ suggests that it is a stable
structure. This seems to be supported by the numerical
simulations described in Sec. IV.

It can be shown from Eq. (13) that near the bump
maximum the density behaves as

peaked structure, attaining nD at the maximum. It is
schematically shown in Fig. 3 as curve 2. From Eq. (13),
it can be shown that, near the peak, the density behaves

2'~sF(nn)
n(x) = nD 1—

VpAD
(16)

where z2 is the position of the peak. Again, the width of
this structure is determined by the reaction model and
the temperature of the host medi»m.

n(z) = no 1-
~

fF(ne) )
X Xg

n (14)
no-

where zq is the position of the maximum. The bump
width is then determined by the reaction function F(n)
evaluated at the maximum and by the temperature,
through the velocity vp. If nj and np are near enough,
F(n) can be approximated by a linear function for nI (
n ( n(), F(n) —F'(nq) (n —nj ). In such case, it is possi-
ble to find the complete solution to Eq. (13). It reads

n(x) = no I 1 + e tanh
F'(n, ) (*—») ) (»)

Vp

with e = no jnq —l. A schematic representation of this
solution is labeled 1 in Fig. 3.

The spatial derivative of n in Eq. (13) diverges at n~ =
ne exp( —1/2). Again, this is a feature independent of the
reaction model and can be expected to occur whatever
F(n) is. Associated with this divergence is a series of
singular solutions, one of which is labeled 2 in Fig. 2. In
this solution, the density approaches one of the stationary
states as x m +oo and for 6nite x it has a symmetric

X) X2
X

I

X3

FIG. 3. Stationary density pro61es for an isothermal &ic-
tionless Suid with planar symmetry. Labels inside circles refer
to the corresponding curves of Fig. 2. These solutions reach
their extremal points at xq, xq, and xq, respectively.
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In this solution the velocity is discontinuous at x2. Its
values just at each side of the peak are finite, with the
same modulus and opposite sign. The interaction dy-
namics of reaction and transport is therefore similar to
the case analyzed before: the velocity field tends to ac-
cumulate particles at the peak, but chemical processes
attenuate such accumulation by "removing" those parti-
cles. In the case shown in Fig. 2, this structure is not
expected to be stable. Indeed, the asymptotic value n2
is an unstable equilibrium for the density and even an
infinitely small perturbation would take off the system
&om that state. However, a structure of the same type
should become stable if the divergence at nD is associ-
ated with a stable equilibrium point, for instance, if no
is situated just above n3. In that case, such a structure—
characterized by the discontinuity in the velocity field—
could be generated by collision of two shock fronts of the
type analyzed numerically in Sec. IV.

A third structure associated with a feature in dn/dz
and independent of the reaction model is labeled 3 in
Fig. 2. In this case, the density vanishes at x3 and. ,
around this point, there is a zone of density depletion.
The minimum at x3 is due to the inverse logarithmic be-
havior of the spatial derivative of the density near the
origin dn/dz 1/g —inn. It is not possible to obtain
the explicit form of n(x) near zs, but we find that

ng inn — e—rf(i/ inn) ——1 = vp 'IF( )Ilz —zsl
2

with erf(z) the error function. In the case shown in Fig. 2,
the density approaches the stable value n3 as x -+ koo
so that, according to the arguments applied before, this
structure would be stable. It is schematically shown as
curve 3 in Fig. 3.

In this solution, the velocity is negative at the left and
positive at the right of the depletion zone. Thus reaction
and transport here interchange the roles they played in
the cases studied before. In fact, due to the divergent
character of the velocity field, particles are continuously
removed &om the region near x3, but, since n = 0 is a
nonequilibrium state of the reaction processes, new par-
ticles are "created" at the depletion zone. Again, the
competition between reaction and transport is responsi-
ble for the existence of this nonequilibrium structure.

Other inhomogeneous solutions to Eqs. (11) are the
ones connecting two different equilibrium states, ap-
proached as x —+ koo, respectively. For instance, in
Fig. 2, two of these solutions are represented by the
curved segments ending at n3 and n2. However, for con-
tinuous F(n), among two neighbor equilibrium points,
one is stable and the other unstable, so that a struc-
ture connecting both states is expected to be unstable.
Besides this, in such cases, the effect of transport is neg-
ligible as the solution is mainly determined by the form
of the reaction function F(n). Prom the point of view of
the interplay of transport and reaction, therefore, those
cases are uninteresting.

Marginal situations, such as structures that eventually
appear when one of the roots of F(n) coincides precisely

with the points at which dn/dx is singular due to trans-
port, namely no, nD, and n = 0, deserve further consid-
eration.

Finally, it is worthwhile to stress that here we have
treated the stability of stationary structures in a semi-
qualitative way. A detailed study of this point would
permit us to answer several important questions such as,
for instance, if transport is able to stabilize a chemically
unstable state and if so, to what extent.

C. Wave fronts

Numerical simulations suggest that, when velocity re-
laxation does act (p g 0) and under fairly general con-
ditions, a very common feature in the evolution of the
perfect Quid with bistable chemical processes is the de-
velopment of wave &onts. These 5-shaped structures,
which connect two regions where the density equals one
of its stable values, move at a well-defined velocity.

In order to obtain an analytical description of these
wave &onts, consider a solution to the one-dimensional
version of Eqs. (10) in which both the density and the
velocity field depend on space and time through the
combination ( = x —ct, with c a constant, so that
n(x, t) = n(z —ct) and u(x, t)—:u(z —ct). If it ex-
ists, such a solution would represent a shape-preserving
wave moving with velocity c. In this situation, Eqs. (10)
reduce to

(u —c)n' + nu' = F(n),
vp2n'/2n+ (u —c)u' = pu, — (18)

where primes indicate differentiation with respect to
( = z —ct. This set of ordinary diff'erential equations
is equivalent to the two-dimensional dynamical system

F(n)(u —c) + pnu
~ —c 2 —vi~

v2F(n) + pnu(u —c)tl
A tL —C —Vg

2 2 )

(19)

with vi2 = vp/2 = kTp/m.
The equilibri»m points of Eqs. (19), defined by n' = 0

and u' = 0, correspond to u = 0 and F(n) = 0. As be-
fore, we consider that F(n) has three roots ni, n2, and ns
such that Ag Q A2 Q 743 Ag and n3 being stable equilibria
of the spatially homogeneous problem n = F(n). A wave
&ont connecting the two stable states nq and n3 is R so-
lution to Eqs. (19) which asymptotically approaches one
of those states for ( ~ —oo and the other for ( ~ +oo.
This situation is usually met when both (n, u) = (ni, 0)
and (n, u) = (ns, 0) are unstable equilibrium points of
the dynamical system (19) such that the corresponding
eigenvalues are real and opposite in sign. In this situ-
ation, the wave &oat solution corresponds in the phase
portrait of Eqs. (19) to an unstable manifold of one of
the unstable points which exactly connects with a stable
manifold of the other (see Fig. 4).

The eigenvalues of the dynamical system (19) at
(n, u) = (n, , 0) equal
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c[E'(n;) —p] 6 gc2[F'(n;) —p]2 —4pF'(n;) (@~2 —c2)

2(u, —c) (20)

Taking into account that at the equilibrium points nz and
ns we have F'(n;) ( 0, it is easily seen that the eigen-
values have opposite signs only if —v~ ( c ( vz. This
implies that, as we could expect, the maximum velocity
for the wave front is of the order of the thermal velocity
(c( ( QkTo/m

A numerical analysis of Eqs. (19) shows that the con-
nection of the manifolds of the equilibrium points occurs
for a well-defined, u~ique value of c E (—vg, vg). This
is precisely the wave front velocity. When c adopts that
value, the dynamical system phase portrait is of the type
schematically shown in Fig. 4 for the case c & 0. The
dotted line represents the connected manifolds between
(nq, 0) and (ns, 0). The upper-right plot shows a scheme
of the wave front density and velocity as functions of (.
In this graph, the arrow indicates the motion direction
of the front. Observe that in this case (n2, 0) is a stable
equilibrium point with complex eigenvalues.

A semiquantitative evaluation of the wave front veloc-
ity, which suggests the dependence of c on the external
parameters and moreover provides an estimation of the
wave front width, can be outlined as follows [22]. Let n
and n+ be the asymptotic density values at the left and
the right of the wave front, repectively. Integrating the
first of Eqs. (18) with respect to ( in the whole interval
yields

+oo
—c(n+ —n ) = E(n) d( = dn

"+ F(n)

n+ n
(21)

where 4 is the width of the wave front and I is the inte-
gral of F(n) with respect to n, between n and n+. As-
suming then that the point at which the density equals n2
coincides approximately with the velocity maximum, the
same equation provides an evaluation for the maximum
value of the velocity field at the wave front: u c.
Taking this into account and integrating the second of
Eqs. (18) with respect to (, we obtain

—KpcA = v, ln(n~/n ), (22)

where K is a factor of the order of unity, which de-
pends on the shape of the velocity profile. Note that
since 6 is a positive quantity, this equation implies that
c and ln(n+/n ) are opposite in sign. In other words,
if n+ ——n3 and n = nq, the velocity is positive and
vice versa. As a consequence, the wave front moves al-
ways "forward" —as indicated in the upper-right graph of
Fig. 4—and the domain with higher density nq advances
always over the lower one. This conclusion is widely sup-
ported by numerical simulations.

Combining Eqs. (21) and (22) we get

n) Qn and

v,'I l (nn~/ n)
Kp (n+ —n )2

(23)

v 2

b, = '
(np —n ) ln(n+/n ).IKp (24)

FIG. 4. Schematic representation of the phase portrait for
the dynamical system Eq. (19), with the precise value of the
parameter c () 0) such that a wave &out solution connecting
the stationary stable states n~ and n3 exists. Arrows indicate
the Sow in the phase plane and the dashed line represents the
wave front solution. In the upper-right graph, this solution is
schematically plotted as a function of the similarity variable

( = x —ct, along with the velocity profile u(g). The wave
&ant moves from left to right, as indicated by the arrow.

These two quantities are well defined if the integral I
and ln(n+/n ) have the same sign. This is a nontrivial
condition on the reaction function E(n) for the wave front
solution to exist. It implies that the integral of F(n)
between n2 and n~ must exceed the absolute value of the
integral between ns and n2 In this sens. e, the higher
stable state nz must be more weighty" than n3 with
respect to the intermediate n2. This is in agreexnent with
the fact that the higher stable state dominates the lower
one, as the wave front moves.

For given values of n and n+, as far as the wave front
exists, (n2, 0) is a stable point of the dynamical system
(19). According to the above discussion, if the parameter
c in Eqs. (19) is varied so as to change its sign, the wave
front solution ceases to exist. It can be shown that, at
the same time, (n2, 0) becomes ustable. Numerical anal-
ysis of the dynamical system indicates that, in this situa-
tion, a limit cycle appears at infinity and shrinks towards
(n2, 0) as the modulus of c increases. Figure 5 shows this
limit cycle in the phase plane (n, u) and the small graphs
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0.4-

0.0
n,

Note that for a many-dimensional system the third of
these equations would include a coeKcient depending on
the dimension.

The evolution of f;(x, t) (t' = —,0, +) is completely de-
terministic and, at each time step, consists of four sub-
steps that occur successively. The 6rst one describes re-
action events and is associated with a time interval btR.
In this substep the distribution functions are modi6ed to

-0.2- f(b) f ()n(x, t)+F(n(z, t))bt
n(x, t)

-0.4-

0.0
I

0.2
I

0.4
I

0.6 0.8 1.0

FIG. 5. Limit-cycle solution of the dynamical system
Eq. (19) in the phase plane (n, , u). The small plots repre-
sent the density profile n{() and the velocity profile u(() as
functions of the similarity variable ( = z —ct, along a whole
period in the limit cycle.

where F(n) is the reaction function that appears in the
first of Eqs. (2). This process is local in space, and the
fact that f;(z, t+ bt~) is proportional to f;(z, t) ensures
that velocity and temperature are not modified by reac-
tions. Note that b't~ should be small enough to ensure
positivity of the distribution functions.

The second substep stands for particle transport. The
associated time interval btT is related to the lattice spac-
ing bx by bx = vbtT In th.is substep distribution func-
tions at neighbor sites are interchanged according to the
Buid motion:

depict the dependence of density and velocity on ( along
a whole cycle period. This solution represents a train of
density crests moving at constant velocity. As the wave
front studied above, this is a shape-preserving nonlinear
wave originating in a strong competition between reac-
tion and transport. As discussed previously, by "creat-
ing" or "annihilating" particles chemical processes com-
pensate local depletion or overpopulation caused by the
Bow.

IV. NUMERj:CAL MODEL

A. Simulation scheme

The simulation scheme used to study the reacting per-
fect Buid &om a numerical viewpoint is based on discrete
velocity kinetic models with reactions [23,24] and can be
seen as a variation of cellular automata methods [25] or of
the lattice Boltzmann equation formulation [26]. In this
three-velocity model, which is intended to mimic a react-
ing Buid in the isothermal situation, the system evolves
on a one-dimensional lattice at discrete time steps. The
extension to more dimensions is straightforward. At a
given time, three positive real nnrubers f (z, t), fp(z, t),
and f+(x, t) are defined on each lattice site. They stand
for the distribution functions of particles with velocity
v, 0, and —v (v = const), respectively. These three
distribution functions make it possible to de6ne three
independent "macroscopic" fields —density, velocity, and
temperatur- given by

n(x t) = f (x t) + fp(x t) + f+(x t)
n(z, t)u(x, t) = v[f+(x, t) —f (x, t)],

n(x, t)kT(x, t)/m = v'[f (x, t)+ f+(z, t)]
-n(x, t)u{x,t)'. (25)

fp(z, t+ btz) = fp(z, t),
f+(z, t+ bt&) = f+(z p bx, t). (27)

The fact that this process preserves positivity is obvious.
Velocity relaxation is described by the third substep.

It is supposed that this local process must preserve den-
sity and temperature, whereas velocity is modified to a
lower value u ~ u(l —I'), with 0 ( I' ( 1. Here I' can
be related to the friction coefficient p [cf. the second of
Eqs. (2)] by means of the time interval btU associated
with this substep I' = btUp. The distribution functions
are modi6ed according to

fp(z, t + btiJ) = fp(z, t) + I'(2 —I') n(x, t)u(z, t) /v

f~(z, t+ btU) = f+(z, t) —I'(2 —I') n(z, t)u(z, t)'/2v'
pl n(z, t)u(z, t)/2v. (28)

fp(z, t+ btp) = n(x, t)[1 —u(x, t) /v —kTp/mv ),

f~(x, t+ bt, ) = n(x, t)[kT, /mv'+u(x, t)'/v'
+u(x, t) /v]/2. (29)

Unfortunately, it is impossible to ensure here that
f; (x, t+ btp) will be positive. The analysis of Eqs. (29) for
0 & kTp/mv2 & 1 and —1 & u(z, t)/v & 1, which are the
admissible values for temperature and velocity, indicates
that the distribution functions can become negative, es-

pecially when To is near one of its extreme values. In any

It can be shown that, as far as 0 & I' ( 1, f;(z, t + btU)
is always positive.

Finally, the fourth substep describes the loca1 ther-
malization of the Buid. At this point, the distribution
functions are modi6ed in such a way that density and
velocity remain invariant and temperature changes to Tq,
the host medium temperature. This substep, whose as-
sociated time interval bto is irrelevant to the dynamics,
is de6ned by
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case, for a given value of To, there are always at least two
velocity intervals for which either fo or fy change their
sign. Since the invariance of local density and velocity
is required by mass and momentum conservation in the
guest-host interaction, it is necessary to sacrifice the eK-
ciency of thermalization. Therefore, if a sign change will
occur, the value of the corresponding distribution func-
tion is automatically set equal to zero and the others are
adjusted to preserve density and velocity. This implies
a difference between the resulting temperature and To.
Although this discrepancy is unavoidable, it can be min-
imized by a convenient choice of To. It can be seen that
its optimal value is k'To/mv2 = 1/4.

It is worthwhile to stress that this numerical scheme
does not include interactions, i.e., binary collisions, be-
tween Quid particles. These interactions are indeed im-
portant in the evolution of a fiuid, as they determine its
microscopic state. In a perfect Quid, for instance, binary
collisions are responsible for local thermodynamical equi-
libri»m in the system. However, in the isothermal case
considered here, local equilibrium is determined by the
guest-host interaction, so that this process is supposed
to prevail over other collision events. In other, more gen-
eral situations these collision events should be taken into

account.
The four substeps described above, always applied in

succession, constitute a whole time step of longitude
bt = btIt + btT + htU + bto. The relative strength of re-
action and velocity relaxation with respect to transport
and thermalization —which define their own rates —can
be modified by changing the values of btlt and bt~ or,
alternatively, by changing F(n) and I'.

Being a discrete velocity model, this simulation scheme
is particularly suitable for numerical investigation of the
reacting perfect fiuid. It avoids the typical strong in-
stabilities occurring in the discretization of the perfect
fiuid equations for their numerical solution. On the other
hand, the simulation is not expected to reproduce in all
detail the evolution of a real system of this type. Indeed,
a three-velocity model can at most mimic in a semiquan-
titative manner the behavior of such a system. Therefore,
results of simulations have to be seen as merely indicative
of the features we could find in a more realistic situation.
Nevertheless, as said before, we detected many of the
structures analyzed in Sec. III for Eqs. (2) in n»clerical
simulations.

The simulation scheme outlined here exhibits a good
overall performance, with some rare instabilities of neg-

n1 t=s t=206

n -----------------------------------------------.
3

0 0

t=30 t=465

0

0-

t=79

0

t=798

0-

FIG. 6. Numerical simulation of the
one-dimensional isothermal reacting Suid,
with friction coefBcient I = 0.03, tempera-
ture kTO/mv = 0.25, and periodic bound-
ary conditions. The reaction function is
E(n) = (ng —n) (ng —n) (na —n) with
ni ——0.8, nq ——0.5, and n3 ——0.3. In each
plot, the upper curve represents the density
pro6le as a function of position and the lower
one is the corresponding velocity pro61e. The
initial condition was chosen at random, so
that density Buctuates around the unstable
equilibrium state n2 and the average velocity
vanishes. Time is indicated in units of bt.

t=9 t=853
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ligible efI'ect in certain limit cases. In the next section,
we present some representative simulation results.

B. Numerical results
0.8

Numerical simulations have been performed on a 200-
site lattice with bx = 1 and periodic boundary conditions
for a fIuid with v = 1. The reaction model was given
by the function E(n) = (ni —n) (n2 —n) (ns —n) with
nq ——0.8, n2 ——0.5, and n3 ——0.3, and the reaction inter-
val btR has been chosen equal to one. According to the
discussion above, we fixed the background temperature
so that kTo/mv2 = 0.25. We have always chosen the
initial condition at random, in such a manner that the
initial density n(x, 0) = g,. f; (x, 0) fluctuated around the
unstable equilibrium state n2.

Figure 6 shows a typical realization run with I' = 0.03.
In each plot, the upper curve corresponds to density and
the lower one to velocity. During the first evolution steps
(t 30 bt) initial fluctuations are rapidly smoothed out,
due to velocity and temperature relaxation. At t 100bt
only two density bumps persist, with similar velocity pro-
files. In the remainder of the spatial domain, the density
has relaxed toward the lower stable state n3 and velocity
has practically vanished. The density maximum in the
rightmost bump is below the unstable state n2, indicating
that this structure is a candidate to disappear under the
cooperative action of chemical processes —which makes
the density approach n3—and of its velocity field —which
tends to deplete the region.

In the other bump, instead, density is definitely above
n2 and therefore depletion due to transport must com-
pete with reactions which tend to increase density. Even-
tually, reactions prevail and two opposite wave &onts
form at t & 200b't. These are precisely the type of wave
fronts studied at the end of Sec. III (cf. Fig. 4). They
move at a velocity c = +0.115bx/bt and have a width of
about 40bx. As time elapses, due to the periodic bound-
aries in the simulation, the fronts are led to collide and
annihilate each other. The depleted region in between
is filled and, finally, the density reaches a homogeneous
state at the upper stable equilibrium value, with vanish-
ing velocity. At t = 853bt (see Fig. 6), this state has
practically been established.

Figures 7 and 8 correspond to simulations in the fric-
tionless case I' = 0. The first one is the numerical version
of +he bump described in Sec. III and labeled 1 in Fig. 3.
It is plotted at t = 235bt and originated from a random
initial density with mean value slightly above n2. Two
fronts have formed and then collided, and their collision
produced a local overpopulation which rapidly relaxed
to this very stable structure. Strictly speaking, although
it can last for a long time almost unperturbed, in this
numerical simulation such a structure will finally disap-
pear. This is due to periodic boundary conditions, which
establish an interaction between the bump and its images
in the remainder of the "infinite" spatial domain.

This effect is also apparent in the velocity field. In
fact, in a strictly infinite domain, u should approach con-
stant values as x ~ +oo. These asymptotic values, equal

0.2—

50 100 150 200

FIG. 7. Numerical simulation of the one-dimensional
isothermal frictionless fluid, with temperature kTO/mv
=0.25 and periodic boundary conditions. The reaction func-
tion and the initial condition are the same as in Fig. 6. Curves
represent the density and the velocity pro6les as a function
of position at time t = 235bt. A bump of the type labeled
1 in Fig. 3 has formed. Note the small oscillations due to
numerical instabilities.

in modulus and opposite in sign, are given by u(ni) in
Eq. (12). In the periodic domain, instead, u(x, t) is a
continuous function of x whose ends must connect with
each other. Consequently, the velocity becomes negative
to the left of the bump and positive to the right. This
depletion in u(x, t) makes the velocity profile unable to
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0.2
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FIG. 8. Numerical simulation of the one-dimensional
isothermal frictionless Huid in the same conditions as in Pig. 7,
with a difFerent random initial condition, at time t = 185bt.
A shock wave has developed and it proceeds &om right to
left with a velocity which practically equals the microscopic
velocity of the 6uid particles. Note the rather inhomogeneous
velocity pro6le in the zone where the density is nearly con-
stant.
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compete with reactions, and 6nally density relaxes to-
ward the homogenous state nq.

Note the small oscillations both in u(x, t) and n(2:, t)
near the zone where u = 0. They are due to numerical in-
stabilities and do not represent an important interference
to simulations, as they remain bounded at all times. Such
oscillations disappear as soon as some &iction is added
and velocity relaxation acts.

Finally, Fig. 8 shows the result of the evolution of a
random initial condition at t = 185ht. It represents a
structure which could only be observed in the &ictionless
case. This is a shock wave, i.e., a discontinuity in the den-
sity and the velocity, moving at c v. Such shock waves
are very common features in the numerical evolution of
the frictionless Quid. As a matter of fact, the collision of
two of these structures gave place to the bump plotted
in Fig. 7. They form spontaneously in zones with high
velocity gradients and develop as they move. Typically,
at one side of the discontinuity, the density equals ns and
the velocity vanishes, whereas on the other side n = nq
and u reaches a 6nite value. The wave moves always to-
ward the region with n = n3. Prom the numerical point
of view these structures are particularly unstable. Note,
for instance, the irregularities in the velocity front. Small
oscillations also appear in u(x, t) just at the left of the
&ont.

Besides the shock &ont developing at 100 & x & 150,
Fig. 7 displays another typical feature in the evolution
of reacting Buids. For 0 & z & 100, density is practi-
cally constant whereas velocity is considerably inhomo-
geneous. This is again a consequence of the interplay of
reactions and transport: by virtue of reaction processes,
which maintain density near the stable state na, the Quid
can support a relatively high velocity gradient without
exhibiting strong variations in its spatial distribution.

V. SUMMARY AND CONCLUSIONS

In this paper, we have analyzed some of the features
in the dynamics of a perfect Quid interacting with a
host medium through mechanical and chemical processes.
This interaction is modeled at the hydrodynamical de-
scription level by suitable terms in the continuity equa-
tions for density, velocity, and temperature. Reaction
events, which are not supposed to modify velocity and
temperature, enter the density equation in the form of a
density-dependent source term, as is usually done when
modeling reacting and diffusing systems [1]. On the other
hand, mechanical processes such as momentum and en-
ergy interchange do acct velocity and temperature but
leave density unchanged. We have represented such pro-
cesses with linear relaxation terxns in the respective con-
tinuity equations.

In contrast to defusing systems —where the existence
of a background is ass»~ed by the definition of the under-
lying transport process —for a one-species reacting per-
fect fluid it is necessary to add a fortiori a host medium,
able to become involved in chemical reactions. Indeed,
a reacting isolated species could not undergo realistic

chemical processes. The guest-host Quid system is then
the simplest nontrivial case in which convective trans-
port and reactions can interact. Moreover, considering
the guest-host chemical interaction without taking into
account mechanical processes —which can be naturally
done in diffusing systems —would here result in unrealis-
tic models as well.

Here we considered this simple guest-host model as a
first step in the study of nonpassive reaction-transport
interplay in Buids. However, it is clear that the model
can be straightforwardly extended to more complex situ-
ations, taking into account several Buid species as well as
the more complex mechanical interaction and chemical
reactions.

In the first place, we studied the hydrostatic state of
the reacting Quid, which, in contrast to that of an or-
dinary Quid, is well defined. In fact, reactions fix the
possible values of density and mechanical processes de-
termine velocity and temperature to equal those of the
background medium. Small perturbations of hydrostatic
stable states led us to consider sound propagation in the
reacting Quid. We obtained that dispersion and atten-
uation of sound waves appear as a consequence of both
reaction and relaxation processes. Although as discussed
before these two kinds of processes cannot occur sepa-
rately, it has to be noted that reactions alone are able to
introduce dispersion and attenuation in sound propaga-
tion. This fact, which is essentially due to the density
relaxation implied by reaction events, should also be ob-
served in other oscillatory phenomena occurring in Buids,
such as, for instance, gravity waves [27].

For the sake of simplicity, in this first approach to our
model, we have then restricted the analysis to the isother-
mal case in which the Quid temperature 6eld identically
equals the background temperature. This limit corre-
sponds to an in6nitely effective temperature relaxation
and reduces the number of unknowns in the problem.
Our interest was concentrated in the study of nonequi-
librium structures arising &om the interplay of reaction
and transport. In the situation in which velocity relax-
ation is neglected, we obtained several time independent
inhomogeneous solutions with planar symmetry, charac-
terized by bounded zones of overpopulation or density
depletion and supporting space dependent velocity fields.
All these structures —whose existence would be imf&ossi-
ble in an ordinary Buid—can be seen to originate in a ba-
sic competition process between reactions and transport.
When velocity tends to accumulate particles in a certain
region, such accumulation is limited by reactions which
maintain density near the corresponding equilibrium val-
ues. On the contrary, if there is a zone where the velocity
field is divergent so as to deplete the population there,
reactions provide new particles which compensate for the
depletion. When the two processes balance, nonequilib-
rium structures arise. These structures are expected to
vary with time if velocity relaxation is taken into account,
progressively approaching a homogeneous state.

A most important structure observed to exist for
bistable reaction models consists of a wave front connect-
ing zones with homogeneous density and velocity. These
shape-preserving solutions exist only when certain con-
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ditions on the reaction model are fulfilled, related to the
fact that the stable state with greater density prevails
over the other. They move forward always at a constant,
well-de6ned velocity, in such a way that at a given point
in space the density varies &om the lower stable state to
the upper one. This fact makes evident an important dif-
ference &om the case of a diffusing system with bistable
reaction. In fact, in this latter situation, wave fronts can
move forward or backward depending on the details of
the reaction model, such that either stable state can be
dominant. In the case of a perfect Quid, instead, wave
&onts always lead the system to approach a homogeneous
state in which the density has its greatest stable value.

Although we have analyzed wave &onts in the par-
ticular situation of planar symmetry —analogous to a
one-dimensional problem —these solutions are expected
to describe the evolution of density domains in many-
dimensional cases, as observed in reaction-diHusion sys-
tems [22]. For a bistable reaction model in which the
typical relaxation times are lower than those correspond-
ing to transport processes, the Quid should evolve to-
ward a state constituted by domains of almost constant
density, whose values are given by the reaction stable
states. Such domains should then move governed by the
reaction-transport interplay. When the reaction model
permits the formation of wave fronts, i.e., when the up-
per stable state is dominant, these structures should rep-
resent the evolution of the domain walls and the system
would 6nally tend to a homogeneous high density state.

The numerical scheme presented in Sec. IV has been
developed to gain insight into the main qualitative fea-
tures in the behavior of the reacting Quid. Here it has

been mainly used to detect the type of nonequilibrium
structures we could expect to describe wit4~ an analyt-
ical approach. The scheme consists of a three-velocity
one-dimensional deterministic model, particularly suit-
able for simulation purposes. Three velocities with at
least two different moduli (0 and v, in our case) are nec-
essary to define independent density, velocity, and tem-
perature fields. Most of the lattice gas models used in
numerical simulations of ordinary Quids, such as, for in-
stance, the Broadwell model and some of its variations
[28], consider that all the possible velocities have the
same modulus and are therefore unable to account for
thermal effects. In such models, in fact, conservation of
particle number is equivalent to energy conservation so
that density and temperature are not independent quan-
tities. This fact must be taken into account in even-
tual generalizations of the reacting Quid discrete velocity
models to many-dimensional cases.

Possible extensions of the model and the particular
situations presented here —which surely deserve future
consideration —are, for instance, the inclusion of viscous
dissipation, heat transport, and boundary conditions; the
study of thermal efFects, potential, and rotational flows in
two and three dimensions; and the inQuence of reaction
processes on more complex Gows, such as on turbulent
ones. The preliminary results presented in this paper
hold within some simplifying approximations which do
not necessarily correspond to a speci6c experimental sit-
uation. However, they clearly suggest that such general-
izations to more realistic cases could give origin to a rich
variety of new phenomena associated with the interplay
of reaction and transport.
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