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Self- and cross-velocity correlation functions and diS'usion coeScients in liquids:
A molecular dynamics study of binary mixtures of soft spheres
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Molecular dynamics simulation is applied to the study of the diffusion properties in binary liquid mix-
tures made up of soft-sphere particles with different sizes and masses. Self- and distinct velocity correla-
tion functions and related diffusion coefficients have been calculated. Special attention has been paid to
the dynamic cross correlations which have been computed through recently introduced relative mean
molecular velocity correlation functions which are independent on the reference frame. The differences
between the distinct velocity correlations and diffusion coefficients in different reference frames (mass-
fixed, number-fixed, and solvent-fixed) are discussed.

PACS number(s): 61.20.Ja, 61.20.Lc, 66.10.—x

I. INTRODUCTION

Self- and distinct diffusion coefficients (DC s) have been
suggested as basic pieces for theoretical studies of trans-
port properties in multicomponent liquids [1—4]. The
former provide information abut the mobility of mole-
cules. The latter measure the coupling between the ve-
locities of distinct particles. The self- and distinct DC s
are defined as time integrals of self- and distinct velocity
correction functions (VCF's), respectively (equivalent
definitions from the slope of the displacement correlation
functions can also be used [3,4]). Although the informa-
tion given by the DC s is interesting, time-dependent
VCF's provide us with more details about atomic
motions. The problem is that these functions cannot be
determined experimentally and information about them
should be obtained by other methods such as molecular
dynamics (MD) simulation.

The study of distinct DC's has mainly been focused on
electrolyte solutions. Both phenomenological (Onsager)
and empirical (electrical transport, interdiffusion) coeff'-

icients can be written as linear combinations of self- and
distinct DC's [5—7]. Thus distinct DC's of several elec-
trolyte solutions have been obtained from experiments
[8—11]. These coeScients supply a helpful link between
experiment and theory and have been proposed as suit-
able parameters to probe the quality of solvent-averaged
interionic potentials [3,12]. MD simulations of electro-
lyte solutions are very costly, and MD studies of distinct
VCF*s and related DC's have been restricted to binary
liquid mixtures of simple liquids and molten salts
[4,7,13—15]. Although distinct DC's in some binary
nonelectrolyte mixtures of organic and water-organic
liquids have been determined [16—18], these data cannot
be used for a systematic test of the MD results for simple
soft spheres or Lennard-Jones liquids.

One of the major complications in the interpretation of

diff'usion data in multicomponent liquids is that, unlike
the self-properties, distinct VCF's and related DC's de-
pend on the reference frame (RF) [2—7, 19,20]. The RF's
commonly used in theoretical and experimental works
are different [11],and this must be taken into account in
comparing results from the two methods. In the case of
computer simulations, the identification of the RF corre-
sponding to different simulation methods is problematic.
It has been shown that results from ordinary MD simula-
tions at a constant energy and moment should be associ-
ated with the barycentric RF [21]. However, when other
computer simulations such as MD at constant tempera-
ture (and/or pressure) or stochastic simulations are used,
the association is not so clearly established [4]. On the
other hand, it should be noted that theoretical and com-
puter simulation studies of distinct VCF s have been re-
stricted to the barycentric RF [13—15], and there is very
little information about the characteristics of distinct
VCF's in different RF's. Distinct DC's in binary nonelec-
trolyte mixtures for different RF's deduced from experi-
mental data have recently been analyzed by Mills et al.
[18].

A set of RF-independent collective VCF's between the
center of mass of particles of different species, the relative
mean molecular VCF's together with the corresponding
set of DC's, have been proposed in a recent paper [7] as
an alternative to RF-dependent distinct properties. Phe-
nomenological and empirical coefficients as we11 as the
distinct VCF's and DC's in different RF's may be written
as combinations of RF-independent properties [7). How-
ever, a MD study of the characteristics of the relative
mean molecular VCF's is still lacking.

One of the aims of this paper is to analyze the relative
mean molecular VCF's and related DC's from MD simu-
lations of binary mixtures of simple liquids. The depen-
dence of the dynamic cross correlations on the asym-
metry of mixtures (differences between the two species)
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will be discussed. Another objective of this work is to
study the distinct properties in three typical RF's (mass
fixed, number fixed, and solvent fixed). Because of the
dependence of both self-VCF's and self-DC's on the mass
and size of particles [4,22,23], we have considered liquid
mixtures of species with diferent masses and sizes. For
the sake of simplicity, soft-sphere interatomic potentials
have been assumed.

II. MOLECULAR DYNAMICS SIMULATIONS

It should be emphasized that the calculation of relative
and distinct properties requires performing very long
MD runs. The length of the runs in this work is about
4X10 time steps of 10 ps, and the estimated uncer-
tainties for the resulting relative DC's are about 10%%uo. In
the case of the self-DC's the uncertainties are smaller
( & 5%). In all cases the DC's have also been calculated
from the slopes of the corresponding displacement corre-
lation functions, and we have observed a satisfactory ac-
cordance within error intervals.

m =x&m&+x2m2,

0' =x )CT )+x20'2 .-3= 3 3 (2)

In the third series all particles have the same size, and all
systems have the same reduced mass (p):

m)m2p=
m

(3)

TABLE I. Description of the simulated systems. Binary mix-
tures (x& =x2) of systems of particles (a) with different masses
or/and sizes but with the same m =39.95 amu and cr =3.405 A.
(b) %'ith the same size can=3. 405 A, different masses but the
same %=39.95 amu. {c) With the same size o =3.405 k,
different masses, but the same p =39.95 amu.

Systems made up of 500 particles in a cubic box with
ordinary periodic boundary conditions have been simu-
lated by MD. Binary mixtures of species 1 and 2 with a
mole fraction x

&
=x2 =0.5 have been considered.

The temperature and density are T = 116 K and
p=2.4X 10 A, respectively. Interatomic forces have
been obtained from the repulsive part of a Lennard-Jones
potential, i.e., the cutofF has been at r corresponding to
the minimum of the potential. As may be observed in
Table I, three difFerent series of MD runs have been per-
formed. All the systems in the first and second series
have the same mean mass (% =m~=39.948 amu) and

0
mean size (o =o ~=3.405 A):

III. DEi IN' rONS

N

u, (t}=—N, ' g u„(t}, (5)

where N, is the number of particles of species a, and
u„(t) is the velocity of the particle ai of species a in the
laboratory RF.

A,b(t) may be separated into self- [A,&(t)) and distinct
[A,b(t)] contributions as follows:

A,b(t)=(1 —5,b)A,q(t)+x, xqA, q(t) .

In a multicomponent system of q species, the mean
molecular relative VCF's A,b(t) [7] (for the sake of sim-

plicity we will call them relative VCF's) are defined as
time correlation functions of the relative velocity of the
center of mass of species a with respect to the center of
mass of species b [it should be noticed that unlike in Ref.
[7] the factor x,xb has been included in the definition of
A,b(t)]

A,b(t) = ,'x, xb—[N([u, (t)—u&(t)][u, (0)—ub(0)) ) ] „,
(4)

where [ ] indicates the thermodynamic limit operation,
( ) denotes the average over the canonical ensemble, and
u, (t} is the mean molecular velocity of the component a
given by

System

A

B
C

System

A8=A
A4
A2
A1

System

A8'
A4'
A2'
A1'= A1

m2/m &

m2/m &

mz/m &

(a)

(b)

(c)

15.78
25.56
35.51
39.95

101.12
62.42
44.94
39.95

15.78
39.95
15.78

It should be noted that according to definition (4) the
q A (t) functions are equal to zero. The contribution of
the self-velocity correlations is

A'.,(r) =x,A'. (r)+x.A;(r), (7)

where A', (t) and A'b(t) are the well-known velocity auto-
correlation functions

A;(r) = ,' [(u„(t).u—„(0)) ]„. (8)

The contribution of the distinct velocity correlations may
be written as

A (t)=A (t)+A s{t}—2A~ {t},
where the right-side terms are distinct VCF s in a given
reference frame R {R-RF):

A,b (t)=—,
' [N(u,";(t).ug. (0)) ]„, (10)

where u„(t)—:u„.(t)—u"{t) is the velocity of particle ai
in the R-RF, and the velocity of R-RF with respect to the
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laboratory is given by

A„(t) gg 8[A—d, (t)+A,', (t)]
c=1

c=l d=1

8 RAd ( ) (12)

The initial values of the VCF's may be simply obtained
from the mass of the particles and the temperature of the
system by using the relations [7]

u8(t):—g g,"u, (t),
a=1

where g, 's are weight factors which define the macro-
scopic reference velocity (see Table I in Ref. [20]).

The distinct VCF's can be written as combinations of
functions which are independent of the RF with
coefficients depending on the weight factors [7]:

(g8)2
A.","(t)= g A', (t)

c=1
R R

A', (t)+ A'
t, (t) D !2=Du(1+5, 2)

. (20)

Then the deviations of the Hartley-Crank approximation
are given by the thermodynamic coefficient 8 and the mi-
croscopic coefficient 5i2. The results of Mills et al. [18]
suggest that these two coefficients are correlated, and sys-
tems with 8 markedly different from the unity are the
same as those for which 5,2 show noticeable deviations
from zero.

A. RF-independent VCF's and DC's

D 2=D12

where 8 is the thermodynamic factor (for ideal solutions
8=1). Equation (18) shows that D', 2 depends on both a
macroscopic thermodynamic parameter and a "micro-
scopic" transport coefficient. Moreover, it is frequently
assumed that for nearly ideal mixtures D;2=D, z (the
Hartley-Crank approximation). A measure of the devia-
tions of this approximation is given by the coefficient

~12 +1+2D12 ~ 12
d 0

It should be noted that 5,2 vanishes in "mixtures" of two
identical species. According to Eq. (6),

x.m. +xbmb
A,b(0)=A,b(0)= k8T,

mb

A,"b(0)=0, (14)

The resulting basic functions A', (t), A2(t), and Ai2(t)
and related DC's for the systems in Table I(a) are shown
in Fig. 1 and Table II. For the sake of clarity we
have represented the normalized functions [C(t)

A', (0)=
m,

(15)
)ystem

R)2
AdR(0)

m

R R
ga gb

X.ma Xbmb
kB T . (16) Q. 4.

Q

The diffusion coefficients D,b, D,b, D,"b, D,', and D,b

are defined as the time integrals of the corresponding ve-
locity correlation functions A,b(t), A,b(t), A,&(t), A', (t),
and A!",(t)

').0

0.2

!
0.() 0.2

!
0.4 0.6 0.6 ~.0

aysterr 3

D= f "A(t)dt .
0

(17)

According to the given definitions, information about
the dynamic cross correlations is provided by the A,b(t),
A, b ( t ), and A,"& ( t) functions and related diffusion
coefficients. We want to emphasize that the only RF-
dependent properties defined in this section are the dis-
tinct A t, (t) functions and the corresponding D,I",

coef5cients.

'3. 0

—Q. 4
0.0

!
0.6 ! 0

&yste(«

Q. 2 0.4 0.6

IV. RESULTS FOR BINARY LIQUID MIXTURES

In a binary system the number of independent VCF's is
three [7]. During MD simulations of the binary (q =2)
liquid mixtures of soft spheres described in Sec. II, we
calculated the A', (t), Az(t), and A, 2(t) functions. The
other VCF's as well as the DC's have been determined
using the equations in Sec. III.

It is shown in Ref. [7) that the interdiffusion coefficient
in the volume-fixed RF is given by

3.4-

0.2

!
0.0 0 2 0.4 0.6

(Ds,
3.6

FIG. 1. Normalized self- and relative VCF's for systems A,
B, and C: ---, Cl 4,'t~;, Czj,'t); ————,Cl2(t).
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TABLE II. Non-RF-dependent diffusion coe5cients (in 10
cm'/s ').

Ds
1

D2
D0

Di2
D&2

d

System A

1.95
1.75
1.85
1.95
0.4
0.05

System 8
4.35
1.6
2.95
3.2
1.0
0.1

System C

6.1
1.75
3.9
4.5
2.3
0.15

02 — /i

I

/

=A(t)/~A(0) ~]. It should be pointed out that the initial
values do not provide significant information about the
atomic motions and can be determined without any MD
simulation [Eqs. (13) and (15)].

Results for C& (t) and C2(t) (Fig. 1) are consistent with
those in earlier studies [22,23]. In mixtures of species
with different masses (system A) the function correspond-
ing to the heavy particles C2(t) has a slower decay and
shows a slighter backscattering (negative values). This is
a consequence of the velocity persistence of the heavy
particles when they collide with lighter ones. Since the
light particles always interact with other equal or larger
particles, the changes in their velocities are always impor-
tant and C&(t) shows a more marked backscattering. In
the case of mixtures of species with different sizes (system
8}, the faster decay and deeper backscattering corre-
sponds to C2(t) (for the large particles). This may be as-
sociated with the oscillatory motions of the large parti-
cles in the cage formed by neighboring like particles. The
weaker backscattering for the small particles reflects a
dominant diffusive behavior along the interstices among
the large ones.

As may also be observed in Fig. 1, the shape of C&2(t)
is intermediate between C', (t) and C2(t). This suggests
that the efFects of the distinct correlations in these sys-
tems are rather small, and C&2(t) will resemble C&z(t}.
The differences between these two functions is a measure
of the contribution of the correlations between distinct
particles, and they are equal to 5,2(t) =x,x2C,2(t), where
C~2(t)=A~2(t)/A&2(0) [see Eqs. (6) and (13)]. The results
for systems A, B, and C are shown in Fig. 2, and they
show that C,2(t) is more important when particles of the
two species differ only in mass (system A), and are
markedly smaller when particles difFer in mass and size
(system C}. This result is somewhat surprising because

earlier findings suggested that the effects of the distinct
velocity correlations should increase with the asymmetry
of the two species [4,15,20] [C,2(t} vanishes in "mix-
tures" of two identical species]. Nevertheless, the com-
parison of results for systems A and B in Fig. 2 suggests
that size difFerences can balance mass differences. This is
consistent with findings for system C.

Quantitative information about the contribution of the
distinct correlations to D,2 is given by 5,2. Results in
Table II show that 5,2 is smaller than 15% for the three
systems. Unlike the VCF's the biggest distinct contribu-
tion to D,2 is for system C. This finding is a consequence
of the oscillatory shapes of 5,2(t} for systems A and 8,
and it corroborates the insensitivity of the DC's to the
microscopic properties at short time scales [4]. Thus a
low value of D&z does not imply that dynamic cross
correlations are negligible. It has been suggested [24]
that the positive values obtained for the D&2 coeScients
may indicate that particles of the same species have a
greater tendency to difFuse together than those of
difFering species. Nevertheless, it should be pointed out
that uncertainties in the values of D,z and 5,2 are more
important than for the other DC's because they are deter-
mined from differences between two coefficients (D,z and

D,2 }which in general are very close.

B. Distinct VCF's and DC's

+(g2 ) A)2(t),

A'„"(t)= g", g,'[x, 'A—',(t)+x -A;(t)+A'„(t}],

A,"(t)=(g", ) x, 'A;(t) —g (1+g, )x, 'A'(t)

+(gR )2Ad (t)

(21)

(22)

(23)

Extending the Hartley-Crank approximation to the
VCF's, it may be assumed that for ideal mixtures

A, 2(t)=0. Then expressions for the distinct VCF's for
ideal mixtures can easily be deduced by removing the
A&2(t) terms in Eqs. Ql)-(23). These functions will be
called A, ", (t), A, 2 (t), and A22 (t). It should be noted
that both distinct VCF's and related DC's for nearly ideal
systems may be determined approximately as combina-
tions of the self-VCF's and DC's, and deviations from
ideality are given by A, 2(t) multiplied by factors which

depend on the RF considered.
Limiting expressions of the distinct VCF's as x& goes

to zero may be deduced from Eqs. (21)—(23). The results
are given in the Appendix. Using Eqs. (6) and (21)—(23}it
may be readily obtained that

In this case of binary mixtures, expressions for the
RF-dependent distinct VCF's in terms of the RF-
independent VCF's may be deduced from Eqs. (11) and
(12):

Ag(t)= —g", (1+g2 )x, 'A;(t)+(g2 ) x2 'A~(t)

02 i i i I i
I

i I

O.O 0.2 0.4 0.6 0.8 1.0
& (Ps)

FIG. 2. Distinct contributions to the relative VCF's [5~2(tl]:————,system A;, system 8; - - -, system C.

Ag(t)=(x, x~) '(g~ ) A,2(t) —x, 'A;(t),
Ad"(t)= —(x,x, } 'g fg2~A„(t),

Azz(t)=(x&x2) '(g", ) A&2(t) —x2 'A2(t) .

(21')

(22')

(23')
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I. Mass jinxed RE

The weight factors corresponding to the barycentric or
mass-fixed RF (R =M) are the mass fractions [20]

x]m]
m

X2m2
g2 =

m
(24)

A dht( p )
—A dM( p )

—AdM( p ) (25)

Equations (21')-(23') and (24) have been used to determine
the AII {t), AIz (t), and Az& (t) functions for systems A,
B, and C. These functions have been normalized, but
their signs have been kept [C,"b (t)=A,b (t)/!A",b (0)!].
In this case it may be readily deduced from (16) that the
three functions have the same initial values:

28

2.5

2.0 ~

1.8 g

5

1.0

0.8

0.6

0.2

I

I

I

I
I

I

I

System

0.4

Q.Q ~

Q
!

-0.4 m

-0.6—

—1.0
0.0

1.0

0.6—

System 8

0.2 0.4 0.6 0.8 1.0

System C
MRF

Because of the negative initial values of the distinct
VCF's, the corresponding DC's are in general negatives.
The resulting normalized distinct VCF's and DC's are
shown in Fig. 3 and Table III, respectively. In the three
cases C,2 (t) is intermediate between C„{t)and C2z (t},
but these two functions are very difFerent for the three
systems. CI, (t}for system 3 (species 1 is lighter than 2)
shows a high maximum, and the corresponding DC is
positive whereas for system 8 (species 2 is larger than 1)
Cz~z(t) shows a maximum and D2d2 is slightly greater
than zero. When species 2 is heavier and larger (system
C), the mass effects are dominant and the maximum is
shown by CI I (t)

The results for distinct VCF's in the mass-fixed refer-
ence frame (MRF) for systems A and C are compared
with those corresponding to the ideal mixture approxima-
tions [AI2(t)=0] in Figs. 4 and 5. Marked differences
may be observed for system A, especially for correlations
between the like light particles (1-1). However, for sys-
tem C, when species have difFerent sizes and masses, the
differences are markedly smaller. This is due to the large
values of the AdI2(t) functions for system A (Fig. 2). In
both systems the differences for the 1-1 functions are
greater than for 2-2. However, this cannot be attributed
to differences in the microscopic behavior of species 1

and 2, but to the fact that (gz ) is much larger than

(g, ) [see Eqs. (21) and (23) and Table III]. The distinct
DC's {Table III) are in general very close to those corre-
sponding to the ideal mixtures, and the only noticeable
difference is between D&& and DII for system C (it
should be noted that despite the dilerenees in the VCF's
the 1-1 DC's for system A are very close).

0.0

-0.2—

-0.4—

0.2—

0.0—

-0.2—

-0.4—

-1.0— -0.8—

-1.2
0.0

I I I I
I

I I
I

I -1.0
0.2 0.4 0.6 0.8 1 0 0.0

I
I

I I
I I I I I

0.2 0.4 0.6 0.8 1.0

t (ps)

FIG. 3. Normalized (except in sign) distinct VCF s for sys-
tems A, B,and C in the mass-Sxed RF: - - -, C11 (t); ————,
CdM( g). CdM( g. )

Then the initial values are

Ad%( 0)
x2m, —(1+x2}mz

ktt T,
mim2

(27)

x (mi +x2m2
Ad%((}) k~T,

mim2

xIm2 (1+xi )mi
A22 (0)= k~T .

mim2

(28)

(29}

It follows from (29) that if x I rn 2 ) ( 1+x I )m I, the initial
value of Azz(t) is positive. This condition is fulfilled by

2. Number fixed RE

In the case of the molecular or number-Sxed RF's
(R =N), the wei—ght factors are the mole fractions [20]

(26)

TABLE III. Distinct DC's in diferent reference frames {in 10 cm /s ').

System RF g1 g2 DdR
11

(DdRO ) DdR
12 (DdRO) DdR

22
(DdRO )

1

9
1

2
1

2
1

1

2

0

8
9
1

2
1

2
8
9
1

2

+2.25
—1.95
—5.5
+2.0
—7.7
+5.8

(+ 1.95)

( —2.05)

( —6.0)
(+0.2)

( —8.3)

(+3.5)

—0.8
—1.95
—3.2
—1.8
—4.5

( —0.75)

( —1.85)

( —3-0)

( —1.55)

( —3.9)
(0)

—3.4
—1.55

+0.05
—3.3
+ 1.0
—3.5

( —3.4)

( —1.65)

( —0-2)

( —3.3)

(+0.45)

( —3.5)
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1.4—

1.2—

1.0—

O.S—

0.4—

0.2—

0.0—

-O.Z-

I

I
I

~
~ ~

[ I
I I
I I
I I
I

I

-O.S -
I

3.0

2.8—

2.6—

2.4—

2.2—

2.0—

System A

(1 —1) MRF

0.4

0.2—

0.0—

-0.6—

-0.8—

-1.0
0.0

0.2—

stem A

—2) MRF
I [ I

Q.Z 0.4 0.6 0.8 1.0
t (ps)

System C
SRFI

t

1.2—
~ I

~ ~
I

I I

1.0 -'
System C

NRF oe—

O.s—0.6—
I
IO4-0.4—

0.2—0.2—

O0.0 ——O.o—
O

-Q.2—M.Z—
,
'I

-0.4—~ 4

''I M.s—-06-
-,'I

-0.8—-O.S —
gl

I I I II ' [ ' [
O.o 0.2 0.4 O.B 0.8 1.0

t (ps)

'n si ) distinct VCF's for sys-FIG. 6. Normalized (except in sign)
in the number-fixed and solvent-fixed RF's: ---, C»

C "(t) Left and right figures areCdk (~).
for R =—N and R —=S, respectively.

ystem A

2—2) MRF
I [ I [ I [ I [ I

0.2 0.4 -0.6 O.S 1.0
t s

-1.0— -1.O
0.0

(p )0.0 0.2 0.4 0.6 O.

t (ps)

normalized distinct VCF's forFIG. 4. Comparison of the norma
'

ass-fixed RF ( ) with the ones for t ehesystem A in the m
'deal mixture approximation (---). C~& (t) an
idem for 1-2 in (b); idem for 2-2 in (c).

0.2—

O.o—

-0.2—

-0.4—

y d C The normalized distinct VCF's (keep-
the si n) and DC's for system C are shown in ig.

h VCF's for the actual A and C sys-In Fi s. 7 and 8, t e s
r-fixed reference frame (NRF) are com-tems in the number- xe re e

'd 1 mixtureared with the VCF's for the corresponding idea m'
h' RF the differences between theapproximation. In t is, e

9. Solvent fixed RE

If we consider that species 2 p yla s the role of solvent
and is taken as eth RF (solvent-fixed or Hittorf RF,
R =S) the weight factors are [20]

gS P gs —1 (30)

0.4

0.2—

0.0—

the 1-1 functions are smaller than in the case
of the MRF. Conversely the differences for e

r. This is due to the different weight fac-g
'n to the two RF's see a etors corresponding

n the distinctsystem C, the effects of the nonideaity on e
's in the NRF are very small. The distinct DC's for

the actual system are also very
(Table III). These findings corroborate t at t esystems a e

'
fl e of the dynamic cross correlation s on the distinct

properties is notoriously modulated by 'gthe wei ht factors
associated with the RF's.
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Then the initial values are as follows:

A[[(0)=(xzmz ) 'kz[T,

A (0)=0

Azz(0) = —(xzmz ) 'ktf T .

DC's. We carried out MD simulations of the systems de-
scribed in Tables I(b) —I(c). In these series the relations of
the mass of particles have been changed, but the mean
masses m or p have been kept constant. The results for
the normalized functions are shown in Figs. 9 and 10.
The minima of the self-VCF's of light particles become
deeper and shift toward lower times when the relation be-
tween the masses of the two species (mz/m[) increases.
The shift was not observed when the mass of light parti-
cles (not the mean mass) was kept constant [22]. The
behavior of the self-VCF's of heavy particles is opposite
to that of light particles. In the case of C,z(t) the
behavior as a function of the asymmetry of species is

(32)
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The results reported in this paper indicate that mass

differences between the species in liquid mixtures have a
signi6cant influence on their dynamic properties. The
self-VCF's and DC's of isotopic liquid mixtures have
been analyzed in several MD studies [22,25], but less at-
tention has been paid to the dynamic cross correlations
[14]. These facts encouraged us to perform a more sys-
tematic study of the mass influence on the VCF's and
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FIG. 10. As Fig. 9, but for the systems with the same p ( A 8',

A4', A2', and A1').

In this RF, A[[(t)=xz 'Az(t)+A, (t), and A[z(t)=0 and
Azz(t)= —xz 'Az(t). The results in this RF are com-
pletely different from those in the other two RF's and, in
the case of system C, they are given in Fig. 6(b) and Table
III. It should be noted that C,z (t) does not show an ini-
tial decay but a maximum at =—0. 1 ps. This maximum
should be attributed to the contribution of the distinct
correlations since, as may be observed in Fig. 2, 5[z(t)
also shows a maximum at the same t value. A maximum
in the distinct VCF's has been also observed in other
cases.

The findings for different RF's (Figs. 3 —8 and Table
III) corroborate the strong dependence of the distinct
properties on the RF. Since information about the dy-
namic characteristics of the system is mixed with the
weight factors corresponding to the RF, the distinct
properties cannot easily be interpreted. Moreover, it has
been shown that the shape of the distinct VCF's is mainly
dependent on the RF considered, and is scarcely
influenced by the contribution of correlations between
different particles.
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different depending on whether m or p are kept constant.
In the second case, different VCF's show the same initial
decay. Moreover, the initial values of the non-
normalized functions for systems with the same p are the
same, as may be readily deduced from (13), taking into
account that q =2:

A,b(0}= m 1

mimp p
(34)

The resulting DC's are also shown in Figs. 9 and 10.
Although the self-VCF's of the light and heavy particles
are markedly different, the self-DC's for each system are
quite similar and the D &2 values are intermediate between
D', and D2. So, the distinct contribution 5,2 is rather
small. It may be observed in Figs. 9 and 10 that in gen-
eral DC's increase when m or p decrease. It is interesting
to realize that when p is kept constant, D,2 diminishes
when the difFerences between the species become greater,
whereas the tendency is opposite when m is kept con-
stant. The 5,2(t) functions for the different mass relations
are represented in Figs. 9(d) and 10(d}, and they show

that the influence of distinct correlations increase with
the mass asymmetry between the two species.

V. CONCLUDING REMARKS

Results in this paper indicate that one should be very
careful with the interpretation of the RF-dependent dis-
tinct properties, because both the characteristics of dis-
tinct VCF's and the values of distinct DC's are dependent
mainly on the dynamic properties of individual particles
(self-properties) and the weight factors corresponding to
the RF, whereas the influence of correlations between
distinct particles is rather small and cannot easily be dis-
tinguished. For this reason it should be more useful to
characterize the dynamic cross correlations through
properties which are independent of the RF, such as the
relative VCF's. Three independent VCF's are necessary
to calculate all the mass transport properties in a binary
mixture. The findings analyzed in this paper suggest that
a suitable set of VCF's can be constituted by the non-
RF-dependent functions Ai(t), Az(t), and Aiz(t) or
Ai2(t). It should be noted that unlike in earlier papers
[3,4,20], distinct VCF's have not been included in the set
of basic VCF's.

Specially interesting is the information about the con-
tribution to the transport properties of the correlations
between distinct particles provided by Aiz(t), 5i2(t}, D i2,
and 5,z. Although these quantities are combinations of
the RF-dependent distinct properties, they are indepen-
dent of the RF. 5&2 has recently been used by Mills et al.

[1S] as a measure of the self-association in binary
nonelectrolyte liquid mixtures.

Finally, we want to point out that this work is part of a
more complete study of time correlations in multicom-
ponent liquids. The dependence of these correlations on
the interatomic interactions as well as their characteris-
tics in other systems including ternary liquid mixtures of
simple liquids, ions in noncharged solvents, and electro-
lyte solutions, will be analyzed further and the results re-
ported in forthcoming papers.

ACKNOWLEDGMENTS

Financial support of DGICYT, Project No. PB-90-
0613-C03, is gratefully acknowledged.

APPENDIX

A~4,"(t)~ A', (t) . — (A2)

For other distinct VCF's the expressions depend on the
RF. For the mass-fixed RF it follows from Eqs. (21},(22),
and (24) that

A', P(t) m, m, 'A—', (t), -

Aditi(t)~A2(t) —2m, m z
'A', (t)+A, z(t) .

(A3)

(A4)

For the number-fixed RF, using Eqs. (21), (22), and (26),

A;(t), —

Adit(t)~A', (t) —2A'i(t)+A~»(t) . (A6)

For the solvent-fixed RF, from Eqs. (21), (22),and (30) we
obtain

Ads(t) 0,
Aii(t) —+Az(t)+Ariz(t) .

(A7)

(AS)

Infinite dilute solutions are systems of great interest in
many cases. In this appendix, expressions for some
VCF's in an infinite diluted binary system are given. We
consider species 1 as the solute and species 2 as the sol-
vent. Thus the limiting expressions for x, ~0 are calcu-
lated.

The limiting expression for the relative VCF follows
from Eqs. (6) and (7):

Ai2(t)~Ai(t) .

In the case of distinct VCF s, a limiting expression in-
dependent of the RF can be obtained from Eqs. (23},(24},
(26), and (30):
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