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Structure of conSned adhesive Suids: A Monte Carlo study

AUGUST 1994

A. Jamnik
Department of Chemistry, University ofLjubjlana, 61000Lj ubjlana, Slovenia

D. Bratko'
College of Chemistry, University of California, Berkeley, California 94720

(Received 17 February 1994)

Canonical and grand canonical Monte Carlo simulations are used to study the structure of Baxter's
adhesive quid [J.Chem. Phys. 49, 2770 (1968)] in planar slits and its distribution between the pores and

the homogeneous phase. The fluid-wall contact densities are determined to calculate the pressure as a
function of the density and the separation between the walls. The simulation results are compared with

the predictions of the Percus-Yevick approximation for planar pores. A fair agreement between the two
methods is found at wider pores and moderate densities and temperatures at which the Percus-Yevick
theory conforms with the simulations in the homogeneous phase. In very narrow pores, a truncated
graphical expansion provides a better estimate for fluid distribution in the pore.

PACS number(s): 61.20.Ja, 47.55.Mh

I. &ITRODUCTION

Understanding the properties of inhomogeneous Quids
is fundamental to a variety of problems in colloid science,
biophysics, and engineering. Thermodynamic and
structural behavior of liquids at interfaces has therefore
long been the subject of intense experimental and theoret-
ical research but there remain many important phenome-
na whose molecular interpretation is still incomplete.
Notable examples are the complex phase behavior of
con5ned Suids and the solvent mediated forces among
colloids or macroscopic particles in the solution. Neither
the long-ranged liophobic interaction [1—4] nor the re-
markable properties of liquids in the immediate vicinity
of the solid phase [5] have so far been given a plausible
microscopic interpretation. While many pertinent ques-
tions invite the application of detailed molecular poten-
tials and powerful statistical mechanical methods or
simulations, the interest in simpler, analytically tractable
models remains alive, and numerous studies of such sys-
tems, both analytical and numerical, continue to emerge
in the literature. Useful insights into solvation in col-
loidal systems have been provided by using the models
with purely hard-core interactions among the solvent
molecules [6—12]. An even better model which combines
the analytic tractability with the essential properties of
intermolecular potentials such as the packing effects and
the short-ranged attractive forces is the Baxter's adhesive
Suid [13]. The model treats the molecules as hard
spheres with an infinitely deep and infinitesimally short-
ranged attractive potential. Analogous adhesion can also
be applied to study the wall-particle adsorption [6].
When used in combination with a suitable approximate
theory, the adhesive-sphere modeI displays many charac-
teristic features of real fluids including a reasonable phase
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behavior in both the pure Suid and in mixtures [14-22].
It has already been proven useful in modeling the interfa-
cial equilibrium [23,24] and the solvation interactions in
colloidal solutions [25—29]. These convenient properties
are, however, contingent on approximations concealing
thermodynamic instabilities of many-body systems with
Baxter's potential. As shown by Stell and Williams [30],
the successful performance of the Percus-Yevick (PY)
[13],the mean spherical (MSA) [31],and related integral
equation approximations [32] for sticky hard spheres
derives from the neglect of a series of nonintegrable mul-
timolecular clusters which otherwise contribute to the
pathological properties of the model. According to these
authors [30], the Baxter's approximate solution to the
Ornstein-Zernike (OZ) equation is relevant to slightly
modi6ed systems with weak polydispersity or with small
irregularities in molecular size or shape that do not visi-
bly alter the pair interactions or the properties of smaller
molecular clusters but would prevent the formation of
large and highly regular critical aggregates conditioned
by the perfect geometry and monodispersity of the parti-
cles. This puts the approximate PY model in line with
typical colloidal and molecular fiuids whose pair interac-
tions and small molecular clusters are adequately de-
scribed by the idealized potential, whereas their micro-
scopic properties do not favor the formation of closely
packed aggregates that would correspond to the ignored
configurations. The same remarks hold for simulations
performed so far with the adhesive model. The simula-
tion techniques described in recent works [33,34] lead to
a good agreement with the predictions of the PY sticky
sphere model in a broad range of conditions, the results
of the two methods being practically indistinguishable at
low packing fractions of the Suid. This close correspon-
dence has been achieved by using the Monte Carlo (MC)
algorithm that does not sample over the critical clusters
also truncated in the Percus- Yevick approximation
[30,33-35]. While this does not secure a complete
equivalence of the two methods, the properties of the two
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model systems appear to be dominated by the terms re-
tained in both approaches. This makes the Monte Carlo
method a useful approach to model fluids with the "trun-
cated" Baxter's potential. In the present work, the simu-
lation method of Seaton and Glandt [33] and Kranen-
donk and Frenkel [34] will be exploited to probe the
properties of the adhesive fluid confined in narrow planar
pores, possibly in equilibrium with a homogeneous phase,
i.e., the system previously considered within the singlet
Percus- Yevick —Ornstein-Zernike approximation [28].
The densities and temperatures will be chosen from the
range where the results of both methods [13,33,34] nearly
coincide in the homogeneous phase. The singlet PY
theory is known to become less reliable with increasing
degree of confinement [36—38], a deficiency unrelated to
the particular choice of the intermolecular potential. The
Monte Carlo method free of the approximations of a
singlet integral equation theory is therefore used to pro-
vide an alternative account of the restricted geometry on
the properties of the model fluid. Vfe further note the re-
duced probability of multimolecular aggregates in the vi-
cinity of the interface. The critical clusters may be steri-
cally excluded from very narrow pores. At these condi-
tions, the present results become independent of the trun-
cations needed in the PY and in the MC treatment of
homogeneous or moderately confined Baxter's fiuid. The
simulation technique of [33,34], here generalized to the
restricted geometry and to the implementation of the
grand canonical ensemble Monte Carlo (GCMC) simula-
tion, will be applied to study the efFects of the stickiness
of the fluid on its absorption, the structure in the slit, and
the pressure exerted on the walls of the confinement. The
details of the model and the simulation are described in
Sec. II where a brief outline of the PY equations and of
an alternative integral equation approximation for
adhesive spheres in narrow slits are also included. The
simulation results obtained in the canonical and grand
canonical ensemble are collected in Sec. III where the
comparisons with selected PY results and with the pre-
diction of the truncated graphical expansion around the
narrow pore limit are also made. The performance of an-
alytic theories for inhomogeneous systems is evaluated
and future work is briefly discussed.

II. MODEL AND METHODS

A. Percus-Yevick approximation for adhesive spheres

The model used here is identical to that described in
our previous article [28]. The sticky-hard-sphere fluid
[13] (denoted by 2) is confined between parallel smooth
hard plates (1) with the lateral dimensions much bigger
than the separation between the walls. The fluid confined
in the pore is in equilibrium with a reservoir of bulk fluid
at the prescribed number density p& and chemical poten-
tial p. The walls are parallel to the plane (O,y, z} and are
located at x =+L/2. The diaineter of the spheres is R,
so only the width L'=L —R is available to their centers.
The molecules interact among themselves through the
square-well potential Pz2(r ),

+~, 0(r(R'

pp22(r }=}—ln
R R'(r~R

12m(R —R ')

Above, P= 1/kT, k is the Boltzmann constant, and T the
absolute temperature; e and 5 are the step and the Dirac
5 functions, respectively; and ~ is the stickiness parame-
ter related to the strength of adhesion and to the temper-
ature of the system [23]. The adhesion strength decays
with increasing ~, ~= ~ corresponding to the absence of
attractive interaction.

The wall-fiuid hard-core potential is given by

$|2(x )= ~ if Ix I
& L /2 (3)

and zero otherwise.
Due to the planar symmetry of the wall-fluid interac-

tion potential, Eq. (3), the average fluid number density in
the gap depends only on the perpendicular coordinate x.
In the preceding article [28], the distribution of the
adhesive spheres in the slit has been estimated within the
framework of the Percus-Yevick integral equation theory
summarized in the following paragraphs. The Ornstein-
Zernike equation for the wall (1)-fluid (2) distribution

h &2(x ) =c~i(x )+p& f Ii »( ~x —x'~ )c23(x')dx

was used along with the Baxter's PY expression for the
direct correlation function e23 for the adhesive-hard-
sphere fiuid in the homogeneous phase [13]:

1c(r ) = [
—a Pr /R — mpbar—

12
IE

72
mpbA, R /r]B(R r)+ 5(r——R ), (5)

12

where

a=(1+2g —p) /(1 —il)
—3g(2+ q ) +2p( 1+7'+ g ) p, (2+r))—

2(1 —g)

and p=g, g(1 —q). Above, h;. =g,. —1 is the total corre-
lation function. A, determines the mean coordination
number of molecules. Its value represents the smaller
root of the equation [13]

+ X+ =0
1 —q (1—&)'

which remains equal as in pure adhesive fluid. According

in the limit R ~R [13]. This corresponds to an infinitely
deep and infinitesimally narrow attractive potential well
leading to a finite probability of one particle touching
another particle. The Boltzinann factor exp[ —Pgz2] in
this limit becomes

exp[ PP~2—(r)]= 5(r —R )+e(r —R ) .
R
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to the simple form of the wall-fluid model potential, the
PY relations for the hard-wall —adhesive-hard-sphere
correlations read c,z(x ) =0 at ~x ~

&L'/2 and
h, 2(x }= —1 if ~x ~

)L'l2. The numerical solution of Eq.
(4), based on the Picard iteration and the use of the mix-
ing parameter, is described in detail in [28]. In view of
the different symmetries of the functions c(r) and h (x)
under the integral, the latter was rewritten in the form

S(u}=2mpb[ —a(1 —u )/2 —P(1 —u )/3

m—pba(1 —u )/60 —
mpbA, (1—u)/72

+Xy12] (8)

were tabulated prior to the iteration procedure.

1

h(x}=2npb f h(u+x)S(u)du B. Truncated graphical expansion for fluid distribution
in narrow pores

1
u +X u 2mPb—1

( 1 )1/2
X cpY P +Q P

where the distances are expressed in units of R. As the
function cpv, Eq. (5), is related only to the bulk system,
the values of the integral S(u) calculated by the analytic
expression

Previous studies of hard spheres in confined systems
[11,36—38] indicate the PY theory to be reliable only at
low to moderate densities and sufBciently wide pores in
which the molecule-molecule correlations, approximated
by the direct correlation function c23 in OZ Eq. (4),
remain similar as in the homogeneous phase. For this
reason, we also consider an alternative approach to fluid
behavior in narrow slits based on the graphical expansion
around the known result [11,38,39] for vanishing width of
the pores. As in previous works, we begin by considering
the classical expression [40]

ln(p/z) = c = +
(9)

ln (p /z) = c (10)

earlier termed the B2 approximation [38]. With
sufficiently short-ranged potentials, all integrals in Eq. (9)
vanish at L ~R, giving the exact limiting relation
[11,38,39,41]

which relates the local density p to the fugacity z of the
fiuid. As pointed out in [11,38,39,41], the cluster series of
Eq. (9) for confined systems converges faster than in the
bulk phase [11]. The contribution of many-particle terms
to the above series decreases with the degree of
confinement of the Quid. In earlier studies of confined
ffuid with purely hard-core interaction, we found [11,38]
the leading, two-particle term in the series of Eq. (9) to be
quite sufBcient at low reduced densities pbR &0.3 and
the slit width below 1.5R. At higher bulk densities, the
validity of this approximation was restricted to smaller
wall-wall separations. The addition of the short-ranged
sticky potential does not appear to reduce the deficiencies
of the singlet theories applied to narrow confinement.
For small separations between the walls L, it is therefore
interesting to examine the truncated form of Eq. (9):

either by grand canonical Monte Carlo simulation of the
bulk phase or from the extrapolation of GCMC's densi-
ties in suSciently narrow pores to L =R. The simulation
procedures are described in Sec. II C. In analytic calcula-
tions, we determine the fugacity by using the PY
compressibility pressure equation [13]

PP I+q+vP p(1+gl2)+—q 'p, /36

Pb (1—g)3

We begin from the thermodynamic relation

(12)

d lnz= dP (13)

and obtain z by integrating both sides of Eq. (13) over the
range [z&,z] and [PP&o,PP], where the upper limit
represents the reduced pressure from Eq. (12) for the bulk
density of our interest. For the lower limit, a finite but
sufBciently small value of the density has to be taken to
ascertain the limiting equality, z~p when p —+0. The
discrete points of the integrand for the numerical integra-
tion in the final expression,

p~z when L~R, L'~0. z =PP& exp f d(/3P) lpb(/3P) . ,
pp

PP)
(14}

Equation (10}represents the first order correction beyond
this limiting result. The fiuid fugacity z=pbexp(pp'b)
and pb is the excess chemical potential of the bulk fluid.
Its dependence on the density of the Quid can be obtained

are obtained by iteration of Eq. (12). A density profile of
the adhesive-hard-sphere fluid in a narrow gap can now
be obtained from Eq. (10), rewritten as
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ln = Jf(s)p(~r' —s~)ds .
Z

Here, f is the Mayer function,

f(r)=exp[ —PP(r)] —1 .

In the case of the adhesive potential, it takes the form

(15)

—1+ 5(r —1 ), r~11

f(r)= 12'
0, r&1.

(17)

where the opposite contributions of the excluded volume
of the molecules [11] and of their surface adhesion are
rejected in terms included in the integrand. The integral
in Eq. (17) was solved in a similar way as the PY-OZ
equation (7).

C. Simulation

The adhesive potential described in Eqs. (1) and (2) im-
plies finite probabilities of contact configurations between
molecular pairs. This property is related to the infinite
depth of contact intermolecular potential, a feature
which cannot be captured by the conventional Monte
Carlo method with particles moving at random in a
three-dimensional space. The problein can be overcome
by monitoring the particle motion in a transformed
configurational space where finite volumes are being as-
signed to the energetically favored binding
configurations. The subvolumes corresponding to specific
binding states represent a direct measure of their proba-
bility. The integration of the Boltzmann factor, Eq. (2),
across the surface comprising the contact configurations
for two particles results in the single-bond subvolume,
and double or triple integration across the line compris-
ing the double-bond states, or the point where a triple
bond is possible, will have a similar effect. This idea has
been exploited in simulation studies of homogeneous
adhesive fluid carried out by Seaton and Glandt [33] and
Kranendonk and Frenkel [34]. In these works, no pro-
visions have been made to consider explicitly the possibil-
ity of the quadruple or higher order coordination. As
noted in the Introduction, this technique does not pro-
vide exact results for the original Baxter's model but
rather for a system with a somewhat modified Hamiltoni-
an devoid of the highly packed critical aggregates and of
the concomitant thermodynamic instabilities [30,35]. Its
results have been found to be in good agreement with the
adhesive model in the PY approximation. The present
work is concerned with the behavior of this model at in-
terfaces and planar confinement, the simulation being
used to study the effect of spatial constraint under the
conditions where the PY theory and the Monte Carlo

The resulting integral equation for p(x) is
r

ln = —m' p(x') ~ [1—(x —x') ]
— dx',p(x ) x+ 1

Z x —1 6w

method agree in the isotropic phase. While the MC algo-
rithms of [33] and [34] appear essentially equivalent, the
method of the latter authors proved more fiexible regard-
ing to optimization of the acceptance of the simulation
moves. This algorithm has therefore been adopted in our
work. The efFects of the confinement were studied by in-
troducing geometrical restrictions along a chosen direc-
tion. In the following paragraphs, we describe this
modification together with the main features of the basic
Kranendonk-Frenkel method, a detailed description of
which is to be found in their original paper [34]. After
that, we introduce an algorithm for open ensemble simu-
lation designed to study the partitioning of the adhesive
fiuid between the homogeneous phase and the porous ma-
terial.

1. Canonical simulation

dq; represents all degrees of freedom, remaining after the
formation of the bond(s). A particular configuration is
then selected with the probability

P(i) =
3

V(i )

its magnitude obviously depending on the local structure

If we identify the adhesive interaction by a formation
of a bond between a pair of molecules, a trial step in the
Kranendonk-Frenkel MC method consists of an attempt-
ed displacement of a particle at a fixed number of bonds
or of an attempt to change the number of bonds. The
simulation may begin by placing N unbounded particles
at randomly chosen nonoverlapping configuration. Then,
in each step, an attempt is made to move a randomly
chosen particle to a random position within the so-called
test sphere [34] whose radius is equal to the displacement
parameter adjusted according to the density of the Quid.
During the actual displacement of a b-times bonded par-
ticle, its number of bonds may change from b to b', b and
b' ranging from 0 to 3, the restriction initially introduced
to enhance the efficiency of the method. As discussed in
[30] and in the preceding paragraphs, this limitation has
profound consequences, since it efFectively prevents the
sampling over the class of critical aggregates and
suppresses the instabilities of the model in a similar way
as do the truncations introduced in approximate integral
equation theory [30,35].

Each move involving zero to triple bonded states corre-
sponds to a displacement in three to zero actual dimen-
sions or, alternatively, to a move within the three-
dimensional subvolumes of the rescaled configurational
phase space in which the volume elements are expanded
in proportion to the Boltzmann factors of a specified
configuration. In this space, the so-called effective
volumes of each particular degree of binding, covering all
the realizations of given type of bond b inside the test
sphere, are defined [34] by the expression

b

V,s(b)= g f dq; .
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in the test sphere. A new configuration is automatically
accepted unless a hard-core overlap has been detected.
In restricted geometry, the rejection applies to the moves
leading to an overlap of the moved particle with another
molecule or with the boundaries of the con8nement. The
simplest and quite usual geometry considered in theoreti-
cal studies of confined fiuids is the one of a planar slit
consisting of two parallel, perfectly smooth hard walls at
a specified separation L. Denoting the perpendicular
direction by x, the fluid between the walls extends to
infinity along the directions y and z, parallel to the walls.
In practical simulations, the system is modeled as an
infinite array of identical simulation cells of the volume
L Xaz, repeating themselves in the two lateral directions.
When dealing with a fluid with short-ranged interactions,
such as those of our present interest, this amounts to the
application of the minimum image convention along the
directions y and z. No periodicity needs to be assumed in
the direction x normal to the plates. Canonical Monte
Carlo simulation (CMC) in this kind of a system allows us
to study the effect of the constraints on the structure of a
fixed amount of the fluid within the pore. More interest-
ing cases involve the equilibrium between the fluid in the
pore and the homogeneous bulk phase. The constant
fugacity and not the number of the particles should be
used as the input information in modeling of this kind of
system. The grand canonical ensemble MC method will
therefore be introduced shortly. The computationally
less demanding CMC technique is, nevertheless, a useful
tool in several situations, including the studies of closed
systems and the modeling of wide pores where there exist
domains of the fluid suSciently distant from both walls to
retain practically nonperturbed density and other proper-
ties of the bulk phase. As the mean number of particles
in a GCMC converges more rapidly than does the de-
tailed density profile in the system, the CMC technique
can also be combined with the preceding GCMC run in
first determining the equilibrium amount and then the
structure of the fluid in the pore.

2. Open ensemble simulation

In the open ensemble, the number of particles is al-
lowed to fluctuate, the thermodynamic state being
defined by constant volume V, temperature T, and the
chemical potential of the Quid p. In this case, the phase
space is sampled by the movement of randomly chosen
particles (CMC step), and by the addition to or removal
of particles from the system (GCMC step). Additions
and removals are attempted randomly with a probability
P, so the probability of the CMC step is 1 —2P. The
value P =0.15 was used in most of our runs.

Each addition of a particle may be accompanied by the
formation, and similarly, a removal of a particle by the
breaking of the bond(s). As has been noted in the context
of canonical Monte Carlo simulation, the infinite energy
changes accompanying the formation or breaking of the
bonds have to be considered in a nonconventional
manner. The standard GCMC relations for the accep-
tance probability of an attempted addition f~

or of a
deletion f~;, where N =N;+1 [42]:

fJ=r, fj;=1 if r ~1

1fJ=l, f, =—if r)1,
T

with

&Pb&
r = exp[P(p'b —u. +u;)],

PJ

(20)

(21)

~Pb+ n&Pb & ~Pb + n&Pb & (24)

From its value and the average densities resulting from
the simulation, the excess chemical potentials of the Quid
and the corresponding value for the nonbounded parti-
cles can be determined. The Mune value of B can then be

have to be suitably modified. Above, & pb & and p'b are the
mean number density and excess chemical potential of
the bulk phase, and u —u; is the energy change due to
the addition or deletion of a particle. The densities in Eq.
(21) have to be replaced by the corresponding expressions
for the densities in the rescaled configurational space
where zero-, one-, or two-dimensional subvolumes in real
space, available to a particle forming three, two, or a sin-
gle bond are expanded by the Boltzmann's factors:

(
N X FPS'

)
r = '

3
'

exp[Pp'b —hu;j ] . (22)

N g V,s'
k=0

As in Eq. (18), the effective volumes V,s represent in-

dependent subvolumes for the specified binding states of
the particle. The excess chemical potential has to be
determined from an independent GCMC simulation of
the bulk fluid prior to studying the inhomogeneous phase.
Unlike the CMC simulation, where the calculation of the
effective volumes V,s is restricted to the interior of a suit-
ably chosen test sphere, the numerator in Eq. (22) should,
in principle, be determined by calculating the effective
volumes for the entire MC cell at each GCMC step. This
would, of course, consume a prodigious amount of com-
puter time, especially at high densities where the number
of available binding configurations may be extremely
large. For this reason, we prefer to add and remove only
the nonassociated particles and let the number of bonds
adjust through internal equilibration during the CMC
steps. This leads to a considerable simplcation of Eq.
(22) where we keep only the terms k=0, b,u; =0, and
V',& =V = V. The result

&p', &

r = exp[Pub'] (23)p'

is quite similar to that of the standard method, Eq. (21),
the only difference being in considering only a fraction of
the entire number of particles, the nonbounded particles,
denoted by the indexes 0. Considering the chemical po-
tential, as well as the standard state of nonbounded parti-
cles to be equal to that of the whole system, the following
expression for the new parameter B, which is kept con-
stant during the simulation, is obtained:
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used in the simulation of the confined fluid to study the
partitioning between the pore and the homogeneous
phase. As in the CMC simulations, the density profiles
are determined from the average numbers of the particles
found within the slices into which the elementary cell is
subdivided [8]. The wall-Quid contact number density p,'„
which, in the case of fluid interacting with the wall
through the hard-core potential, Eq. (3), determines the
pressure on the inner side of the plate, is estimated by ex-
trapolation [11,38,39]. A typical duration of a CMC run
was about 20000 trial moves per particle in the produc-
tion calculation, and 10000 moves per particle were
needed to equilibrate the system. A GCMC run of a
comparable system demanded 30—50 %%uo more con-
6gurations. On an IBM RISC 6000/320 workstation, a
typical run on a 100- particle system required about 1 h
of computer time.

III. RESULTS AND DISCUSSION

TABLE I. Average PY [18] and MC coordination numbers
c„ofadhesive spheres in homogeneous systems at various densi-
ties p&R and stickiness parameter ~.

p&R

0.2

0.4

0.6

0.2
0.5
1.0
0.2
0.5
1.0
0.2
0.5
1.0

c„{MC)

0.94
0.44
0.24
1.91
0.98
0.58
2.94
1.71
1.07

c„{PY)
1.00
0.46
0.25
1.92
1.03
0.60
2.87
1.75
1.09

The Monte Carlo algorithm for adhesive hard spheres
[33,34], here adapted to inhomogeneous systems, is not
classified among standard routines of molecular simula-
tion. The programs we have developed by extending the
work of Kranendonk and Frenkel [34] were therefore
carefully checked against the known results for isotropic
systems [33,34]. The distribution functions and related
structural quantities [34] were reproduced within the
whole range of the density and the reduced temperature
considered in the above studies [33,34]. For reasons dis-
cussed in Secs. I and II, our simulations of confined sys-
tems were carried out at the conditions characterized by
good agreement between the properties of simulated
homogeneous fluid and the predictions of the Percus-
Yevick approximation. For illustration, a set of average
coordination numbers c„of adhesive spheres in homo-
geneous systems at various densities pbR and stickiness
parameters ~ from these simulations are compared with
the Percus-Yevick result, c„=2k,rl [18]. The results ob-
tained by the two methods and collected in Table I are in
good agreement with each other even at pretty severe
conditions ~=0.2 and pbR =0.6. Within the above
range, the simulation is believed to provide an accurate
account of steric constraints to be considered in the fol-
lowing examples. In view of technical difficulties encoun-

tered in the simulation of the near-glassy states observed
at temperatures closer to the critical stickiness
r, =(2—&2)/6 [13], the systems with r below 0.2 will
not be considered in the present work. A detailed PY
study of the confined adhesive fiuid around and below the
critical temperature has been carried out in the preceding
work [28].

In Fig. 1 we present the CMC and PY single-wall den-
sity profiles in the gap of width L=4R or L'=3R at
different values of bulk density pbR' and stickiness pa-
rameter v. The bulk density pbR enters the calculations
through the direct correlation function c(r), Eq. (5),
while we used the PY average density in the pore as the
input in the CMC simulation. The present results there-
fore provide a comparison between the Percus-Yevick
and the Monte Carlo structures of the confined sticky
fluid at fixed mean density in the slit. Judging from PY
performance in hard sphere fluids [37,38,43 —48] and
from the comparisons with the GCMC results for the
adhesive molecules to be presented later in this work, the
PY estimate of the equilibrium density inside the pore is
rather accurate at the pore width considered in the
present examples.

Figures 1(a)—1(c) successively illustrate the effect of the
increasing attraction among the rnolecules at bulk densi-
ties pbR =0.2, 0.4, and 0.6. The value ~=~ corre-
sponds to infinite temperature and hard sphere behavior,
while v.=0.2 describes a gas with strong attractive in-
teractions. The oscillating density profiles revealing the
existence of molecular layers parallel to the walls are ob-
served in both the PY theory and in the simulation. The
agreement between the two methods is especially good at
lower densities and weaker stickiness of the molecules.
In systems dominated by hard-core repulsions, the PY
theory is known to underestimate the fluid density in the
immediate vicinity of the walls [38,49] and the same
trend is observed in present calculations at weak
adhesion. At low values of r, corresponding to strong at-
tractive forces among the molecules, the underestimate of
intermolecular correlations leads to the opposite result,
the PY theory predicting higher contact densities than
seen in the simulation. A relatively good agreement ob-
served at the intermediate stickiness of about ~=0.5 ap-
pears to reflect a fortuitous cancellation of the two oppo-
site effects. Both methods reveal the singularities in the
profiles p(x) at the distance x =L'/2 Rcorrespondin—g
to the thickness of a monolayer of the Quid adjacent to
the wall. The heights of the peak located at this distance
coincide within the numerical accuracy of the calcula-
tions. Strictly speaking, the simulation results corre-
spond to a Hamiltonian slightly difFerent from the one
considered in the PY-OZ approximation. The above
comparisons are, however, still useful in assessing the ac-
curacy of the latter method in inhomogeneous systems
[28] where the same simulation technique that leads to
good agreement with the PY theory in isotropic fiuid ap-
plies without making any additional approximation. At
high temperature ~, both methods predict an accumula-
tion of the molecules next to the walls. In the hard
sphere limit, where the simulation is also formally exact,
the PY approximation underestimates the contact density
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of the fiuid at the wall. Upon lowering ~, the tendency of
the molecules towards association begins to compete with
steric effects. The molecules can only attain a full coordi-
nation outside the gap or at suf6cient distances from the
walls. This leads to lower values of the distribution
coefficient K [37,38], defined as the ratio between the
average densities in the pore and in the bulk fluid. For
not too narrow pores, the PY theory is known to provide
a fair estimate of fluid adsorption for systems dominated
by repulsive interactions [36—39]. According to the
present results, the accuracy of the singlet PY approxi-
mation decays with the increasing role of intermolecular
attraction. At the strongest adhesion considered in the
present calculations, ~=0.2, the densities obtained by
both methods differ not only in the vicinity of the walls
but nearly everywhere in the gap. The disagreement is
most pronounced at the fluid-wall contact plane but
affects the profile over the whole width of the pore. The
errors in the PY results in the two extreme cases, dom-
inated either by the repulsive or by the attractive interac-
tions among the molecules, are of the opposite sign. The
best agreement is, therefore, observed at moderate
adhesion, as seen in systems with ~=0.5 where the
theory and the simulation conform at all positions in the
pore.

Figure 2 represents the situations similar to that of Fig.
1 but for wider gap of L=7R or L'=6R, where the
structure of the fluid near a single wall is not visibly
affected by the presence of the opposite wall. According
to both methods used in these calculations, the Qat densi-
ty profiles p(x)=pb are restored around the midplane
(O,y, z). The present results should therefore be almost
identical to the fluid profiles next to isolated walls or
walls at infinite separation. The differences between the
MC and the PY results observed in the vicinity of the
walls are supposed to reflect the approximations of the
singlet PY theory, as noted in the discussion of Fig. 1.

Kranendonk and Frenkel applied the constant-pressure
simulations to study the phase diagram of the sticky fluid
[34]. The calculated pressure vs density dependence was
in good agreement with the predictions of the compressi-
bility and the energy equations in the PY approximation.
In the present work, we explore an alternative calculation
based on the contact theorem that relates the pressure to
the wall-Quid contact density according to the equation

0.4 0QQll 6 re ~ ~~
0.2

0.2 a a

"00 0.5

x/R

FIG. 1. The PY (lines) and the CMC (symbols) density

profiles of the adhesive-hard-sphere fluid in the gap of width
L =4R at the values of stickiness parameter (a) ~= 00 (hard-
sphere fiuid), (b) ~=0.5, and (c) ~=0.2, at different bulk densi-
ties pbR'.

Pb =p'kT .

Above, p' is the density of the fluid at the surface of the
hard wall of the container or the gap suSciently wide to
eliminate the effect of the size on the wall-fluid distribu-
tion. In narrow pores with overlapping density profiles,
the contact density at the walls and the concomitant
force per unit area depend on the distance between the
walls. In the case of parallel plates immersed in the fluid,
this gives rise to the distance dependence of the solvation
force F, proportional to the difference between the pres-
sures exerted by the fluid molecules on the inner and the
outer side of the plates, F/S= [p,'„—p,'„,]kT. The inner
contact density p,'„approaches the outer value corre-
sponding to the bulk pressure of the fluid with increasing
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ck1separation e weenb t een the walls. The inner pressure p;„

obtains t e va ueh 1 f the bulk pressure at separations
sufhcient for the fluid around the midplane of t e gap to
remain nonperturbed by the presence of the walls. In
Fig. 3 we presen e

't th isotherms P vs pb obtained from the
CMC wall-fluid contact densities in the pore wit

=118, a width more than suScient to ful511 the above
condition. The calculated CMC pressures are in corn-

ment with the results of more demanding iso-
baric simulations collected in Fig. 2 o . s poi
out in the atter wor,k the simulation pressures are also
quite cose to e p1 to the redictions of the Percus-Yevick ap-

e uation.proximation corn inet' ombined with the compressibility equa ion.
In view of the exact relation (25), the consistency o e

1 ith those obtained in the isobaric simula-
tions [34] confirms the accuracy of given simulation tec-
nique in ca cu ations o1 1

' f the Quid distribution in inhomo-
geneous systems.

as those con-The Quid structure in wide pores such as t ose con-
F' 1 —3 can be described fairly accuratelysidered in Figs. — can

within the singlet PY approximation [28]. In narrower
h th orrelations among the molecules are ap-

us hase,ciabl diferent from those in the homogeneous p ase,
h

'
let theory becomes less reliable. eese conditionst e singe

anal tic a roxi-invie e a't the application of an alternative ana y
'

pp
rmedmation, t e trunca e, h ted graphical expansion, earlier term

to E s. (9) andthe 8 approximation [38]. According to Eqs. an

(10), this approximation is effectively a p

t e z
an ex ansion of the

d 't rofile around the exact narrow pore limit givenensi y p
E . (11). In practical application, its rehab' y

on accurate input fugacity correspond' gin to the bulk
phase in equi i rium wi'1 b

' 'th the con6nement. The fugacity
dil be obtained from the pressure-density epen-canrea iy eo

Y theor to thedence determined by applying the PY e y
homogeneous p ase. n ah I Table II the calculated fugacities
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FIG. 2. The PY and the CMC density profiles of the
adhesive-hard-sphere Suid in t e gap

~= ~, {1) ~=0.5, an cvalues of stickiness parameter (a) ~= ~,
v =0.2 at different bulk densities pbR '.

pbR

FIG. 3. The density dependence of pof the ressure of the
adhesive ui e e5 'd d terrnined by the PY compressibihty equation

s stern in(hnes) and from t eh CMC simulations of the confined sy
ffectivethe gap of the veldt h L =11' {symbols) at different effect

temperatures ~.
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TABLE II. The fugacities z and the reduced excess chemical potentials pp, 'b determined by (a) using

the Baxter's equation of state of the adhesive fiuid, Eqs. (12)—(14); (b) GCMC simulations of the homo-

geneous system; and (c) the limiting GCMC densities in vanishingly narrow pores, at various bulk den-

sities p&R and stickiness parameters ~.

Fugacity

(pbR')

0.230
0.406
0.648

0.2

(a)

—0.168
—0.177

0.062

(b)

—0.131
—0.160
—0.066

(c)

—0.130
—0.160
—0.065

(a)

0.195
0.341
0.689

(b)

0.202
0.346
0.607

(c)

0.202
0.346
0.607

0.214
0.416
0.600

0.5 0.527
1.235
2.182

0.542
1.277
2.261

0.540
1.278
2.263

0.363
1.431
5.318

0.368
1.492
5.754

0.367
1.494
5.765

z and the reduced excess chemical potentials
Pu& =ln(z/pz) calculated by Eqs. (12}—(14) are compared
with the grand canonical Monte Carlo results at difFerent
bulk densities pbR and the stickiness parameters r The.
densities are the statistical averages obtained in GCMC
simulations of bulk systems at speci5ed values of the ex-
cess chemical potential pb. The fugacities and excess po-
tentials in the first column (a} are obtained by integration
of Baxter's analytical equation of state, Eqs. (12)—(14};
the second column (b) contains the GCMC results for the
bulk phase. The third column (c) lists the limiting
GCMC densities in vanishingly narrow pores, determined
by extrapolation of the mean pore density to the pore
width L =R. Since Eq. (11) is exact, the slight di{Ferences
between the two GCMC results represent merely a mea-
sure of the statistical uncertainty of the simulation pro-
cedures. It may also be noted that the spatial constraints
encountered in simulations in narrow slits eliminate the
critical clusters [30] leading to the instability of the fluid
with the original Baxter's Hamiltonian. The connection
with the truncated Hamiltonian implied in the given
Monte Carlo procedure [33,34] is, however, retained
through assumed equilibrium with the homogeneous
phase. The comparison between the MC and the PY
data, on the other hand, reveals a fair agreement between
the two approaches, the PY theory doing a better job at
weaker stickiness and lower densities of the Quid.

According to Figs. 1 and 2, the CMC and the PY ap-
proximation are in a fair agreement when L is large
enough. The difference is most pronounced at the Quid-
wall contact plane, the deviation of the contact densities
p' is therefore the most suitable measure for the compar-
ison between the two methods. For this reason, and also
because p' determines the pressure exerted on the wall of
the gap and, consequently, the solvation force between
the walls, we now present the results of the GCMC, PY,
and B2 approximations for p' as a function of the gap
width L. In Fig. 4 the results for v=0. 2 and 0.5, and
pbR =0.648 and 0.600, i.e., the highest densities from
Table II, are collected. The comparison among the three
approaches is similar to that found earlier in systems
with purely repulsive interactions [11,38]. The PY
theory is relatively successful in wider pores, while the B2
approximation is applicable only in narrow slits of the

e
II

a}q R3 = 0.S00b
P Y

5
I

I

I

I
I

I

p'R

4 =0.5 g goG QQC

—---B2

———qc R {L=11R}

b}{}bR3=0.S4S

.2

1.0

p'R

0.0

(L — R)/R
FIG. 4. The PY, GCMC, and B2 wall contact density p'R as

a function of the gap width at (a) the bulk density pbR '=0.600
and the value of the stickiness parameter v =0.5 or (b)
pbR =0.648 and ~=0.2.
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width barely exceeding the diameter of the molecules.
The overall accuracy of either approximate method de-
creases with the density of the bulk phase, although the
B2 results remain exact in extremely narrow pores at any
concentration. For weaker attractive interactions among
the molecules corresponding to v.=0.5, both theories are
satisfactory, the B2 approximation for small L' being in
an almost quantitative agreement with the GCMC re-
sults. Only the range L' ~ 0.5R is considered in B2 calcu-
lations since higher terms of cluster expansion, Eq. (9),
become increasingly important in wider slits. The agree-
ment between the GCMC and the B2 approximation is
worsened at lower temperature or stronger attraction
among the molecules, when the PY estimate of the excess
chemical potential represents a somewhat poorer approx-
imation. At the same time, only a qualitative agreement
between the singlet PY theory and the GCMC results is
retained at the temperature ~=0.2. The calculated solva-
tion force between the plates immersed in the fluid re-
veals even bigger differences between the two methods.
The force per unit area is proportional to the difference
between the contact densities at the given wall-wall sepa-
ration and the corresponding wide pore limit to which p'
converges with increasing L. Figure 4(b) shows the PY
solvation force to oscillate between attraction and repul-
sion, while the simulation at a given stickiness reveals
predominantly attractive interaction at all separations be-
tween the plates.

These comparisons have, of course, a somewhat
different meaning than usually presumed in parallel
theoretical and simulation studies. The simulation tech-
nique adopted in the present study does not provide exact

results for the original sticky-sphere model [13] but cor-
responds to a slightly different Hamiltonian in which one
neglects an infinite series of highly coordinated critical
configurations [30] in a manner similar to that of the PY
approximation for intermolecular correlations. The ap-
plied MC method has been proved to conform with the
PY theory in homogeneous solutions. Unlike the latter,
however, it applies to inhomogeneous systems without in-
voking additional approximations and treats the confined
fluid at precisely the same level of accuracy as does the
bulk phase. The applicability of the analytic theory to
systems of restricted geometry is therefore assessed in the
conventional manner. There is, however, additional
motivation for the development of simulation techniques
for fluids with Baxter's potential. As pointed out in ear-
lier works [39,50—52], the introduction of orientation
dependence of intermolecular adhesion opens a promising
route for modeling of molecular fluids with nonspherical
pair potentials. While retaining the advantages of analyt-
ic tractability, these systems may, upon a suitable choice
of model parameters, be free of reservations applying to
the original Baxter's model [30]. Extensions of the
present simulations to fiuids with anisotropic adhesion
are therefore planned along with integral equation studies
of homogeneous and nonhomogeneous fluids with mul-

tipolar adhesive interaction.
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