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Binary-collision contributions to the first order space-time memory function in the Mori-Zwanzig rep-
resentation of a self-current autocorrelation function have been obtained. The expression for the
memory function involves the static pair correlation function and the time dependence of the position
and the momentum of a particle moving in a central potential. In the limit of long wavelength, the
memory function reduces to that for the velocity autocorrelation function (VACF). The self-diffusion

coeScient has been found to reduce to the Enskog value in the limit of a hard sphere interaction. Nu-

merical results for the VACF, its memory function, and the self-diffusion coe5cient for a Lennard-Jones
Suid have been obtained for several thermodynamic states. These results are compared with available

molecular dynamics data to identify the extent to which the binary-collision approximation is valid.

PACS number(s): 51.10.+y, 61.20.Lc, 05.20.Dd

I. IN'1 RODUCl'ION

There has been considerable progress in our theoretical
understanding of atomic dynamics at wavelengths and
frequencies of a molecular scale in liquids and dense gases
[1,2]. Time autocorrelation functions, such as the ones
associated with velocity and density, contain information
on the dynamics of atomic motions of a system. Comput-
er simulation techniques and neutron scattering experi-
ments have given a wealth of information on various time
correlation functions. Memory functions have played a
key role in theoretical calculations of these time correla-
tion functions and the calculation of the memory func-
tion in a specific problem can proceed in two ways.

One approach is based on investigations of a general-
ized phase-space kinetic equation that is an extension of
the Boltzmann equation for arbitrary frequency and
wavelength. The kinetic equation is conveniently formu-
lated in terms of its associated phase-space memory func-
tion and microscopic expressions for binary-collisions
contributions, certain sequences of many particle col-
lisions, and mode coupling effects to the memory function
have been obtained [3-6]. Due to the mathematical com-
plexity of solving the kinetic equation for continuous po-
tentials, these equations have been applied mostly to hard
sphere fluids [7). The difficulty of extending hard sphere
kinetic theory to continuous potential systems lies in the
fact that the collisions are no longer instantaneous and
many-particle dynamics cannot be decomposed into se-
quences of two-particle collisions. In cases where kinetic
equations have been used for the study of time correla-
tion functions (TCFs) for continuous potentials [8—11],
the microscopic expression for the binary-collision con-
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tribution to the memory function has been replaced by a
phenomenological form. Therefore, it may be said that
there is as yet no tractable kinetic equation which can be
readily solved to predict time correlation functions and
transport coefficients for continuous potentials. In fact,
even the binary-collision contributions to the phase-space
memory function have not yet been obtained numerically
for a continuous potential.

The alternative theoretical approach for the study of
time correlation functions is based on space-time memory
functions (MFs). The memory functions appearing in the
Mori-Zwanzig continued fraction representation of the
time correlation function can be so chosen that they
preserve a number of properties of TCFs regardless of the
explicit form of the MF [12]. The descriptions of TCFs
based on assumed phenomenological forms for the MF
have provided useful information about relaxation pro-
cesses in Suids [12,13]. The microscopic derivation of the
space-time memory function was first attempted by
Gotze and. Lucke [14] using mode coupling approxima-
tions. The MF can be written as a sum of two terms
[8,15,16], one re5ecting the short time atomic motion
while the second is generally thought of as due to corre-
lated multiparticle collisions that are important at longer
times. The latter contribution obtained within the mode
coupling approximation has been found to be quite suc-
cessful [17—20], particularly in a strong coupling situa-
tion such as the glassy state [16,21]. However, for the
study of normal liquid dynamics on time scales accessible
by neutron scattering experiments, a microscopic expres-
sion for the short time contribution to space-time MFs is
very much desirable. Once a tractable, microscopic ex-
pression for this so-called binary-collision contribution
has been obtained, the mode coupling contribution can be
simply added to get the complete memory function and
their respective roles in the dynamics of atomic motions
in continuous fiuids can be studied in detail. The present
work is a step in this direction.

In this paper, we derive an expression for the binary-
collision contributions to the space-time memory func-
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tion in the Mori-Zwanzig representation of the self-
current autocor relation function. The expression in-
volves the dynamics of a pair of particles moving in a
central force field F(r) and the static pair correlation
function g(r). The expression for the memory function
appears to be the analog of the low density phase-space
memory function obtained in the kinetic theory descrip-
tion of the self-density correlation function. In the limit
of wave vector tending to zero, the memory function
reduces to that for the velocity autocorrelation function
(VACF}. In addition, in the limit of a hard sphere in-
teraction, the memory function provides exactly the En-
skog expression for the self-difusion coeIcient. There-
fore, our space-time memory function for the self-current
correlation function contains all the essential features of
the Boltzmann-Enskog phase-space collision operator.

The dynamics of a particle moving in a Lennard-Jones
potential has been obtained by solving Newton's equation
of motion. This is then used to calculate the force auto-
correlation function using quadrature methods. Numeri-
cal results for the VACF, its MF, and the self-difFusion
coeScient have been obtained for several densities from
low density gas to liquid density and at various tempera-
tures. Our results are compared with available molecular
dynamics data to understand the signiScance and the ex-
tent of the binary-collision approximation.

The plan of the paper is as follows. The basic
definition and exact relations for the time correlation
function are introduced in Sec. II; the binary-collision
contributions to the memory function of the self-
current —current correlation function for a central po-
tential are also obtained. In Sec. III the corresponding
memory function for the VACF, for the continuous po-
tential and the hard sphere potential, are obtained. Nu-
merical results for the Lennard-Jones potential are
presented in Sec. IV. Section V contains concluded re-
marks and our proposals for future work.

II. THEORETICAL FORMULATION

A. Basic deSnitions

We consider a fluid of N particles, each of mass m, in-
teracting through a continuous potential u (r). The ther-
modynamic state of the fluid is defined by its density n

and temperature T. The longitudinal current correlation
function associated with a tagged particle is defined as

X=%0+ g X,(jk)

P
i—y m ar

a
~pj(k j

where Fjk = —q)u(rjj, )/Br is the force and r k
= ~r —rk ~.

The angular brackets in Eq. (1) and in what follows
denote the canonical ensemble average appropriate to the
Liouville operator. We define the Fourier-Laplace trans-
form of C, (q, t) as

C, (q, z)=i f dt e"'C, (q, t)
0

~ ~1= j,„(q,O) j)„(q,O))z
(4)

for Imz &0.
The time evolution of the correlation function is ob-

tained, using the Mori-Zwanzig projection operator pro-
cedure, in terms of its initial value and a relaxation kernel
(or memory function). This is given by

2
Uo

C, (q,z}=-
z+K, (q, z)

where the first order memory function is given by

(5)

)q, (q,z)=, QCj„(qo) , QXj„(q,O));
1 1

U()
—z

(6)

= —1+
X—z

to Eq. (4) twice. This yields

z C, (q, z)=uaz[ —z+(t), (q, z)],
where

Q = 1 P is the pro—jection operator orthogonal to
P =us ~j,„(q,O) ) (j»(q, O)

~
and u() =k~ T/m =1/mP is

the square of the thermal speed.
The memory function of the self-current correlation

function can be expressed in terms of a conventional
correlation function whose time evolution is governed by
the original Liouville operator X rather than the project-
ed one QXQ appearing in (6). A simple way of doing this
is by applying the identity

C, (q, t) = (j;„(q,t)j, (q, O) ) .
P, (q, z) = 1 1

z Xj„(q,O) Cj,„(q,O))

The tagged particle current is given by
iqx

&
(t)j,„(q,t)=u,„(t)e,where we have chosen the wave

vector q along the x axis. The time dependence of any
dynamical variable A(q, t) is determined through the
Liouville equation

q}A(q, t)
Bt

the Liouville operator is

is the stress autocorrelation function. The comparison of
Eqs. (5) and (8) gives the desired relation

()),(q, z)
K, (q, z) =

1 ——
(7), ,(q, z)

1—
z

Thus if the correlation function ()), (q, z) is known, the
memory function and the self-current —current correla-
tion function can be obtained from Eqs. (10) and (5), re-
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spectively. The self-density correlation function S,(q, to)
can then be evaluated.

B. Binary-collision contributions

The exact microscopic evaluation of the memory func-
tion is yet an unsolved problem. However, the binary-
collision contribution to the memory function can be ob-
tained using the well established cluster expansion tech-
nique [22]. This technique involves a cluster expansion of
the resolvent operator (X—z) ' that appears in the
definition of any time correlation function. The binary
collision expansion (BCE) formula is

(N —1} ic t t)u(r]2) iqx12 e
p2 t)x (

t)u(r, 2) t)u(r, 3);q„,X ~ +(N —2) e ' . (15)
BX1 BX1

In Eq. (15)

X)2=SO(1)+/0(2)+X)(12)=SO(12}+X)(12). (16)

1 1 1 1+X—z Xo—z, ,k Xo+L,(jk) —z Xo—z
+ ~ ~ ~

Now, in the first two terms of (11}the dynamics of two
particles only appears and in (15) it has to be averaged
over the initial equilibrium configurations of the system.
After performing this average, the result can be written
as

~ . J1Z, lQZ) ~ 2 EQZ )
d

iXj,„= =O,„e '+iqv, „e (12)

Using (12), Eq. (9) can be rewritten as

The first term involves free propagation and the second
term contains a sum over a pair of particles (j,k) only.
The third term involves three particles, and so on. Equa-
tion (11)has been widely used in deriving the low density
formula for the kinetic (i.e., phase-space) memory func-
tion as well as the first order space-time memory func-
tion.

We now evaluate the correlation function (9) using the
binary-collision expansion (11). We have

2 t)g(r, 2 )fdr, dr2dp, dp2
~

G(p, }G(P2)
NPOP Bx )

iqx) iC)&t t)u(r]2) iqxtX 1

X1
(17)

—(P /2P )where g(r) and G(P)=(1/2qrpv) ~ e ' are the
static pair correlation function and Maxwellian momen-
tum distribution. The triplet static correlation function
g3(r„r2, r3) comes in when the equilibrium ensemble
average is carried out in (15); it can be eliminated using
the exact relation

1 1 Bu . 2 tqx)
{(t (q,z}= —— +iqv e

m BxVp

1

X—z

t)g(r&2) t)u(r&2)pg(ru)—
ax, " ax,

1 t)u . 2 iqx)X —— +iqv1„e
m t)x

(13)

Bu(r&3)
ptt fdr3g3(rl r2 r3) (18)

We now change the variables of integration in (17) to rel-
ative and center of mass coordinates defined by

In Eq. (13) we use the definition of the acceleration v» in
terms of the force (negative derivative of the potential).
Equation (13) can be written as a sum of four terms and
we illustrate the evaluation of its first term: it can be writ-
ten in an alternative, exact form as

P P1 P2 r r1 r2

P1+P2 r1+ r2P=, R=
2

'
2

The two-particle Liouville operator is then given by

(19)

po t)x )

. I a . n a au(r) aX,2= i +—i ———. +2
m t)R m t)r t)r t)p

(20}

X ~

t)u(r, 2 ) t)u (r, 3 };q„+((((—2) e '), ()4)
BX1 axl

where Po=mvo is the momentum. Now the operator
(X—z) ' is expanded using the BCE formula (11). The
terms involving (Xo—z) ' are due to free-particle dy-
namics and thus are easy to evaluate. In our illustration
we will concentrate on its two-particle term. In the time
domain the two-particle contribution is

Using (19}and (20), Eq. (17) simplifies to the expression
given by the first term of Eq. (23) (see below).

Using the procedure outlined above it is straightfor-
ward, though somewhat lengthy, to evaluate all the terms
in (13} in the binary-collision approximation. The final
result can be written as

ttt, (q, t) =go(q, t)+ tjt, (q, t), (21)

where toto(q, t) and ttI&(q, t} represent, in the time domain,
the contributions corresponding to the first and second
terms of (11). These are given by



K. N. PATHAK, S. RANGANATHAN, AND R. E. JOHNSON SO

Qz& z/2
po(q, t)=QO[3 —6Qot +Qot ]e ' + f fdrdpg(r)G Ao(p, )e " F„p3 v'2

P((q, t) = n f f drdpG — g(r)[e'q~ '(" "(")B[p„(t)]—e " Bo(p„)]
0

+ f fdrdpG g(r)A (p ) e"q '" "'"F [r(t)]—e
' "' F r+

P3 vp 0 x

f fdr dp G g(r)[e "q )(" "'")A [p„(t)]—e
' "'

Ao(p„)]
0

+ ', f fdrdpG
pp 2 2

I

(iq/2)[x —x(t))F [ (t)] 'q)'x F + pt
Bx m

(23)

In (22) and (23), Qo=q v() and we have introduced the
notation

I„= PG 2P P„"e (24)

A [p„(t)]=—,'p„(t)IO+p„(t)I(+I2,

B[p.(t) ]= ,',p.'p.'(t)IO—+.' [p.'p. (t)+-p.p.'(t)]I

+ {,'p„+ ,'p„(t)+—p„p„(—t)]I2

+ [p„+p„(t)]I&+I4,

(25)

(26)

and Ao and 80 are the values of A and 8 with

p„(t)=p„(0). Note that in (23) we have to use the posi-
tion and momentum vectors r(t) and p(t) of the particle
moving in the central potential field u (r) as determined
by

1 dPx rn d x Bu(r)=F„(r)=—
2 dt 2 dt

" Bx
(27)

while x, p„, and r are the initial values of these quantities
at time t =0. It is easy to see that the second and third
terms in (22) are divergent due to the appearance of free
particle dynamics in the argument of force. These terms
arise because initial configurations over which averages
are to be performed correspond to the full Liouville
operator X rather than the free particle Xo. However,
the two above mentioned divergent terms cancel exactly
when combined with the same divergent terms appearing
in (23). The final expression for P(q, t) does not diverge
and provides an exact low density result, correct to first
order in density. If only the zero-density term of Eq. (22)
is used, which corresponds to the free streaming term, we
will get the well-known ideal gas result for C, (q, t). It can
be easily verified that our expression for E,(q, z) with

P(q, t) given by (22) and (23) satisfies the zeroth and
second frequency moments of the self-current correlation
function exactly and, in addition, gives exact two-body
contributions to all other higher moments.

There have been calculations of the low density phase-
space memory function of the self-density correlation
function using the kinetic theory approach. It seems to
us that our low density memory function (t), (q, z) is the
corresponding analog in configuration space. Some terms
in our Eqs. (22) and (23) are very indicative of the similar-
ity. However, the complexity of solving the kinetic equa-
tion using the phase-space memory function seems to
have been overcome, in the low density limit, by our Eqs.
(22) and (23). Binary-collision approximations have been
used in the study of space-time correlation functions
[23,24], but in the present work our emphasis has been on
the memory function frequently used in the study of nor-
mal and super-cooled liquid dynamics. %e also make
contact with the phase-space description wherever possi-
ble.

III. VELOCITY AUTOCORRELATION FUNCTION

The normalized velocity autocorrelation function

(vi„(t)v»(0) )
p(t) =

Uo

can easily be obtained as the q ~0 limit of Eq. (1); thus
we have

g(z) =— I

z+K(z)

where we now drop the suKx s and retain the same sym-
bol, but without q, in the arguments. The memory func-
tion E(z) is as defined in (6), but with j,„(q,O) replaced
by U,„(0). The relation between X(z) and P(z) is similar
to (10), but we should take the limit of P, (q, z) as q~0
and we denote this function as (()(z), whose time trans-
form is just the force autocorrelation function. Vfe ob-
tain the expression for (t)(t) from Eqs. (22) and (23). It is
given by
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p(t) = J Jdrdp6 E, (r(t)) . (30)
m2 2 2 Bx

K(t)= f JdrdpG —,( —p r)
2 Zm 2 «r'

At t =0, Eq. {30)reduces to X8(o —b }8{ r—p}.5(t ~—} . (36}

$(0)=—fdr F„(r),n Bg(r)
1?l Bx

(31}

which is the well-known expression for the mean square
force or, equivalently, the Einstein frequency.

There have been attempts in the past to obtain the
binary-collision memory function [25,26] of the velocity
autocorrelation function. Our expression difFers from
these results, which can be obtained from Eq. (30) if the
low density form of g(r) is used; however, this replace-
ment destroys the exact t =0 value of P(t) given by (31).
Our Eq. (30} contains effects of all uncorrelated binary
collisions and its density dependence is more complicated
than the explicit linear dependence because of the appear-
ance of the derivative of g (r). In the strict low density
limit, earlier results will be reproduced. Numerically, the
two results should not be too different, especially at low
densities. Since the expression for the low density
memory function P(t} does not possess a density indepen-
dent term, it can be seen that K (t)=P(t) in the low densi-

ty limit.
This approximate expression for K (t) can be simplified

further in the case of a hard sphere fluid as follows.
Equation (30) can be written as

For g'(r) we use the usual procedure of writing

g (r)= —y(r)e ~"",where y (r) is continuous even when
both g (r}and u (r) have discontinuities. We then have

g'(r)=y'(r}e ""+g(r)5(r tr+—) . (37)

X(t) = g(cr)5(t)] dpp G(p),
3m

which finally reduces to a Markovian function

K(t)= no vog(o)5(t) .
8v'~

3

Using the definition of the self-difFusion coefficient

(39)

(40)

We neglect the first term in (37), which is nonzero only
for r )o, and the 5 function in the second term yields
v=0 Th.us Eq. (36) reduces to

K( )
2 2nng(cr) 25( )3'
X p p p sin cos —r p

The 8 function restricts the range of the A, integration
from n /2 to n and we get

K(t)= f Jdrdpg (32)

2

D=
f K(t)dt

0

(41)

using (27). The dynamics of collision between two hard
spheres is well known. In this case, the time evolution of
momentum in (32) is given by

„(t)=8(tr' b')8( —r—.p)5(t —~)( —p„+p„'),

where the time of collision is

we get the well known Enskog result

3vp
D@=

8Wmno g(o)
(42)

and the VACF P(t) will decay exponentially. It is satisfy-
ing to be able to obtain the Enskog result using the
configuration space memory function and binary-collision
expansion method.

v= [r p+—(cr—b)'~ ]-
p

(34) IV. RESULTS FOR LENNARD-JONES POTENTIAL

S.'=S.—2{p.r}—. (35}

Using the above results, Eq. (32) reduces to

with b =r (r p) and 8—(x)=1 if x)0 and 0 if x &0.
The post collision momentum is

The integral expression (30) for P(t) was evaluated for
various states using the central force F(r) corresponding
to the Lennard-Jones potential. g(r) for each state was
obtained from the optimized cluster theory [27]. The
six-dimensional integral was reduced to the following
three-dimensional integral using a method due to Pope
and Johnson [28] based on Hamilton-Jacobi theory:

~( )
4& Irn f d ( )f d

([E II ()'j]ll)IU() ]

3~ V0 0 u(r)

X dl
+m [E—u (r)]r I

0 v rn [E—u(r)]r —1

X[cos[a+(t)]F(r+(t))+cos[a (t)]E(r (t))] . (43)

The three variables of integration are r, E (relative energy}, and 1 (magnitude of the relative angular momentum);
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(r+(t), a+(t)) for r'(0) &0 and (r (t), tz (t)) for r(0) &0 are the polar coordinates in the plane of motion of the two-
body system. This integral can be replaced by

P(t)= "2 f "dr r g'(r) f dE't E'e "'f" di, sink[cos[a+(t)]F(r+(t))+cos[tz (t)]F(r (t))I,
3m U0 0 0

where E =E'+ u ( r ) and I =&mE'r sink, .
The integration was done using Gauss-Legendre quad-

rature for finite intervals and Gauss-Laguerre quadrature
for the E' integral. For each value of (r,E', A, ), Newton's
equation was solved approximately to obtain r+(t), tz+(t)
for t & 0 as required. A Verlet-type algorithm [29] in po-
lar coordinates with an initial step correct to fourth order
in t was used. The dimensionless time variable used is
t ' = t lr, where r=+m o l48e, and P( t ' ) was evaluated,
as described, for 0~ t* ~ 12.5.

The results for small t* were checked by comparison
with one-dimensional integral expressions for P(0) and
P(0) which can be readily evaluated; these are

state near the triple point are compared to the corre-
sponding MD results of Heyes [30]. As expected, our re-
sults portray well the initial decay of the force correlation
function at both states and deviate significantly from MD
results at longer times especially at triple point density,
where the role of multiparticle dynamics is very
significant, even at relatively short times.

Our results for the force correlation function are based
on the binary-collision expansion and hence are expected
to be valid only for short times. To discuss the time
dependence, we introduce the Enskog collision time rz
which, in our dimensionless units, can be written as

$(0)= — f dr r g'(r)u'(r),
3m 0

(45)

P(0)=
2 f drg'(r)[r u'(r)u "(r)

3m
—mvo(r u"'(r)

+2ru "(r)—2u'(r))] . (46)

Results for intermediate values of t" (say, 0.5 & t ' & 8)
were checked by studying convergence of the three-
dimensional integration with respect to number of points
used and the time evolution by convergence with respect
to step length used in the algorithm. A total of 327680
integration points (suitably distributed) and dt'=0. 025
were found to be acceptable. For t ' & 8, P( t *

) ap-
proaches 0 as expected, but these results are not reliable
enough to be useful.

In Fig. 1(a) the results for P(t') IP(0) for a low density
state of n *=n 0 =0.1, at three temperatures
T*=k~T/@=1.46, 2.5, and 6.0, are shown. Similar re-
sults for a density of n*=0.4, which is close to the criti-
cal density, are shown in Fig. 1(b). It is to be noted that
these results are obtained from (21) and thus based on
just the first two terms of the BCE and so the exact con-
ditions fo"dt P(t) =0 and Io"dt tP(t) = —1 are not
satisfied. These graphs show the exact contribution to
the force autocorrelation function due to a single binary-
collision between a pair of particles. It is to be expected
that our results will be closer to the molecular dynamics
results at lower densities, where effects of multiparticle
collisions are not significant. At higher temperatures,
where the effect of the attractive part of the potential falls
off, it is expected that our results will be close to those
obtained using hard sphere interactions.

However, molecular dynamics (MD) results for .he
force correlation function are scarce. In Fig. 2 our P(t)
results for (a) a high temperature density state and (b) a

I

&

(b) n*=0. 4

0. 4

&

-0. 2
0

FIG. 1. Plots of binary-collision contribution to the normal-
ized force correlation function Pit*)/P(0) for T =1.46 (solid

line), 2.5 (dashed line), and 6.0 (dash-dotted line) with (a)
n*=0.1 and (b) n*=0.4.
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7E 2 D*=—~48
3 T' (47)

0. 8

0.6

ED

0.4

0.2

(a) n* 0. 6

T* 4. 5 This can be viewed as the time for one collision, which
for the triple point state is about 0.20. Thus at the triple
point we note that our results for the force correlation
function are in agreement with the MD results for more
than one collision time. We will do a similar comparison
for the VACF later.

-0.2-
o

o
oo oo

I

' ' ' 'j, ' '0' ' ' ' '0 ' ' &
o o o

0
o

0

0. 5 1
t*

1.5

0. 8

0.6

0.8

0. 6

(b) n»-0. 84
T*=0.73 0. 4

0.4 0.2

0.2

o o oo oo
0

0 0.5 1.5 2. 5

-0.2

-0 4

0. 5

o
0 o o

0
o

1.5 2. 5

0. 8 (b) n» 0.84

T* 0.73

FIG. 2. Comparison of our results for the force correlation
function (solid line) with those of molecular dynamics (dia-

monds) for (a) n =0.6 and T =4.53 and (b) n =0.84 and

T =0.73.

0.6

0.4

0.2

0
o

o
o oooo

o o o o o o'o'o

-0.2
0 0.5 1.5 2

t»
2. 5 3. 5

3.5

2. 5

0.8

2
» 0.6

1.5

0.4

0. 5

0.2

-0.5
0 0.5 t* 1.5 2. 5

0
0 3t*

FIG. 3. Plots of the force correlation function P(t ) (solid
line) and its memory function K(t*) (dashed line) for T*= 1.46
at two densities n =0.2 and 0.52.

FIG. 4. Comparison of our results for the velocity auto-
correlation function (solid line) with those of molecular dynam-
ics (diamonds) for (a) n*=0.6 and T =4.53, (b) n =0.84 and
T*=0.73, and (c) n*=0.3 and T =1.56.
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The memory function K(t) for the VACF f(t) was ob-
tained using Eq. (10) and transforming from frequency
space to time domain. K(t) and P(t) results for
T =1.46, for a low density and a high density state are
shown in Fig. 3. Since our P(t) is a BCE approximation,
K(0)=P(0) is not obtained; however, it can be seen that
the disagreement between K(t) and P(t) is smallest for
the low density states. Similar behavior is seen for other
temperature states.

The Fourier transform of the VACF is given by (29).
The use of our approximate K(t) to get the VACF pro-
duces an unphysical divergence at t =0. This divergence
arises from the fact that the time integral of our approxi-
mate P(t) is not zero. This leads to K(z =0)=0, from
Eq. (10},and to a divergence of the time integral of the
resulting VACF, from Eq. (29). In order to get a correct
P(t), whose time integral is zero, one has to include corre-
lated binary collisions (i.e., mode coupling efl'ects) and
this will be the objective in our future papers. Because of
this divergence, we cannot use our approximate K(t) to
obtain the VACF. There are a few approximate ways to
remove the zero value of K(z =0}. One may, for exam-
ple, choose to replace (1/z)P(z), appearing in the denom-
inator of Eq. (10), by the current-stress correlation func-
tion and then apply a BCE to it. We have chosen instead
to approximate K(z) by P(z) and obtain, for VACF,

f(t) =— d co cos(cot),(48)
00 y"(~)

1T 0 [co+p'(co)] + [qr"(a))]
where

gr"(a))= f dt P(t)cos(cot),
(49)

qr'(a)) = —f dt P(t)sin(cot ).
0

This approximation is reasonable since K(t) approaches
P(t) for low densities anyway. This comes about since
the leading term in P(t) is linear in density and numeri-
cally Fig. 3 reflects this behavior.

In Fig. 4, we show P(t) for (a) the high temperature
state, (b} the triple point, and (c) a low density state and
compare our BCE results with the MD results of Heyes.
Since our results are based on a single binary collision be-
tween a pair of particles, they will not yield the negative

T+=2 5

++
p&& 0

0
1

FIG. 5. Plot of D as a function of 1/n for T =1.46, 2.S,
and 6.0. Our results are indicated by lines and those of molecu-
lar dynamics by symbols.

values for the VACF seen near the triple point. We now
note that our results at the triple point are in agreement
with MD results, up to about t =0.5, or equivalently for
more than two collision times. The agreement for the
force correlation function was about half of this time.
This is to be expected since we have used Eq. (29) to cal-
culate the VACF wherein the force correlation function
is in the denominator and thus has, inherently, a density
expansion containing higher orders of density. Of course,
the coeScients of density higher than order one are not
correct. In the low density state of Fig. 4(c) we have
very good agreement between our results and those of
MD, throughout. The MD results are at a slightly
different temperature. For this state, the Enskog col-
lision time is about 1.8 and thus the VACF decays close
to zero in about four collision times.

The self-diffusion coefficient is given by Eq. (41). Here
again we replace K(t) by P(t) to obtain D for the various
states. In Fig. 5 our results for D'=D~/o are plotted
against 1/n' and compared with those of molecular dy-
namics [30]. It is seen that our results are in very good
agreement with MD results for lower densities and devia-
tions start to set in as density is increased. The I.ennard-
Jones self-diffusion coeIcients are seen to follow approxi-
mately the Enskog linear }/T'/n ' dependence, except at
high density, low temperature states. Our results also in-
dicate a similar behavior.

V. CONCLUSIONS

As mentioned in the Introduction, there is, as yet, no
tractable microscopic theory involving either a phase-
space kinetic equation or a space-time Mori-Zwanzig
equation for continuous potentials. A hard sphere kinet-
ic theory has been quite successful in explaining most of
the dynamics of atomic motions in hard sphere dense
fluids. In this paper, we have taken steps in achieving
similar objectives for continuous Auids. Our approach is
based on space-time equations as an equivalent phase-
space equation is too unwieldy. It seems reasonable to
write the space-time memory function as a sum of two
parts: one associated with individual binary collisions and
thus descriptive of short-time behavior, and the other as-
sociated with collective or multiparticle dynamics, which
becomes important at longer times. In this paper we
have derived exact, microscopic expressions for the
memory functions associated with the self-density corre-
lation function and the velocity correlation function,
based on binary-collision expansions. Thus a microscopic
theory of short time dynamics for continuous potentials
has been developed and results for the velocity correla-
tion function and the self-diNusion coeScient for various
thermodynamic states have been obtained.

We are in the process of obtaining numerical values for
the self-density correlation function S,(q, co) and the
memory function associated with it. Future work in-
volves the use of a mode coupling approximation for the
collective part of the memory function and when this is
combined with the binary part, we will have a microscop-
ic theory for real dense Auids. It will also be interesting
to apply these methods to the study of liquid alkaline
metals.
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