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Current-current correlation function in a driven difFusive system with nonconserving noise
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By field-theoretic renormalization group methods we study a diffusive system subjected to an external

driving force with a noise which does not conserve the particle number. Especially, for dimensions d (4
we obtain the universal shape of the current-current correlation function containing both exact ex-

ponents and universal amplitudes.

PACS number{s): 64.60.Ak, 64.60.Ht, 66.30.Dn

I. INTRODUCTION

Over the past years the long-time and critical behavior
of diffusive system subjected to a driving force has at-
tracted rapidly growing interest [1]. This is mainly
caused by the richness of their highly nontrivial features,
which generically result from the fact that, due to the
driving force, in general these systems are in a state far
from thermal equilibrium. Besides, driven diffusive sys-
tems might be suitable models for fast ionic conductors,
which was first suggested by Katz, Lebowitz, and Spohn
[2].

In the preceding papers of our group [3—5] the
diffusional motion of driven interacting particles with
various kinds of (particle number-) conserving noise has
been investigated. In the present work, however, we
study a system with a noise that locally violates particle
number conservation. Such a model was originally intro-
duced by Hwa and Kardar [6] as a continuum description
of running sandpiles, but instead of the particle density
here their equations involve a height variable, which is
the deviation from the flat steady-state sand profile.

II. MODEL, RENORMALIZATION GROUP,
AND SCALING RELATIONS

The general features of modeling and analyzing driven
difFusive systems are described in [3,4]. Without noise,
the density fluctuation s(r, t) defined as the deviation of
the actual density c(r, t) from its uniform average c
satisfies a continuity equation with a current j generated
by the diffusional jumps of the particles and by the non-
linear drift in the direction of the driving force

j (c)=jll(c)+jil(c)$+2ijil'(c)s2+ . (henceforth the

indices
~~

and l distinguish the spatial directions parallel
and perpendicular to this direction}. With a noise g(r, t )

taken into account the equation of motion for s reads

d, s(r, t }=A(hi+phi)s(r, t )

+AVt[k, (r, t)+ ,'gs(r, t) ]+/(r, t) .—(2.1)

The kind of noise g considered here is quite difFerent from
that in the previous works of our group [3—5]. So far, the
noise has always been assumed to be particle number con-

serving, i.e., it was a derivative of a random current,
whereas the noise in the system studied here violates this
conservation locally, which means there are random par-
ticle sources and drains in this system only conserving
the particle number in the mean.

Dimensional analysis (power counting} shows that —in
the renormalization group sense —the relevant part of
the noise is Gaussian with zero mean,

(2.2)

By a suitable scale change of s the kinetic coefficient A, in

(2.2) is the same one as in (2.1). The term proportional to
k can be eliminated by a Galilei transformation

r+~ke (2.3)

with ei being the unit vector in the longitudinal direction.
Note that Eqs. (2.1) and (2.2) constitute the fundamen-

tal equation of motion for noncritical driven diffusive sys-
tems with nonconserving noise and contain all relevant
terms in the renormalization group sense, which can be
proved by power counting near 1,=4. Up to modified
notation for fields and coupling constants (2.1) and (2.2} is
exactly the model Hwa and Kardar (henceforth abbrevi-
ated HK) recently suggested to describe running sand-
piles [6,7]. Concerning this model we wish to remark the
following.

(i) In the simulations of HK, particles are only random-

ly added to the sandpile, but not removed. Notice, how-

ever, that a continuum model that is naively derived by
adding a random deposition process to a conserved densi-

ty dynamics does not describe the running sandpile prop-
erly, since such a model involves a noise

g(r, t ) =g+g'(r, t ) that consists of an overall average
value g&0 and fluctuations 5$(r, t) about this value,
where 5g(r, t ) obeys (2.2). Then, g is a relevant parame-
ter, which cannot be set to zero as long as A,AO in (2.2} in

order to hold the particle source density g(r, t } positive.
As a consequence the averaged stationary solution yields
a current density, which linearly increases with the coor-
dinate in the longitudinal direction due to the constant
amount of the noise, whereas in the simulations of HK a
constant current density is expected.
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(ii} HK used a dynamical renormalization group
analysis to study their model defined by (2.1) and (2.2).
Below the critical dimension d, =4 they find the exact ex-
ponents that describe the scaling of various quantities at
the nontrivial stable fixed point of the system. It is worth
mentioning that one of these scaling relations says that
density fluctuations spread faster than diffusively, which
is a well known scenario of driven diffusive systems [1—5].

Moreover, in order to compare their ca1culation with
their simulations they investigated the scaling properties
of the current-current correlation function (from now on
abbreviated CCC function), where, however, first they
completely ignored the diffusive part of the current (pro-
portional to V~~s) and second factorized the remaining
(s s }correlation to (ss ) . Here this procedure leads to
the correct scaling properties. But this factorization fails
if the composite field s needs a multiplicative renormal-
ization (as, e.g., in the 4 theory).

(iii) As the CCC function should be an easily accessible
quantity also in the simulations of a noncritical driven
diffusive system with nonconserving noise, we study this
function in Secs. III and IV in a systematic field-theoretic
approach. Eventually we obtain the exact scaling form in
the asymptotic long wavelength limit with universal am-
plitudes.

+ —,'Ag(V, P') —AX ], (2.4)

We proceed investigating the driven diffusive system with
nonconserving noise based on (2.1) and (2.2).

To set up a renormalized field theory, it is convenient
to recast the model in terms of a dynamic functional
[8-11]

d'[s, X]=Jdt d x[Z'[s —
A,(h~+p4l)s]

where X(r, t ) is a Martin-Siggia-Rose [12] response field.
Correlation and response functions can now be expressed
as functional averages with weight exp( —8}. The func-
tional d' is invariant under the scale transformation

—1/2
x~~ ~ax~~, x~~x~, s~a s,
I~a ' s, p +ap, g —+a g.

Hence the parameter

u=A p 'p '"g'

(2.5)

(2.6)

is the true invariant dimensionless expansion parameter
of perturbation theory, where p

' is an arbitrary external
length scale and A, is a convenient numerical factor de-

pending on e=d, —d, which will be determined below.
Additionally, 8 is Galilei invariant under

s(r, t }~s(r+Agae~~t, t)+a,
X(r, t)~V(r+Agae)t, t) .

(2.7)

To study the infrared properties we apply standard renor-
malization group methods [13-15]. We use dimensional
regularization in d=4 —e followed by minimal subtrac-
tion. Denoting by I'„„([q, t0] ) the one-line-irreducible
vertex functions with if X legs and n s legs, only I

& &
and

I
& 2 are primitively divergent. Note that the nontrivia1

diagrams contributing to I'„„([q, to] } cast out at least a
factor ~q~", because the interaction vertex is conserving.

As a consequence of Galilean invariance the ultraviolet
divergent graphs associated with I

& 2 sum to zero order
by order in perturbation theory [3,4]. Thus the coupling
constant g =g needs no renormalization. The divergence
of I » is cured by a multiplicative redefinition of the pa-
rameter p —+p=Z p. A one-loop calculation in dimen-
sional regularization yields to order q ~~.

3
(q, to)=ito+Aq +Aq Z p 1+

1 ——
6

' e/2
2A,p

Q
lN

+O(u ) (2.&)

We set

1——
6

(4n) 1 —— 1——d/2 E'

2 4

(2.9)

[p3 +pB„+pgB]I „„([q,cia],p, u, p, A) —0 ~

The parameter functions are given by

p(u ) = —[e+—,'g(u )]u,
g(u)= —

—,'u+O(u ),

(2.11)

(2.12)

where F'(z) denotes Euler's I function, and find by
minimal subtraction

Z =1— u+O(u ) .3
4e

(2.10}

The unrenormalized theory is independent of the parame-
ter p. This leads to the renormalization group equation

I—u (I}=P[u(I ) ], I—lnp(1) = g[u (I}],d- — d
dl ' dl

yields the solution of (2.11}:

(2.13)

where the former equation holds exactly due to the non-
renormalization of g. Taking l as a flow parameter and
defining the trajectories u (I ), p(l ), and p(1)=p I via



1116 V. BECKER AND H. K. JANSSEN

I „„([q,co],p, u, p, A, )=I „„[[q,co],P(1},u(l), pl, iL] .

(2.14)

giving the fixed point to order e:
u, =

—,'e[l —( —,",, + —,', ln —', )c+O(e )] . (2.18)

g(u, )= —
—,'e .

Using the one-loop result we obtain

(2.1S)

In the scaling limit I (( 1 corresponding to
lqt~/}Ltl, lqi/pl, leo/Ap l

&&1, u(l) flows to an infrared
stable fixed point u„%0for e)0, which, according to
Eq. (2.12), is exactly given by

As g needs no renormalization,

A,g =P(l )'u(l )p(l ) (2. 19)

is invariant under the Bow of /. A comparison of the
right-hand side (rhs) for I=1 and I «1 directly yields
the trajectory p(l ) for I « 1:

' 2/3

u, = Se+—O(E ) . (2.16) p(I)=p
Q~

i
—2e/3 (2.20)

g= —[—,'+( —,", ln —', ++, , )u+O(u )]u, (2.17)

A two-loop calculation, which is shown in Appendix A,
yields

Thus the renormalization group equation (2.11), in con-
junction with dimensional analysis and the scale transfor-
mation (2.5), is exploited to give the exact scaling form of
the vertex functions for l &(1:

r„([~,q~~, q, ],u, p, X,q) =I"""'r„ co

~2
' ~1+a/3 '

2/3

(2.21)

where

5( n, n ) = —,
' [d ( 2 —n n) +—10—Sn + n ] . (2.22)

This relation easily provides the exact exponents calculat-
ed by HK.

j~~ r, t —ApV~)s(I', t )+—Ags (I', t ) (3.1)

III' RENORMALIZATION OF J II
AND s

Before investigating the current-current correlation
function we have to take a closer look into its single com-
ponents, namely the current. As anomalous properties
arise only in the driving field direction we restrict our-
selves to the longitudinal current j~~, which is [Eq. (2.1)]

In terms of renormalized field theory, s is a composite
operator [13,16], which consists of the product of two
fundamental fields s taken at the same point (r, t ). This is
why an insertion of a composite operator into correlation
or response or vertex functions generally leads to new
divergencies that must be removed in a renorrnalization
procedure beyond that in Sec. II.

Adding another source term to the dynamic functional

,' f dt d rk—(r—,t )s (r, t ), (3.2)

where the coupling k is assumed to be local and time
dependent for the purpose of functional differentiation,
we are now able to generate response and correlation
functions with insertion of the composite operator —,'[s ]
by differentiating the generating functional

Z[h, h, k]= f2)[ ]Ss[ts]exp —8[s,s]+fd"r dt(hs+hs) . (3.3)

with respect to h, h, and k:

II-(F„t,}II ( „t,)-;["(,t}l =II II 5h, 5k
z[h h k]l.(

5 " 5 6 (3.4)

The fact that in our bulk theory the integral over a total
derivative with respect to either s or s vanishes is ex-
pressed in the so-called "equation of motion":

The functional differentiation of the integrand and the
usual Legendre transformation from Z to the generating
functional I of the vertex functions via

0= f2)[s]$[ts] exp —8[s,s]+f ddr dt(hs+hs) . .5

5s

(3.S)

lnZ[h, h]+I"[s,s]=f d r dt(hs+hs}

~ 6 1nZ
with s:=,s:=

6h

6 1nZ
5h

(3.6)
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produce the following equation:
0

[—,+ (,+', )]
5s

0

kg Vii . +2As I, =0, (3.7)

where the superscript ' means the bare unrenormalized
quantities. From this equation, by di6'erentiation with
respect to X and s, we can deduce a series of Ward identi-
ties, which connect vertex functions with and without in-
sertion of [s ]/2. Especially, single differentiation with
respect to s yields the (Fourier-transformed) relation

or, explicitly, the composite field [s ] needs an additive
renormalization (in real space):

Z —1
[s ]„=[s]+2 pViis . (3.1 1)

Z —1
s +2 pVlls +ApVlls

Notice that all other I 2 are finite, which directly

follows from Eq. (3.7). Turning now back to the full lon-
gitudinal current [Eq. (3.1)],

Jii =Ji,+s +Apviis

I', ,(q, co)=[iN+A(qJ +pqii )]
0—

Agqii I', (q, ), (3.8)
=A,—[s']a+Apv, is (3.12)

—i~gqiil o i. ( 2)/2(q, ~) . (3.9)

As I »(q, co) is finite in the renormalized theory we im-
mediately see from the singular parts of the previous
equation that the divergence, which is produced by the
insertion of [s ]/2 into I. . . can be cured by an ad-

0, 1;[s ]/2'
ditive minimal renormalization,

Z —1
P

P qll (3.10)

where I „&denotes the vertex functions with 8' s
S,n;[s ]/2

legs, n s legs, and one insertion of the composite operator
[s ]/2. After transition to renormalized quantities ac-
cording to i()=Z p,g=g, I =I', the previous equation
reads

I', ,(q, co)=ice+A(q +i,Z pqii )

demonstrates that the gradient term of jll provides the
additive renormalization for the composite field s /2 so
that only the complete longitudinal current is a well
defined renormalized quantity since p is renormalized.
Therefore, when investigating correlation functions with

jll the gradient term cannot be neglected.

IV. CURRENT-CURRENT CORRELATION
FUNCTION

The scaling properties of the CCC function

CJ (r, t):=& jii(r, t)jii(0,0) &, (the subscript c denotes the
cumulant or connected part of the correlation function,
i.e., C measures fluctuations around the average) are
directly obtained by combining scale transformation
(jii

a'/ jii
), dimensional analysis (j-A p / }, and the

renormalization group equation (2.11):

C"( [ x, iixit], Q,p, Ji, ,p) —l CJJ tl ii,xl xlit], u»,
Q~

2/3

p, A, ~p (4.1)

Its Fourier transform reads accordingly, after choosing
the flow parameter l =

~
to/Ap ~,

'2

CJJ(1,2)= g
& '(1) '(2) &,

A,g

1
CJJ [qlI'qi' ] i+e/3 JJ

CO
(1+e/3)/2 ' 1/2

A,
2

+ V"'&s(1)s (2) &
II C

A,
2

+ Vii & s(2}s'(1)&,

(4.2)

This agrees with the scaling form given by HK, but we
remark that both terms of jll lead to this scaling relation,
not only the s term. Now we shall explicitly calculate
the CCC function. As pointed out in the preceding sec-
tion, we must take both terms of jll into account so that

+(zp)'VI "v'„"&.(1).(2) & (4.3)

where Vll' means the derivative with respect to the ith ar-
gument and i as argument is the abbreviation for (r;, t;)
from now on.

It is useful to reduce these cumulants to two functions
E(l —2) and D(1—2), which can be generated by func-
tional differentiation of an extended dynamic functional
[cf. Eq. (3.2)]
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8—+4—fdt d r[ ,'k—s +k(Vis)s]

and are defined by

6 I"

5k(1)5k(2)
5IV'"E(1—2):=2

5k(1)5k(2)

(4.4)

(4.5)

where an overall factor V~~" coming from the insertion of
(VtX)s is explicitly factored out in the definition of E. A
graphical representation of E and D is given in Fig. 1.
The connection between the four terms on the rhs of (4.3)
and E,D as well as the propagator 6 and the correlator C
is developed in detail in Appendix B.

A further reduction can be achieved by the renormal-
ized (i.e., finite} parts of Eq. (3.8),

r, ,(1—2)=[a,—X(ai+paii)]5(1 2)

——z'(ling ) hI("E(1—2), (4.6)

and by another difFerentiation of the equation of motion
(3.7) with respect to X:

2

td}

FIG. l. In addition to the graphical elements shown in Ap-
pendix A there are (a) an [s /2] insertion and (b) an [sV~f] in-
sertion. Thus (c) represents D(1 —2)/4 [Eq. (4.5)] and (d)—Vf~"E(1—2)/2 [Eq. (4.5)]. The shaded areas means the con-
nected, one-line-irreducible part of a vertex function. A close
look at (c) and (d) directly provides Eqs. (4.6) and (4.7).

I' (1—2)= —25(1—2)+ 5' "D(1—2) .
A.g (4.7)

C(t, —t, )=C(t, —t, ), D(t, t, )=D(—t, —t, ), (4.8)

Turning now to Fourier-transformed quantities we must
take their time dependence into consideration:

(B.9)] with Eqs. (4.6)—(4.8) and using the well known rela-
tions

but

G(t, —tz)-8(t, tz), E(t, tz)—-8(t,—tz) . —(4.9)

G(q, co)=[1 i i(q, co)]

C(q, co) = —1 z 0(q, co)G(q, co)G(q, —co),
(4.10}

Combining the results of Appendix B [(B.5), (B.S), and we obtain C" in a compact form:

2

C, ,(qt, qi, ~}=[1»(q,~)1»(q, —~}] ' '[~'+(~q&}']

(Ag) (Ag)
(q, ) Ap+ (q, — ) (4.11)

Notice that the previous equation holds exactly, whereas we are now forced to compute the three functions I, z(q, co),
E(q, co), and D(q, co) perturbatively.

(i) A one-loop calculation of I i i(q, co) was already performed in Sec. II [Eq. (2.8)] and its renormalized version reads

3Q

ldll

I, , (qt, qi, co; u, p, A, lz) =iso+, Aqi+A, pq i
1 — ln

8 2Ap
+O(u, q ), (4.12)

which by applying the scaling relation (2.21) becomes
2

lCO ~l Q
(qll, q co;iu, p, k, ,p}=l +A, +A,

l l2

2/3 2

1—~ l2+2e/3
*

ln
'

z z
+O(uz, qz)

2A,p2l
(4.13)

By an adequate choice of l =ice/2Ap ((1 ( we have to consider iso as a positive real quantity first and then continue it
analytically) and a subsequent elimination of the length scale lz via Eq. (2.6) we obtain I », expressed in the dimen-
sionless variables
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as

I ] ](q)( qJ co) 2Ag i'9+ q j~ + C] +O(q )
(iso)'/

(4.15)

where C& =( A, /u, ) / is a universal constant.
(ii) E(q, co) is closely related to I »( q, co) via Eq. (4.6). As we are interested in a q expansion of CJ", it is suScient to

take E(q, co) at q =0; then its scaled version reads
' e/3

p+ ,'Ag —E(q=O,co)=C, 1

1CO

(iii) D(q, co} remains to be computed and in a one-loop approximation the integral
—2 ' —2 2

D(q, co)' '= fd p p++1 —I

(2m )
(4.17)p ic0+A, p+ + p ' + [co~ ~)

2 2 2. P . .P . P . .P .

is to be evaluated, where q:=q f +pq l
and the frequency integration is already performed. The fact that the integrand

consists of two complex conjugated parts originates from the two possible time orders of the s insertions in the one-
loop graph. We calculate it on the one hand for co =0, finding

(
2 +'I'(1+ /2)1 2( )

(4~)d/2gpl/2 P

and on the other hand for q ((2~ co~ /}I,, obtaining

e(6—e) ~qp
2

2(4—e) 2ico

2 +'I (1+s'/2), 2I'(1/2)I'(2 —e/2) A,
Dq, co =

(4~)d/2/pl /2 P 6(2 e)l (3/2 —e/2) 2t a)'q

' 1+a/2
4 A,

e(2 —e) 2i co

2
q

(
2lco

+N~ 67

(4.1S)

(4.19)

Herein the first term is cancelled by its complex conjugat-
ed part and therefore

2 +'I'(1+@/2) sin(me/4)D q=O, co =
( 4~)d /2' 1 /2( 2—F )

t 1+m/2

(4.20)

Notice that D(q, co) does not show any divergence, nei-
ther in limit ~q~ ~O, e~O of (4.20), because the e pole is
compensated by the sin(me'/4), nor at co=0 (4.18). This
statement is corroborated by Eq. (4.7), which only in-
volves finite quantities. To find the scaled shape of
D(q=O, ro), the scaling equation (2.21) is employed for
I 2 0, which is referred to D(q, co) via Eq. (4.7) and gives

2
}j.g 2A, sin(n. e/4)I (1+e/2)

g /'(4m) / e(2 —e)
D q=O, co =

1/3

(4.21)

Setting now (4.15), (4.16), and (4.21) into (4.11), where we
point out that aP, q f, and q l

as coeificients of D( q, co) and
E(q, co) remain unscaled, we finally arrive at the universal
form of the CCC function (up to higher orders in q )

' 1+a/3
1

Ji(qll» 4/e
g

2

+ 1C2
~

~@~a+ /3

2
1

2

1+— +—C1
10' 1

~

( @)1+a/3

(4.22}

A, = —,'Sd [1+0(e )t .
1 —e/4 ' (4.24)

%e stress that, besides the universal and even exact ex-
ponents, C" also contains the universal amplitudes

—g 2/3g —2/3"e
(4.23)

2 sin(me/4)l (1+E/2) f/3

e(2 e)(4m )" A,'—
In order to make these results comparable to Monte Car-
lo simulations, which have not been our topic here and
remain to be performed, we give the numerical values for
C1 and C2 in d =3, i.e., @=1.

It is advantageous to extract the purely geometric fac-
tor Sd=Od/(2n) =2/(4n. ) / I'(d/2}, where Od is the
surface of the unit sphere in d dimensions, from A, (2.9}:
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Then, with the two-loop value of u, (2.18) the e expan-
sion of C& and C2 reads

2/3
vI cf I

1/3

C =——eS [1——'e( —"+—' ln —')+O(e )]4 9 2 243 27 3

CI (d =3)=0. 107, C2 (d =3 ) =0.0609 .

In addition, we consider the combination
'2

mSd
CIC2= [1+O(e )]

8

(4.26)

(4.27)

that might be the numerically stablest value, because it is
independent both of u, and of 3,. In three spatial di-
mensions it is

C, C2(d =3)=3.96 X 10 (4.28)

V. CONCLUDING REMARKS

Equations (4.22) and (4.15) contain very detailed infor-
mation on the current-current correlation function and
on the response function G»(q, co)=I I,'(q, cu), respec-
tively. It is desirable to confirm these results by Monte
Carlo simulations, which have not been done yet. Both
functions should be easily accessible in such simulations.
Notice that these simulations of a driven diffusive system
with nonconserving noise are not redundant, for it is an

independent model, which is distinct from the running
sandpile.
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(4.25)

where Sd remains unexpanded.
Setting now e= 1 and d =3, respectively, we obtain

FIG. 2. Elements of perturbation theory: Gaussian propaga-
tor G04,'q, ~), Gaussian correlator Co(q, co), and vertex u(q).

4 2
lN

gp 2A,

9 1 15 1 3 115 1——+ —ln —+
8 q2 16 e 4 96 e

(A4)

Thus the perturbation expansion of I, , to two-loop or-
der reads

r» ——i~+kq J +Xq

3 7 g Ge I co
X p+ +

tex by a dash perpendicular to the propagator line.
In the wave-vector-frequency picture there are eight

difFerent two-loop diagrams (Fig. 3) contributing to I, ,
and obeying causality, which forbids closed propagator
loops. Energy and momentum conservation demand that
at each vertex the sum both over all frequencies and over
all wave vectors is zero.

Evaluation of these diagrams means integration over
all internal frequencies and wave vectors. The integra-
tion over the internal frequencies can be easily performed
with the help of residues.

As I » is quadratically divergent and the external s leg
already provides a factor q~~, the parts of the integrands,
which are proportional to q~~, contain all singularities.
Therefore, before integrating over the internal momenta
the integrands are expanded with respect to the external
momentum q ~I.

The subsequent integration over the internal momenta
for all two-loop diagrams together yields, up to conver-
gent parts,
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APPENDIX A: TWO-LOOP CALCULATION OF I, ,

9 15 3 115

X
Ge I co

o 2 62 2A.
(A5)

In this section we calculate the singular parts of
I »(q, co) in a two-loop approximation. The elements of
our perturbation expansion are the Gaussian propagator

Go(q, co) = [ice+A(q~+pqII ],
the Gaussian correlator

Co(q, co)=2k, [a) +)I, (qf+pqII ) ]

and the conserving vertex

u(q) = -iXgq

(A1)

(A3)

Their graphical representation is shown in Fig. 2, where
the X legs are indicated by an arrow and the

q~~
of the ver- FIG. 3. All two-loop diagrams of I &,(q, co).
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The transition from bare to renormalized quantities via
p=Z p, g=g and the e expansion of the last equation
provides in minimal subtraction (i.e., the Z factor exactly
absorbs the e poles from the vertex function

3 Q Q 9 1 15 3 11Z =1———— —— ln —+ +O(u ) .
4 e e 64 e 128 4 768

(A6)

The parameter function g given in (2.17) is now directly
obtained by

lnZ

III [(3.3}—(3.7)], where only one source term was intro-
duced in 8 (3.2), we obtain on the one hand that Eq. (3.7)
still holds (for this equation is restricted to k =k =0) and
on the other hand from differentiation of (3.5} with
respect to s instead of s,

0 0

+ [a,+X(a,+Pa~)]s+Xg =0 .
5k ~=s'=k=o

(B1)

Both equations serve as a tool to simplify the four cumu-
lants of the CCC function (4.3). The first term of Eq.
(4 3),

g(u )=—eu (A7) 52 lnZ(, (1), (2)) =,
5k(1)5k(2)

(B2)

APPEND IX B REDUCT ION OF Cjj

Treating the dynamic functional cP that is extended by
two source terms (4.4) in analogy to the procedure in Sec.

I

[cumulants are generated by functional differentiation of
lnZ in contrast to full correlation functions where only Z
is used (3.4}], reads after transition to vertex functions
(3.6}

5k(1)5k(2) " 5k(1)5s(3) 5s(4)5k(2)

5 I' 52++ G(3—4)
5k(1)5s(3) 5y(4}5k(2)

5 I' 2p+ G(4 —3)
5k(1)5s(3) 5s(4)5k(2)

(B3)

(B4)

and eventually obtain

A,
2

(s (1)s (2)),=D(1—2)+ EI"f [E(1—3)G(3—4)D(4—2)

with C and G being the cumulant of the correlation and response function. To relate the unknown expressions in (B3)
to the functions E and D (4.5), we differentiate Eq. (3.7) and (Bl) with respect to k,

5k(1)5k(2) 4

52r „52r Xg &»
„5k(1}5s(2) 5k(1)5k(2) 2

+E(2—3)G(3—4)D(4 —1)—2E(1—3)C(3—4)E(2—4) J . (B5)

The second term,

5 lnZ
VIi"(s(1)s (2) ), =2VIi"

reads after transition to vertex functions

V'„"(s(1)s2(2)),
r

5s(3) 5 I
3 5h(1) 5s(3)5k(2)

(B6)

"'&.( )"( )),
=AgbI" I [—,'G(1 —3)D(3—2}

—C(1—3)E(2—3)] . (B8)

The third term VI ~(s(2}s (1)), is deduced from the
second one by interchanging the arguments 1 and 2. The
fourth term is simply

+ 5s(3) 5 I
5h(1) 5s(3)5k(2)

and eventually gives with (B4)

(B7) V'"V' '(s(1)s(2}) =V"'V"'C(1—2)
II II II II

= —6"'C(1—2) .
II

(B9)
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