
PHYSICAL REVIEW E VOLUME 50, NUMBER 2 AUGUST 1994

Absence of chaos in a self-organized critical coupled map lattice
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Although ecologists have been aware for almost 20 years that population densities may evolve in
a chaotic way, the evidence for chaos in natuml populations is rather poor. The lack of convincing
evidence may have its origin in the difBculty of estimating the efFect of external environmental noise,
but it may also re8ect natural regulation processes. In this paper we present a meta-population-
dynamical model, in which the nearest neighbor local population &agments interact by applying a
threshold condition. Namely, each local population follows its own temporal evolution until a critical
population density is reached, which initiates dispersal (migration) events to the neighbors. The
type of interaction is common to self-organized critical cellular automaton models. Depending on
the threshold level, the global behavior of our model can be characterized either by noisy dynamics
with many degrees of &eedom, by a periodical evolution, or by an evolution towards a fixed point.
Low dimensional collective chaos does not occur. Moreover, self-organized criticality with power law
distributions emerges if the interaction between the neighboring local populations is strong enough.

PACS number(s): 05.40.+j, 05.45.+b, 05.70.Jk

I. INTRODUCTION

An important unsolved problem of population biology
is that natural populations usually do not evolve in a
chaotic way [1—6], whereas theoretical models and labora-
tory experiments frequently predict such a behavior. The
reason for this disagreement may lie in additional self-
regulating mechanisms in natural populations. On the
other hand, a recent theory dubbed "self-organized crit-
icality" (SOC) [7] provides a unifying concept for large
scale behavior in systems with many interactive degrees
of freedom. This phenomenon is expected to be quite
universal and it has been looked for in such diverse ar-
eas as geophysics, economics, condensed matter physics,
and astrophysics. In this article we present an alter-
native population-dynamical model which exhibits self-
organized criticality and shows nonchaotic global behav-
ior.

A common basic assumption in population-dynamical
models is that populations are uniformly dispersed in
the habitats [8,9], and the relevant variable, the popu-
lation density, can be described by ordinary diHerential
or difFerence equation [8,10,12]. If spatial heterogeneity
is taken into account, it is convenient to model the dy-
namics by transport-reaction processes [9,10]. Although
these models may give a satisfactory description of local
populations, they oversimplify the effect of spatial het-

erogeneity in many cases.
It is better to consider the so called metapopulation,

which is built up by local populations living in habitat
fragments and individuals dispersed among these local
habitats [ll]. Many studies of metapopulations have con-
centrated on the occupation and extinction in local habi-
tats and frequently have allowed only two values for the
local population density [13,14]. The crucial problem in
these models is to implement a realistic mechanism for
the dispersal. The simplest idealization is to assume that
the rate of dispersion does not depend on the density and
the distance between habitat fragments [13]. Other mod-
els take into account either the density [14,15] or distance
[16] dependences, but usually in a continuous way.

Our model takes into account the density and distance
dependences via a threshold condition, which is common
in SOC models and biologically well con6~med. The first
assumption is that migrations are enabled only among
the nearest neighbor local habitat fragments. This does
not exclude the possibility that a local dispersal could
aH'ect a more distant local population by a series of el-
ementary steps. Although this assnxnption is too strict
in the case of terrestrial vertebrates, it is appropriate for
many insects [17]. The second basic assumption is that
a migration event is triggered by the overcrowding of a
local population and its size depends on the local density,
in agreement with several observations [17,18].

II. MODEL
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Consider a set of I x L sites on a two-dimensional
square lattice representing local habitat &agments. To
each site (i, j) we assigned a continuous variable N; s,

1063-651X/94/50(2)/1083(10)/$06. 00 50 1083 1994 The American Physical Society



1084 CSILLING, JANOSI, PASZTOR, AND SCHEURING

which characterizes the local population density. The
main diff'erence from the other SOC models [19] is that
each site has its own time evolution according to the fol-
lowing well known discretized differential equation, which
is widely used to model the time evolution of a local pop-
ulation [1]:

N, , (t+1) = AN;, (t)[1+aN, , (t)] r .

:N„, (2a)

Here A denotes the intrinsic growth rate parameter, a is
a scaling parameter, the exponent P describes the den-
sity dependence, and the discrete time t represents, e.g. ,
the time of annual censuses. Depending on the values of
A and P, there exist a fixed point, stable limit cycles, in
which the population alternates up and down, or chaos;
the scaling parameter a does not affect the stability prop-
erties [1,10].

A dispersal event (migration) occurs if the population
density at a site exceeds some prescribed critical value
k; i (for the sake of simplicity we can use a uniform crit-
ical value k = k, ~ for all i, j). We use the following
elementary migration rule:

tic map array. In two dimensions it is given by

y', (t+1) = (1 — )f(y'..(t)) + — 5. &(y, (t)) (3)

where y, ~ is the continuous state variable, t is the dis-
crete time, ~ denotes the coupling parameter, and the
summation runs over the nearest neighborhood of the
site (i, j). The mapping function f(y) is the well known
logistic map

&(y) = Ay(1- y)

with the control parameter A. The simplicity of this map
is very attractive; however, in practical applications Eq.
(4) has the disadvantage that it requires y to remain
within the interval 0 ( y ( 1 to avoid the divergence
to minus infinity. Therefore, the map (1) was chosen
for our model, which has 6nite solutions on the whole
domain of positive real numbers. Apart from the gener-
ating map, there are two main differences between our
model and diffusively coupled CMLs. First, the coupling
in our model obeys a threshold condition; however, the
relaxation mechanism above the threshold is also diffu-
sive. Second, there exists a time scale separation in our
model as mentioned above: During the relaxation pro-
cesses the global time evolution stops.

Ni+1,2+1
¹~ —N„: N'+i, ~+i+ & (2b)

where N„denotes the (uniform) subcritical population
density at which the dispersal ceases (N„&k) and 6
is a dissipation parameter representing, e.g. , a decrease
of the population during the migrations (0 & 6 & 1).
In the following we restrict ourselves to the conserving
case 6 = 1. Since the migrated population increases the
density at the neighboring sites, further activation events
may occur. A local dispersal event may trigger activa-
tion on a set of connected sites, resulting in a "migration
avalanche. " The boundaries are open in the sense that
population fragments reaching the boundary sites will
leave the system freely (or disappear).

The system evolves in the following way. We start from
a random initial con6guration and all sites are simulta-
neously updated according to Eq. (1). When on one or
more sites the state variable N;~ exceeds the threshold
value k, the time evolution stops, and relaxation pro-
cesses according to Eq. (2) begin, until every site be-
comes subcritical. In other words, we consider the disper-
sal as instantaneous and do not allow for time evolution
during migrations.

Note that rule (2) obeys a local conservation law during
the migration in the case of A = 1; however, the model
is globally nonconservative because the population at a
given site can decrease spontaneously according to the
time evolution rule (1).

It is easy to recognize that this model is a special case
of coupled map lattices (CMI,s). A CMI is a dynamical
system with a discrete time, discrete space, and contin-
uous state variables exhibiting very complex collective
behavior known as spatiotemporal chaos [20]. The most
widely investigated CML is the diffusively coupled logis-

III. GENERAL BEHAVIOR
AND SCALING PROPERTIES

In this article we mainly concentrate on the effect
of threshold dynamics on the chaotic behavior of the
metapopulation density. The parameters of Eq. (1) were
chosen to be initially A = 100.0, a = 1.0, and P = 8.8.
We stress here that these parameters belong to the strong
chaotic domain [1] of Eq. (1). The other parameters,
namely, the system size L and the subcritical value of
the state variable N, , were found not to be relevant for
the global behavior. We will discuss their effects further
below. The only important parameter that remains is
the threshold level k initiating the dispersal processes.

First, we discuss the temporal behavior of a local pop-
ulation (a single site) and of the metapopulation (the
whole lattice). In Fig. 1 we have plotted the time se-

ries, the erst return maps, and the power spectra of the
population density N; i(t) of a single site (i = j = 8
on a lattice of 16 x 16), with diff'erent threshold levels.
Figures 1(al)—1(a3) show the characteristics of Eq. (1),
which corresponds to the k = oo limit, when there is no
migration in the system The foll.owing rows [Figs. 1(b)—
1(e)] represent the effect of increasing interaction (de-
creasing threshold level). The chaotic nature of the local
dynamics, generated by the governing equation Eq. (1),
tends to be suppressed as the interaction increases, un-
til it reaches a (noisy) fixed point [see Figs. 1(e)]. [Note
the different scale in Fig. 1(e2)]. It can be seen as well
that the increasing interaction results in the appearance
of some discrete peaks in the power spectra [Figs. 1(b3)—
l(d3)], which reflects the emergence of periodic behavior,
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FIG. 1. Time series, first return maps, and power spectra of the population density N of a given site with varying threshold
parameter. (a) No interaction (k = oo), (b) k = 4.0, (c) k = 2.69, (d) k = 2.165, and (e) k = 0.69 (from top to bottom).
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while at the final fixed point white noise with a very small
amplitude remains [Fig. 1(e3)].

Figure 2 demonstrates the same characteristics as
Fig. 1, but it refers to lattice averages:

As before, the averages were measured after finishing all
dispersal events. The first row [Figs. 2(al) —2(a3)] refers
again to the noninteractive case. The time series data
[Figs. 2(al) —2(el)] are plotted from a random initial con-
figuration (t=0). Note that the steady state is reached
very fast in all cases. The return map [Fig. 2(a2)] does
not indicate low dimensional chaos, as it is a trivial con-
sequence of the many independent degrees of &eedom
entering the lattice average. As intuitively expected, the
increasing interaction strength suppresses the noisy dy-
namics and the collective behavior becomes more and
more pronounced. This is refIected by the increased cor-
relations visible in the return maps [Figs. 2(b2) —2(c2)]
and the appearance of discrete &equencies in the power
spectra (Figs. 2(b3)—2(c3)]. When the threshold level
is small enough, the time evolution is strictly periodic
[Figs. 2(d2) —2(d3)] or shows a stable fixed point equi-
librium (Figs. 2(e2)—2(e3)]. We have not been able to
find any threshold value at which the collective dynam-
ics shows low dimensional chaos.

It is interesting that there is no sign of spatial organi-
zation, even when the system settled down to a strictly
periodic oscillatory state. To illustrate this fact, we plot-
ted in Fig. 3 the space amplitude of a single row in a
system of size I = 35. Figure 3(a) shows a segment of
the time evolution of the lattice average at two difFerent
threshold values; the perfect periodicity is clearly visible.
Figures 3(b) and 3(c) show the values of the state variable
of the sites situated in the 16th row, X, q6. Twenty con-
secutive time steps are plotted within each figure. While
the alternating motion between a high and low level state
is pronounced, there is no correlation between the values
of neighboring sites, apart &om the fact that they are
bounded in two nonoverlapping intervals.

We note that this collective periodic behavior is com-
pletely different &om the well-known collective periodic
motion of the globally coupled oscillator arrays [21,22].
In our case the perfect oscillation is observable in the
lattice average only, while the globally coupled nonlinear
oscillator arrays obey perfect synchronization, i.e., every
degree of &eedom behaves in the same way as the lattice
average.

This observation together with the following one have
a close resemblance to a phenomenon dubbed "spon-
taneous noise reduction. " Here we refer again to
Figs. 1(dl)—1(d3) and Figs. 2(dl) —2(d3). lt is obvious
that whLile the time evolution of the state variable of a sin-
gle site (at the given threshold value k = 2.169) obeys a
period-4 cyclic motion with a wide-band backround noise,
the evolution of the spatial average is perfectly smooth
with an undetectable low noise background. A similar
observation was mentioned [23] at an investigation of a
resistively shunted Josephson-junction series array biased

by an external current source. In that system the noise
measured on the whole system has a considerably lower

amplitude than that measured on a single junction. How-

ever, the average signal in that case is constant instead
of oscillatory. This is perhaps not too surprising from a
physical perspective, since the junctions are coupled to
each other globally, so that one expects averaging efFects
due to the presence of the other junctions. The noise-
reduction phenomenon is more surprising in our system
because the system has only nearest neighbor coupling.
This is the first sign that the relaxation process defined
in our model may build up long range correlations.

One of the basic fingerprints of self-organized critical-
ity is the power law behavior of the density function of
the avalanche size distribution. Our system is globally
driven, i.e. , all sites evolve simultaneously. Thus, at a
given time step several sites can become overcrowded, so
that several migration avalanches can originate and inter-
fere with others causing difhculties in obtaining the size
distribution. Therefore, we have applied the local pertur-
bation method [7] to obtain the avalanche-size statistics.
First, the system is allowed to relax to a subcritical state
(K, ~ ( k for all i, j); then a given site is locally per-
turbed by a small positive increment N'. This can cause
a local migration step if¹~+X' & k, and the perturba-
tion spreads over several neighboring sites according to
the applied dynamical rules. The size s of the migration
avalanche is defined by the total number of elementary
dispersal steps induced by the single perturbation. Af-
ter each perturbation, the original state is restored and
another site is perturbed, etc. It is clear that the result
depends on the size of the applied perturbation X'. Our
numerical investigations show that a particular choice of
K' afFects exclusively the amplitude of the distribution
functions and not the overall shape, however, too small
values of N' result in poor statistics.

We think that the application of the local perturbation
method is a technical question only. Since the model is
non-Abelian [24], because the redistribution of the state
variable is proportional to the instantaneous value in the
relaxing site, then the temporal order of the elementary
relaxation steps should be strictly followed. However, si-

multaneously occurring, colliding avalanches are not able
to block each other as a result of the local conservation
of the migrating population. Thus the shape of the ob-
tained distribution functions must not be only an artifact
of the measuring method.

ln Fig. 4(a) the migration avalanche-size distribution
densities are plotted for difFerent threshold values. At the
highest threshold level (k 4.0) the distribution function
can be fitted by an exponential function

P(8) —exp (
——),

with a characteristieal length 8' = 1.00+0.08. This refers
to completely uncorrelated avalanches; moreover the in-
teraction is restricted to nearest neighbors. In the inter-
mediate range 2.7 & k & 2.3, the distribution functions
become more and more similar to a power law; however,
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FIG. 2. Time series, first return maps, and power spectra of the metapopulation density [Eq. (5)] with varying threshold
parameter. (a) No interaction (k = oo), (b) k = 4.0, (c) k = 2.69, (d) k = 2.165, and (e) k = 0.69 (from top to bottom).
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they are slightly bent in the double logarithmic plot. The
fitting form

P[sj s exp
I

——
)I 8I

gives very good result for these curves with an exponent
values 1.0 & 7' & 1/3 and a "correlation length" 3.0 (
s' & +oo (s' diverges extremely fast when the threshold
value is decreased). Finally, at low thresholds low (k &
2.2) pronounced power law shapes are observable:

P(s) s

with ~ = 1.20 6 0.08, slightly depending on A:. These
power law shapes are significant for the buildup of long
range correlations and the emergence of self-organized
criticality.

To establish the critical state in a more convincing way,
the scaling properties of the system are investigated by

finite-size-scaling analysis [25]. Let P(s, I,) denote the
distribution function in a system of linear size I. We use
the finite-size-scaling ansatz

P(s1) , I "g ( ),

K
7 e

P
(10)

Figure 4(b) shows the results of the finite-size scaling
analysis. The distribution functions for di8'erent lattice
sizes collapse onto a universal form exhibiting the scaling
relation (10) with the exponent values r = 1.21 6 0.05,
K, = 3.16 + 0.05, and v = 2.60 6 0.07.

where g is a universal scaling function, v denotes the crit-
ical exponent which describes how the cutoH' size scales
with the system size, and K, is the exponent connected
to the norm of the distribution functions. Moreover, if'

Eq. (8) holds, i.e. , if the scaling function g obeys a power
law with exponent ~, a scaling relation between the three
critical indices exists [25]:
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FIG. 4. (a) Migration avalanche-size distributions for a lat-
tice of I = 16 with varying threshold parameters. (b) Finite
size scaling analysis [Eq. (9)] at the threshold k = 0.69 for
system sizes L = 16,25,40,60.
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IV. CHANCE OF LOW DIMENSIONAL
COLLECTIVE CHAOS

This section is devoted to the following question: What
is the chance of observing low dimensional global chaos
in our system at allY At the beginning of our analysis, we
recall Grinstein's elegant reasoning [26] why generically
a collective chaotic state in a broad class of extended
many-body systems with short range interaction does not
occur.

Let us imagine a general dynamic many-body sys-
tem (such as coupled maps, cellular automata, or partial
difFerential equations) characterized by scalar variables
z(r, t), which take on real values confined to the inter-
val 0 ( z(r, t) & z . The system evolves according to
some dynamical rule [e.g. , Eq. (1) or (4)], which is as-
sumed to be deterministic and local. Imagine that a par-
ticular variable z(rp, t) is perturbed by an infinitesimal
amount e at some time t = 0 and then allowed to evolve
without further external interference. If the system is
in the chaotic regime, then the perturbed trajectory will
diverge exponentially in time:

b,z(rp, t) e exp(pt),

where Az denotes the difFerence between the perturbed
and unperturbed trajectories and p is some positive Lya-
punov exponent [27]. When t becomes so large that b,z
is of the order of the allowed range z, i.e.,

(12)

z(rp, t) has been completely "dephased" by the pertur-
bation, there is no way to estimate the initial value at
t = 0. The locality of the dynamics implies that infor-
mation about the value of z(rp, t) cannot spread to other
parts of the system faster than with a given velocity v

(in a usual cellular automaton with nearest neighbor cou-
plings this velocity is one lattice spacing per time step).
This defines a "coherence length" ( in the system

( = us* = —ln ( ) .

Variables at r with ~r rp~ ) ( are no—t affected by the
value of z(rp, t). A finite spatial coherence length in lo-
cally chaotic systems implies the nonexistence of collec-
tive chaos under generic conditions. Naively one would
expect that the incoherent averages over many essentially
uncorrelated regions of linear size ( show only station-
ary time independent behavior. This is often the case
[see Fig. 2(a)]; however, Bohr et aL pointed out [28]
that if the individual variables move periodically between
chaotic bands, then the incoherent averages can produce
a periodic time evolution reflecting the regular periodic
motion betw'een the bands.

The above result seems to be in contradiction with
several experiments where low dimensional chaos were
observed in macroscopic systems. However, one should
stress that the chaotic behavior averaged away com-
pletely only in the thermodynamical limit. Obviously

when f in Eq. (13) is comparable to or larger than the
system size L, the system may behave chaotically even
on its largest length scale. The regime f & I is eas-

ily achieved in practice: One possibility is to shrink the
system size, the other is to tune the governing dynam-
ics just above the onset of chaos, where the Lyapunov
exponent has a very small positive value. In this case (
diverges to infinity; see Eq. (13). Here we repeat again
that colliding avalanches do not destroy each other; thus
avalanche overlapping cannot decrease drastically the co-
herence length (. We have tried both methods mentioned
above with the following results.

First, the parameters were not changed except the lat-
tice size. Figure 5 shows the effects of a gradually de-
creasing threshold in a system of size L = 3. This is the
smallest possible system which contains not only bound-
ary sites. When the coupling is weak, the center site
does not feel the neighbors at all [Fig. 5(al)], the lat-
tice average [Fig. 5(a2)] shows uncorrelated noise. When
the coupling is increased, the arms of the first return
map appear [Fig. 5(bl)], while the average remains al-
most completely uncorrelated [Fig. 5(b2)]. Decreasing
further the threshold, the system abruptly settles down
to a period-4 motion; however, this motion is not syn-
chronized [Figs. 5(cl) and 5(c2)], i.e., the cycles of the
difFerent sites are difFerent &om each other and &om the
average. An important difference from the behavior of
the large systems is that the configurations of this period-
4 motion are spatially organized into symmetric patterns,
i.e., the time evolution is realized within the periodic
change between four patterns. Note that the difFerence
of the threshold values between the cases of Figs. 5(b)
and 5(c) is extremely low (hk = 0.0000005). Further-
more the heavy dots in Fig. 5(c) are not the consequence
of some noise or scatter of data, but only for the ease of
visualization.

The crossover point, where the perfect oscillation ap-
pears, does not have universal characteristics. The
threshold value depends slightly on the dynamical pa-
rameters A and P and on the parameter of the relax-
ation rule N, as well. However, the extremely abrupt
appearance of the perfect oscillation can be considered
as a generic behavior at such a small system size. In
larger systems, the transition &om the noisy collective
state to the oscillatory state is smeared out: The larger
the size, the wider the transition regime; however, it is
difficult to characterize this transition quantitatively.

The other method in order to enlarge the coherence
length ( is the decrease of the Lyapunov exponent. The
dependence of the Lyapunov exponent on the dynamical
parameter P [see Eq. (1)] is plotted in Fig. 6, which was
obtained by a standard method [29]. At our earlier simu-
lations, the parameter P was changed in a narrow interval
around the value P = 8.8, the Lyapunov exponent has a
value p = 0.44+ 0.01 in this regime. To check the efFect
of a small Lyapunov exponent, we then fixed the value
at P = 7.275, corresponding to p = 0.0230 + 0.0005,
and kept the system size at L = 3. In this case, the
crossover &om the noisy behavior to the perfect oscilla-
tion is smeared out similarly to the behavior of large sys-
tems; however, important differences exist. In Fig. 7(a)
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the first return map of the lattice average is plotted at an
intermediate k value in the transient regime. The appar-
ent low dimensional structure suggests that this motion
exhibits low dimensional collective chaos. In Fig. 7(b)
the same return map is plotted in a double logarithmic
scale together with the solution of Eq. (1) at the same
parameter values. This illustrates that the attractor of
the collective behavior is completely dig'erent f'rom the
noninteracting case. In Fig. 8(a) the time series of the
middle site is plotted for the same system, while Fig. 8(b)
shows the time evolution of the lattice average resulting
in the first return map of Fig. 7. Careful investigations
show that the motion represented by the first return map
is not chaotic in the strict sense. The power spectrum
of the average corresponds to a global peridod-2 motion
with a wide-band noisy badcground and there is no de-
tectable positive Lyapunov exponent. The source of this
noise is incoherent intermittent bursts in the single site
dynamics [Fig. 8(a)], which are almost perfectly oscil-
latory. This interesting behavior shows an alternative

aspect of the extremely rich collective dynamics of this
model.

V. DISCUSSION

tA"e have demonstrated that the global metapopulation
does not show collective chaotic behavior if local habitats
interact via the threshold rule common in SOC models.
In a wide parameter range the dynamic behavior is ei-
ther noisy (with many degrees of freedom), periodic, or
converges to a stable fixed point. The absence of collec-
tive chaos is not trivial, especially at small system sizes,
because the criticality of the model results in an infinite
coherence length. Furthermore, because of the time scale
separation the signal propagation speed is infinite as well.
However, this statement is valid only "occasionally" be-
cause the interaction is switched on above a threshold ex-
clusively. Thus we believe that this threshold condition
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inhibits the buildup of collective chaos: The dynamics of
a single site is not inBuenced permanently by its environ-
ment so that dephasing occurs below the threshold.

It is easier to understand the buildup of almost perfect
oscillatory collective states. An important characteristic
of the relaxation rule used in this model is the presence
of a very robust self-averaging process [30,31]. After a
relaxation cycle the distribution of the state variable is
sharply peaked around the multiples of a characteristic
value. If the coupling is strong enough, i.e., the threshold
is low enough, the relaxed configuration can by described
by a few discrete density values, which do not depend
on the initial con6guration. Thus all sites will evolve
more or less coherently in time. This 6nally leads to a
collective behavior characterized by cyclic occurrences of
some more or less &ozen patterns.

This model is an interesting type of SOC cellular au-
tomaton model. While the avalanche-size distribution
shows a power law behavior which is the main charac-
tenstic of SOC, the power spectr»m of the time series
divers markedly &om the usual broadband colored noise.
We have observed white or spiky power spectra in con-
trast to the typical 1/f behavior [32] of the other SOC
models.

The simulational results agree well with the over-
whelming part of 6eld observations, where only in some
exceptional cases a partially chaotic time evolution was
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found [33]. We note again that most populations, which
showed more or less convincing evidence for chaotic be-
havior, were observed in laboratory experiments, i.e. , in
populations isolated kom any environmental interaction.
The biological relevance of our model could be checked
by a statistical analysis of some real migration data, i.e. ,

through the comparison of their avalanche-size statistics
with the results of our simulations.
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