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Sudden enlargement of a small-size chaotic attractor occurs when it collides with a coexisting
nonattracting chaotic set. Before the collision the two dynamically independent invariant sets are
characterized by different thermodynamical potentials, e.g., by free energies. The infinitesimally
weak dynamical coupling appearing at crisis generates a third component, and the resultant free
energy of the enlarged attractor is obtained as the minimum of the three partial free energies. Not
far beyond the crisis the free energy of the enlarged attractor is still very close to the minimum of
those belonging to the remnant of the old attractor and the other nonattracting chaotic set. We
demonstrate this general phenomenon by one-dimensional maps. By extending the concept of Fro-
benius-Perron operators we invent the constrained generalized Frobenius-Perron operator providing
us with a method to compute the free energies of invariant chaotic sets which are either coexisting
side by side each other independently or being embedded in a larger set.

PACS number(s): 05.45.+b

I. INTRODUCTION

Dramatic changes in the structure of chaotic attrac-
tors might take place as some control parameter a passes
through certain critical values. These changes can be ei-
ther sudden destructions or enlargements of attractors or
attractor mergings. Such critical situations, called cri-
sis situations [1], attracted recent interest from both ex-
perimental [2-4] and theoretical [5-14] points of view.
Attractor enlargement, which is experimentally most ac-
cessible, occurs, for example, at one edge of any periodic
window within the chaotic regime of any dynamical sys-
tem.

From a dynamical point of view, the geometric change
of the size and shape of the attractor is accompanied in
such cases by the phenomenon of the so-called crisis in-
duced intermittency [7]. This means that trajectories on
the attractor somewhat past the critical value a. stay in
the phase space region of the precritical chaotic attractor
for some time, then burst into a chaotic motion over a
larger region before turning back to the original region
again. This process then repeats again and again, how-
ever, the duration of the chaotic motions in the region of
the former attractor varies unpredictably. Crisis induced
intermittency can be characterized by the average time 7
between subsequent bursts which tends to infinity as the
critical value a. is approached.

The key observation [15] in understanding the phe-
nomenon of attractor enlargement is that the precriti-
cal chaotic attractor, which may well consist of several
disjoint pieces, coexists with a nonattracting chaotic set
(either a saddle or a repellor [16]). The attracting and
nonattracting sets are independent in the sense that they
have two different natural invariant measures not con-
nected dynamically. While gradually approaching the
crisis point, the nonattracting set changes only hardly
and smoothly, but the attractor becomes closer and closer
to its fully developed chaotic state. The crisis configu-
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ration is that special situation when the attractor just
touches its basin boundary on which the nonattracting
chaotic set sits. By this touch, a heteroclinic connection
is created between the unstable manifold of the attractor
and the stable manifold of the nonattracting set. Due to
this dynamical coupling, beyond crisis there exists only
a single enlarged chaotic attractor which contains both
of the former attracting and nonattracting invariant sets.
In the postcritical region the remnant of the old multi-
piece attractor also becomes a nonattracting chaotic set
(via the same mechanism as for attractor destruction).
It coexists with the other — practically unchanged —
nonattracting chaotic set. The two sets are connected
via heteroclinic tangles. In particular, the average life-
time of trajectories staying in the close neighborhood of
the new nonattracting set practically equals the average
time between bursts into the region which has not be-
longed to the precritical attractor [7].

We would like to emphasize that attractor enlarge-
ment provides a good example for multitransient chaos
[17] where the dynamics of weakly coupled nonattract-
ing chaotic sets can be successfully used to analyze the
motion on the joint chaotic attractor.

The thermodynamical formalism [18] of dynamical sys-
tems has proved to be a powerful method in characteriz-
ing chaotic motion. It is a question of principal interest
how it should be applied when two or more chaotic sets
coexist, as in the case of attractor enlargement before
and after crisis.

In this paper we point out that in the precritical region
two different free energies [19] characterize the system:
one for the attracting and another one for the nonat-
tracting chaotic set. They are associated with different
sorts of dynamics: permanent and transient chaos, and
are, therefore, independent. It is to be emphasized that
although transient chaos reflects the properties of a set
with a basin of attraction of measure zero, the chaotic
motion on this set is more pronounced than the one on
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the attractor in the sense that it has greater Lyapunov
exponent and topological entropy.

At crisis the two sets become coupled, although first
in an extremely weak manner only. Consequently, the
free energy for the union of these sets is just the abso-
lute minimum of the two partial free energies. Because
of taking the minimum, the resultant free energy will
show a break at some inverse temperature. At the very
same crisis point a third component appears as well: the
heteroclinic connection. Since this component is just at
birth, it is connected with a marginally stable periodic
orbit. Consequently, the free energy of this component is
equal to zero and practically independent of the other two
components. Thus another break shows up which makes
the resultant free energy identically zero for 8 > 1.

Beyond crisis the remnants of the precritical chaotic
sets are no longer independent. It is nevertheless worth
dealing with their partial free energies characterizing the
corresponding subdynamics. The resultant free energy is
now somewhat below the absolute minimum of the partial
ones and does not exhibit any nonanalyticity.

In order to be specific, we study one-dimensional
maps around the end of periodic windows which are
accompanied by crisis induced intermittency. In such
one-dimensional cases the use of generalized Frobenius-
Perron operators (FPO’s) [20-28], whose largest eigen-
value directly yields the free energy, has proved to be
very efficient. We show that different partial free energies
arise by choosing the functions on which the generalized
FPO acts from different function spaces. Technically we
introduced the concept of constrained generalized FPQO’s
that are restricted to certain subsets X of the entire in-
terval on which the map is defined. The constrained FPO
is shown to yield the free energy of the invariant set that
is contained in region X.

The paper is organized as follows. In Sec. II the invari-
ant chaotic sets relevant for the phenomenon of attractor
enlargement are described. Next, we define the corre-
sponding cylinder sets and free energies. The constrained
FPO is introduced in Sec. IV. The numerical methods
applied and the free energies characterizing the precrit-
ical, critical, and postcritical situations are presented in
Sec. V. In the last section, in addition to some general
remarks, we give a description of attractor enlargement
in terms of another thermodynamical potential, the en-
tropy, obtained as the Legendre transform of the free
energy.

II. INVARIANT SETS AROUND
CRISIS INDUCED INTERMITTENCY

As a working example we chose the main period-3 win-
dow of the quadratic map

Tpt1 = f(zn) =a— z2 (1)

lying in the parameter range 1.75 < a < a =
1.79032749199..., which has been studied intensely in
the literature [1].

The attractor enlargement takes place at the critical
value a.. We briefly summarize the topological changes
in the phase space structures as a passes through this
critical value from below.

A. Precritical situation

Figure 1(a) shows that slightly below a. the map f re-
stricted to three bands B; = (z4,x,), B2 = (z»,zB), and
B3 = (z¢, z.) has the following property: B, is mapped
onto B3, B3 onto B;, and B; into By; the latter follows
since the image of the maximum point of the parabola,
f(0) = a, is less than zg. Therefore these intervals form
a primary range of attraction with three pieces of the
chaotic attractor located inside. The boundary points of
this range are the unstable period-3 points z,, T3, and
z., together with three subsequent preimages of zp: x4,
z¢, and zp (cf. Fig. 1).

It is worth considering the effect of the mapping on the
two gaps in between the three parts of the attractor. Gap
G1 = [z, z 4] is mapped onto gap G; = [z,, ), but G,
is mapped onto [z.,zp] = G1 U By U G;. Thus the map
restricted to G; U G2 is not closed in dynamical sense:
typical trajectories started from here sooner or later leave
this region by being mapped into B;. However, there ex-
ist periodic orbits of infinite number in this region (like-
wise aperiodic ones) which never escape. These orbits
form another invariant set besides the attractor and the
external fixed point z, = —[1/2 + (a + 1/4)*/2]. Since
all orbits on this nonattracting set of measure zero are
strictly repelling, it is called the chaotic repellor. The
repellor is located within the two intervals G; and Gq,
therefore it will be referred to as the “two-piece repellor”
in the following, for simplicity.

Thus in the precritical situation there are two dynam-
ically independent chaotic sets in the system: the three-
piece attractor and the two-piece repellor, producing per-
manent and transient chaotic behavior, respectively. We
would like to draw attention to the fact that the period-3
points =4, Tp, and z., the boundary points of the range
of attraction, are the sidepoints of the repellor, at the
same time.

B. The crisis situation

At a = a. [see Fig. 1(b)] the maximum point is just
mapped on z g, thus the three-piece chaotic attractor ex-
tends to the whole primary range of attraction (B;, Ba,
and Bj;). This fully developed chaotic attractor touches
the repellor at the boundary points, thus the unstable
period-3 orbit now belongs to both the three-piece at-
tractor and the two-piece repellor. The existence of a
common periodic orbit will be reflected in the dynamical
properties.

C. Postcritical situation

If the control parameter is increased beyond the crisis
value a., then a = f(0) > zp and the maximum point
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is mapped outside B; [see Fig. 1(c)]. Since the image of
the interval B; sticks out of Bz, the map restricted to
the former three-piece range of attraction is not closed
any longer. In fact, the chaotic attractor undergoes a
sudden enlargement: it becomes a one-piece attractor by
extending to the whole interval A = [f(a),a], which in-
cludes both the bands of the former three-piece attractor
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and the gaps where the two-piece repellor was located.
The former chaotic sets, however, did not disappear
without a trace. It is possible to distinguish those orbits
that never leave the two-piece gap region G = G; U G2
in which one, therefore, finds a two-piece repellor again.
Analogously, it is also possible to define a set consisting

FIG. 1. The quadratic map (1) and the natural coverage of its basic invariant sets around attractor enlargement. z. denotes
the external unstable fixed point. The mediating period-3 orbit (za, zs, z.) and the points x4, zc, and zp on its stable
manifold determine the end points of the band (B) and gap (G) regions. The arrows indicate how these are mapped onto each
other. The dotted line shows that in the precritical (a), critical (b), and postcritical (c) cases the maximum point is mapped
into Ba, exactly on zg, and outside of Bs, respectively. In the latter case the first two images of the origin define the edges of
the enlarged attractor (A). The actual control parameter values were a = 1.785 (a), a. = 1.7903... (b), and a = 1.8 (c).
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of orbits that never escape from the band region B =
B; U B; U B3. This set will be called hereafter the three-
piece repellor arising beyond crisis as the remnant of the
three-piece attractor.

It may be worth mentioning that the shape of the
two-piece repellor practically does not change while the
system is passing through the crisis: it has wide gaps
and a relatively small fractal dimension. On the other
hand, while departing from the crisis point the gaps of
the three-piece repellor open up. Their width is propor-
tional to (a—a.)'/2, so the fractal dimension of this set is
very close to 1 around a.. The period-3 orbit {z,zp, z}
on the boundary between the two- and the three-piece
repellors belongs to both invariant chaotic subsets.

Although being only zero measure subsets of the whole
attractor, these two repellors basically determine the dy-
namical behavior of the system if a is not very far from
the crisis value. In this case the heteroclinic coupling be-
tween the two regions is so weak that the dynamics of
the system can be considered as intermittent switchings
between two sorts of transient chaotic behaviors: long
chaotic paths in the three-piece region escape to the two-
piece region, from where relatively short chaotic tran-
sients, bursts, lead back to the three-piece region again.

III. THERMODYNAMICAL QUANTITIES
A. Cylinders and free energy

The thermodynamical formalism of one-dimensional
dynamical systems is based on the definition of a hi-
erarchically nested set of intervals, the so-called cylin-
ders [18,19].

As the first step of cylinder construction the chaotic
set has to be covered with a single “level-0” cylinder.
This covering has to be refined to a level-1 partition so
that the map restricted to each partition interval is con-
tinuous and invertible. The level-1 cylinders are then
defined by taking within each partition the closest possi-
ble coverage of the chaotic set. Each level-1 cylinder can
be further divided by taking its intersections with the
preimages of every level-1 cylinder set one by one. Then
the coverage can be refined again by taking new, level-
2 covering cylinders within each intersection. Repeating
this process iteratively one obtains the whole hierarchy
of cylinder sets.

The partition at the first level is called the generating
partition [18] if it is chosen so that in the resulting hi-
erarchy the maximal length of level-n cylinders vanishes
as n — oo. In the cases investigated in this study, this
criterion always holds.

Let the set

RN SR, A | ()

contain the lengths of level-n cylinders, where N(n) de-
notes the total number of cylinders.
The number of cylinders increases exponentially,

N(n) ~ e¥en, ®3)

for large n’s where the exponent Ky is the topological
entropy of the set.

The fractal dimension, Dy, of the chaotic set can also
be obtained in the large n limit from the implicit equation

N(n)

3" (€M)Pe = const. ()

i=1

In the case of repellors Dy is less than one, and the total
length of the covering cylinders vanishes exponentially
when n — oo:

N(n)

>4 e, (5)

i=1

Here x denotes the escape rate from the invariant set.

The free energy function of the chaotic set based on the
cylinder construction is defined [19] by the asymptotic
scaling relation

> (6P~ ePrOm, (6)

=1

As a fundamental thermodynamical potential, the free
energy function can be used to derive important dynam-
ical scaling quantities. For example, a direct comparison
to the definitions (3), (5), and (4) shows that the topo-
logical entropy, the escape rate, and the fractal dimen-
sion of an invariant set can be extracted from the SF(3)
function by taking it at 8 = 0 [Ko = — limg_,¢ BF(8)],
at 8 = 1 [k = F(1)], and by determining its root
[F(Do) = 0], respectively. It can be shown [19] that
the average Lyapunov exponent A (taken with respect to
the natural measure) is the derivative of 8F(3) at 8 = 1:
A= [BF(B)]os.

B. Construction of cylinders around crisis

Now we carry out the construction of cylinders for
each chaotic invariant set. First we show the cylinder
construction of the attracting chaotic sets, then the con-
struction for the nonattracting ones.

a. The one-piece postcritical attractor beyond crisis
is the interval A = (f(a),a) [cf. Fig. 1(c)]; we consider
it as the level-0 cylinder set. By cutting this interval at
z = 0, one obtains two subintervals, C([)A] = (f(a),0)
and C{A] = (0,a), on which the map is monotonous

[Fig. 2(a)]. We take C([)A] and C&A] as the level-1 cylinders.
These latter intervals, being the preimages of the attrac-
tor, occupy more space than the attractor itself. There-
fore the level-2 cylinders then can be obtained by taking
the intersections C,[;i] = C’I[A] n f"l[C;E.A]] (3,7 = 0,1),
allowing that some of these may be empty. Similarly,
the level-3 cylinders can be obtained from the level-2
cylinders by splitting them according to their preimages:
clfl = e n el = e nfrcle)) Gl = 0,1),
etc. The number of symbol subscripts gives n, the level
in the hierarchy.

The number of cylinders is at most doubled in each step
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FIG. 2. The construction of the generating partition and the first few level of cylinders of the enlarged attractor (A) at
a = 1.8 (a), the precritical attractor (43) (b), and the precritical repellor in G (c) at a = 1.785. The attractor constructions
give joint cylinders with incomplete symbolic grammars since a # a.. The repellor construction, yielding disjoint cylinders
whose number follows the Fibonacci sequence, goes exactly the same way in the postcritical regime as shown here.
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of the construction: N[4l(n) < 2". According to (3), this
yields the obvious upper limit

K([,A] < log(2) (7)

for the topological entropy of the enlarged attractor.

The ensemble of the lengths of cylinders C:[:‘i];...i,.
vides the length set

{eEA](n)}izl,...,N[Al (n)

pro-

associated with attractor A.

b. The three-piece precritical attractor (A3), located
within the band region B [cf. Fig. 1(a)], provides a good
example to show how the cylinder construction of the
attractor differs when it consists of several pieces.

In this case a partition of four level-1 cylinders is re-
quired to cover the attractor [see Fig. 2(b)]: C£A3] =
[f®(0), f(0)] covers the right piece of the attractor
within By; CH¥ = [f®(0),f®)(0)] the left piece
within Bs; while ¢ = [f®(0),0] and cl*¥ =
[0, £®)(0)] cover the monotonous parts within B;. The
cylinders at subsequent levels then can be constructed
along the same lines as it was done in the case of the
one-piece attractor [cf. Fig. 2(a)].

An alternative method of construction is based upon
the constrained visiting order B; — B — B3 — By ---
of the three pieces. Therefore it is possible to con-
struct the cylinders of the attractor of the third iterated
map f(®) within the central band B, using the first or-
der partition to C([,Azl and C}As], as defined above. The
level-3n cylinders of the three-piece attractor can then be
obtained by taking the level-n cylinders of the threefold
iterated attractor and their first and second preimages
within B3 and B;. This method of construction implies
the upper limit

K3 < 2log(2) ®)

for the topological entropy.

In the crisis situation, at @ = a., the three pieces of
the attractor exactly fill up the three bands B;, B, and
Bjz. The inequality in the previous expression for the
topological entropy is then replaced by an equality.

c. The two-piece repellor [see Fig. 2(c)]. The level-0
coverage of this set is the interval [z., 5] = G1UB; UG3.
This is to be divided in the next step at £ = 0 into
two pieces on which the map is invertible. Excluding
B;, which does not contain points of the two-piece re-
pellor, leads us to choose C([,G] = G; and C’{G] = Gy
as level-1 partition sets. Note that B; is the only
way out from this region, thus by excluding its order-
n preimages, one can obtain the points not escaping in n

steps. Consequently, the level-n cylinder sets clé

G — G ~ - :lig...i,._—
ciing I[C.[,ilg...i,.] = £;"C5) ;] (where f3* and f
stand for the inverse of f for the left- and right-hand
branch, respectively), are just the complements of the

order-n preimages of B;. In the n — oo limit this con-

struction ends up with the Cantor set structure of the
repellor, for which

N{C(n)

S d9™ 0, (9)

=1

Using Egs. (4) and (5) yields a nontrivial fractal dimen-

sion DE,G] < 1 and a positive escape rate G for the
two-piece repellor.

It is simple to show that the number of cylinders fol-
lows the Fibonacci sequence, which results in

K([,G] = log ([%_Ll) . (10)

The above consideration for the construction of the
two-piece repellor is independent of whether the system
is beyond or above crisis. Therefore the topological en-
tropy of the repellor does not change when the attractor
undergoes crisis.

d. The three-piece postcritical repellor (R3) replac-
ing the precritical attractor beyond crisis can be con-
structed in the simplest way by again taking advantage
of the restricted visiting order of the bands B;. Then
one can construct the level-n cylinders of the repellor of
the third iterated map within band B; by excluding the
higher and higher order preimages of the small “principal
band” around 0. The cylinders of the three-piece repel-
lor at level 3n can be obtained by taking two subsequent
preimages (with respect to the map f) of this structure.
The resulting repellor will then be three copies of a di-

adic Cantor set, one in each band B;, with a nontrivial

fractal dimension D([,Rsl < 1 and a topological entropy

KR = %log(2). (11)

C. The free energies of invariant sets

According to Eq. (6), the free energies of the chaotic
sets can be extracted from the asymptotic scaling rela-
tions

NIXI] (n)

Y (@ ™)P ~ exp[-pFX)(B)n), (12)

i=1

where the superscripts X=A, G, A3, and R3 in the square
brackets distinguish quantities belonging to the postcriti-
cal enlarged attractor, the two-piece repellor, the precrit-
ical three-piece attractor, and the postcritical three-piece
repellor, respectively.

Because the construction of the three-piece attractor
and repellor are done the same way, there is a trivial
transition between the resulting cylinder structures with
lengths {fEAa](")} and {EERa](")}, respectively. Therefore
it is possible to introduce a single free energy function

FIBl(g) = {F["‘” (8) ifa<a

FI®(g) ifa>a, (13)
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for the “three-piece” invariant set located in the band
region B.

Knowing the functions FX] it is possible to determine
all dynamical quantities such as K([,X], D([)X] ,AXD or k[X]
corresponding to the respective chaotic sets.

IV. THE CONSTRAINED FROBENIUS-PERRON
OPERATOR METHOD

The determination of the cylinders (2) and their length
scaling relation (6) is a reliable way for the numerical
approach of the free energy function. However, the use of
the generalized Frobenius-Perron operator, Hg, defined
[20] via

P(z)
Y (14)
talimeay '@

Hgip(z') =
provides an even more powerful method. It has already
been successfully used to determine the spectrum of dy-
namical scaling exponents both for chaotic attractors and
repellors in cases when there is only one chaotic set in the
map. Starting from an arbitrary initial function g, the
consecutive use of the operator yields a sequence of func-
tions:

Un(y) = Hivoly) = ) _Pole) g,

™ (2)]B
telsmmy=yy ()]

The asymptotic growth rate of these functions, A;(3) =
limn s 0 [¥n(¥)/%0(y)|*/™, is unique for almost all smooth
initial functions and independent of y. It can be inter-
preted as the largest eigenvalue of Hg which has been
shown [20,27] to be related to the above-defined free en-
ergy through

Ai(B) = e PFD). (16)

In this section we discuss how the generalized FPO can
be applied to dynamical maps with coexisting chaotic in-
variant sets. Let us suppose first that a region G con-
tains a chaotic repellor within the range of attraction of
a disjoint chaotic attractor B. We consider two examples
below to demonstrate that in such cases the growth rate
limy, 00 |%n (¥)/%0(y)|Y/™ depends on y, as well as on the
particular choice of the initial function .

As the first example we study the case 8 = 1 (the
conventional FPO). In this case the operator describes
the time development of probability distributions due to
the map f. Thus any normalized smooth initial func-
tion can be considered as a probability density function
which asymptotically “shrinks” to the attractor and ap-
proaches the density function of the natural measure.
Because the natural measure is invariant, the eigenvalue
A1(1) = Yn(y)/¥n—1(y) will be 1 for all y points on the
attractor. This, by (16), yields BF(8) = 0. (The cor-
responding eigenfunction of H is the natural density it-
self.) However, if y is chosen on the repellor, one finds
that the density asymptotically decays with the escape
rate x of the repellor: ¥, (y)/¥n—1(y) ~ e™"", yielding a
different free energy value, BF(3) = k.

K. G. SZABO AND T. TEL 50

Let us now take the 3 = 0 case. If the initial function
Yo(z) = 1 everywhere then, according to (15), ¥, (y)
simply gives the number of the order-n preimages of a
point y:

Ualy) = Y w"l(m): >ooonooan

{z|f(™) (z)=y} {2l f(™) (z)=y}

We would like to remark that there is a significant asym-
metry between the dynamical roles of the two chaotic in-
variant sets: any point y of the attractor has preimages
both on the attractor and on the repellor, while points
on the repellor have preimages only on the repellor itself.
Thus, if y belongs to the repellor, the growth rate of ex-
pression (17) is governed by the topological entropy of
the repellor. If, however, y belongs to the attractor, the
number of its preimages on the attractor and of those on
the repellor increase with different topological entropies.
The resulting growth rate thus will be dominated by the
maximum of the two exponents. In contrast to the 8 = 1
case, the 1, functions do not shrink asymptotically to
the attractor.

By taking different initial functions at 3 = 0, the local
growth rates may change as well. If ¥o(z) is chosen to
be 1 on the attractor B and 0 elsewhere, then Eq. (15)
reads

Yn(y) =

3 %](x) = S Loy

{zlf(") (z)=y} {z€B|f(") (z)=y}

i.e., Yn(y) counts those order-n preimages of y that lie
on the attractor. Therefore if y is on the attractor, ¥, (y)
grows exponentially according to the topological entropy
of the attractor, while if y lies outside the attractor, ¥, (y)
remains 0 for any n since it has no preimages in B |[cf.
Eq. 18]. Along similar lines, it is easy to see that choosing
o(z) so that it is 1 on the repellor and 0 elsewhere yields
the same growth exponent, the topological entropy of the
repellor on both sets.

These examples show that in the case of coexisting dis-
joint invariant sets the generalized FPO method as out-
lined above does not provide us with a unique free energy
function. But, as (18) shows, by a careful selection of y
points and initial functions, it is possible to avoid the
contribution of the unwanted invariant set(s). This has
led us to extend the concept of the FPO by involving
the necessary constraints into the operator itself. There-
fore we define the generalized Frobenius-Perron operator
constrained to a closed set X (constrained FPO) as

Y() .,
g freX
(eexifiy=any ' @IF (19)

0 otherwise.

Ay’ =

(We do not require X to be contiguous: it may consist of
several intervals as well.) This operator acts on a space
of functions with their support restricted to X.

Note that using the operator iteratively n times, the
sum
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— A0y (y) = ) _%olz)
"pn(y) - Hﬁ ¢0(y) - |f(")’(:l:)|ﬁ
{=1£(") (=)=y
Ym=0,1,...,n:f(M)(2)e X}

(20)

takes into account only orbits that remain within X
during all the n steps. If there is an invariant (non-
wandering) subset inside X, i.e., orbits never escaping
this region, then the points z in the sum above converge
to this subset. This subset is typically a fractal repellor.
As n — oo (20) reflects the properties of the invariant
subset within X only.

The essential difference between formulas (15) and (20)
is that the former takes into consideration the reflux of
trajectories to X, provided the dynamics allows this,
while (20) describes just the contribution from the in-
variant set inside X without any feedback to other parts
of the phase space. By using the constrained operator
with a suitably chosen X one can get rid of the initial
function or y dependence of the iteration.

When there are several disjoint invariant sets, X
should be set so as to contain only the one in question.
Then the growth rate of the 1,, functions yields the first
eigenvalue, /\[lx] (8), of the operator H },X] for (almost) all
y points within X and initial functions restricted to X.
The free energy F!X! (B) describing the dynamics of the
investigated invariant set then follows from (15).

For example, choosing X=G or X=DB in the quadratic
map (1) makes it possible to determine the free energy
functions FIG](B3) or FIB](3) of the two-piece repellor or
the three-piece attractor, respectively, in the precritical
parameter range.

The possible use of the constrained FPO is, of course,
not restricted to disjoint invariant sets. The “filter” set X
can be chosen arbitrarily, and the corresponding free en-
ergy function will give the dynamical scaling exponents
of the invariant subset within X only. For example, one
can use the cylinder construction scheme as described in
Sec. IIT A and specify X as the union of certain cylinders
so as to exclude or include paths with selected symbolic
sequences. The FPO constrained to this X then can be
used to analyze this artifically pruned dynamics.

This method can be applied in the postcritical regime
(a > a.) of the quadratic map (1). The natural choices
are the two-piece and three-piece repellors, embedded in
the attractor as described in Sec. III, whose free energy
functions can be obtained by setting X=G or X=DB, re-
spectively. Of course, by choosing X=A, one can obtain
the free energy of the enlarged attractor as well.

V. RESULTS

A. Numerical methods

We compared the cylinder construction method (cf.
Sec. III) and the FPO method (Sec. IV). Our experi-
ence has shown that the latter method can be used more
successfully.

When using the FPO technique, one applies the same

operator (and, therefore, the same computer program)
for the determination of the free energy functions of all
different invariant sets. The only thing one has to do is
to adjust X, the support domain of the function space,
properly by specifying it as the union of the level-1 cylin-
ders. On the other hand, the algorithms of the cylinder
construction method are different for each invariant set:
they depend on whether the invariant set is an attractor
or a repellor and on how many pieces it consists of. This
requires a detailed topological analysis of each invariant
set for any individual map to be investigated.

The other disadvantage of the cylinder set construc-
tion is that in order to obtain the level-n cylinder sets
one has to store the end points of all cylinders on the pre-
vious level. The storage capacity requirement thus grows
exponentially with increasing n. This gives a practical
upper limit which is on the order of 20 for the level of
cylinders which is often insufficient to obtain satisfactory
asymptotics in n. On the other hand, we managed to
combine the Frobenius-Perron method with an effective
algorithm to track down a (in our case binary) tree of
preimages whithout storing too much data. By this op-
tion it is possible to go as far as n = 60, even on a fast
microcomputer.

Test programs proved that the difference between the
results obtained by the two methods were in agreement
far within the range of systematic errors. Our final nu-
merical results were obtained, because of its advantages,
by the constrained FPO method.

The determination of the asymptotic growth rates
lim, o0 [¥n(¥)/%o(y)|/® and then the free energy
via (16) is based on the following considerations. The
function sequence (20) at a given 3 value is expected to
grow like

Yu(y) = A (B)" + BX2(8)" (21)

provided that A;(3) and A2(8), the two dominant eigen-

values of H, ;{aX]v are discrete and n is big enough. In the
numerical experiments, however, seldom does such a sim-
ple decay occur. Rather, these sequences are typically
spoiled by strong oscillations. Because n is very much
limited due to practical reasons, they cause uncertainty
and a significant error in the final result.

The reason for these oscillations is that the eigensub-
spaces corresponding to the eigenfunctions of the con-
strained FPO are often degenerate. The simplest exam-
ple we can give is the case of the three-piece attractor
(or repellor): Due to the fixed visiting order among the
three bands B;, Ba, and Bj [cf. Figs. 1(a)-1(c)], every

eigenfunction of AP is at least three times degenerate
since one or two time steps transform the eigenfunctions
into a linearly independent eigenfunction with the same
eigenvalue. (It may happen that the degree of degeneracy
is 6, 9, 12..., an integer multiple of 3.)

Owing to these degeneracies the time development of
the 1),, functions is described by

'll’n (y) =~ Anmoddl A1 (,B)n + Bnmoddg/\Z(:B)" (22)

rather than by (22). Here d; and d; stand for the de-
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grees of degeneracy ?f the eigensubspaces belonging to invariant sets. Apparently the SFIC] (B) function of the
the first and second eigenvalues A, (3) and Az(83), respec- two-piece repellor is steeper than BF[B!(3) of the three-

tively. Our numerical method determines the values and piece attractor, and, therefore, the relation A€l > \BI
the degrees of degeneracy of the two largest eigenvalues holds for the respective Lyapunov exponents. The inter-
(29]. sections with the vertical axis show that the topological

Another technical problem arises if the two eigenvalues entropy, KéG], is also greater than K([,B], in accordance

A1(B) and Az(B) become close to each other. Then the  ip our findings in Secs. IIIBb and III B c. This means
rate Of: approaching the asy mptot.ic exponent becomes i.n— that, in some sense, the repellor produces significantly
ﬁmtes1,ma,ll)f small. Due to the hn.nlted numl')er of avail- stronger chaoticity in the system than the coexisting at-
able n’s, this phenomenon, the critical slowing down of tractor, although its support is smaller in dimension.

relaxation rates, is accompanied with extremely large er- The BF!B)(3) function incorporates the dynamical
rors of the estimated eigenvalues. This effect can be used scaling exponents of the permanent chaos, while the

to detect phase transitions in the dynamical system. BFIG)(B) function characterizes the dynamical properties

The numerical results presented below were obtained . : . .
! - of the transient chaotic motion. Although these funct
by the constrained FPO method with the filter set choices & cons

G .
X = B, G, and A at different control parameter values. cross each other at some f value below D‘[’ '< 1, their

intersection cannot be interpreted as a phase transition

B. Precritical situation since they represent different dynamics.
We would like to mention here that if the filter set X
Figure 3(a) shows the results of numerical calculations were chosen so as to contain both B and G, then —
obtained for the free energy functions of the precritical for certain initial functions v and y values (cf. Sec. IV)
(a) a=1.785 < a, (b a = u,

pEns

NCal L »
,[\"[){'] — . 3F(A)

AF(f3)

| ]

- i i
71'1 1 i i

L i
-2 -15 -1 -0.5 0 05 D([J('"}l 15 D) 1 4Bl 05 0 0.5 4G gMI_,

(c) a = a, (d) a=18>a.
T T T T T ] 0.5 T T T T T

E
AF(3) 05 F A i

-0.25 —)}j,b » . B

-0.5

BF(f)

-0.25 0 0.25 0.5 Alal 1 1.25 -2 15 -1 -0.5 0 05 1 15

FIG. 3. The free energies of invariant sets obtained by the constrained FPO method. In the precritical regime (a) the
independent free energies F!B! of the three-piece attractor in the band region and FIS! of the repellor in the gaps is shown.
At the crisis (b) the attractor collides to the mediating orbit and this causes a break at 8B ~ —1.119 in F[P!. The slope
left of this breakpoint is A, the Lyapunov exponent of the mediating orbit which — being simultaneously the least unstable
orbit of the repellor — also gives the asymptotic slope of BFI!(8) for 8 — +oco. The newborn marginally stable heteroclinic
orbit M contributes with FM] (B) = 0. The free energy of the full chaotic set A is the minimum of the three partial free
energies (heavy line). Therefore it has two breakpoints at /¢! & 0.758 and B™] = 1. The level crossing at crisis of the leading
eigenvalues of the generalized FPO acting on the entire chaotic set A is also shown (c). The negative logarithms of the first
(+) and second (x) eigenvalues approach the minimum and the maximum, respectively, of the partial contributions B and G
(full lines). In the postcritical regime (d) the free energy of the entire attractor (A) runs somewhat below the contributions
FIBl and FIC] of the repellor components. All free energy components, except F' [M] were obtained after 30 — 60 iterations of
the constrained FPO. The parameters are the same as in Fig. 1.



S0 THERMODYNAMICS OF ATTRACTOR ENLARGEMENT 1079

— the numerical results would yield the minimum of
the two functions. In other words, at different 3 val-
ues the stronger chaotic exponents of the transient chaos
would supress the exponents of the permanent chaos, or
vice versa. The appearance of a virtual phase transition
in this case would be an artifact only. Similarly, if X
were extended so as to contain the isolated external fixed
point z,, then the free energy of this coexisting regular
repellor, BF(B) = log|f'(z4)|, would imply the appear-
ance of an additional false phase transition in the system
[30] as it was pointed out by Refs. [31,26].

C. Crisis situation

Figure 3(b) shows the 3F(8) functions found numeri-
cally at the crisis situation a = a.. The shape of the free
energy of the two-piece repellor does not change much
while the control parameter is going through a. (cf. Sec.
IMIBc).

The free energy function of the three-piece attractor,
on the other hand, undergoes drastic changes at a.. Nu-
merically, the right side seems to be a straight line in-
tersecting the horizontal axis at 8 = D([,B] = 1 as before,
and the vertical axis at —log(2)/3 since the topologi-

cal entropy K([,B] has reached its maximal value. The
left side is another straight line having the slope of
A = log [f®(za)] /3, the local Lyapunov exponent of
the period-3 orbit on the boundary. This is due to the
fact that the attractor became fully developed after hav-
ing been collided to the border of its domain, and, thus,
a dynamic link has been created with the period-3 or-
bit {z,, s, z.}. The break at BBl ~ (1 — A/K,_-[,B])_1 =
—1.11941, where the two parts join each other, reflects
a phase transition appearing because of this dynamical
link. (This sort of phase transition is analogous to the
case of a fully developed attractor at the external crisis
situation, a = 2 [27].)

In order to gain the best understanding of the global
changes of the thermodynamical behavior at crisis it is
worth considering separately what happens if a. is ap-
proached from below and from above.

In the limit @ — a. — 0, there is still no dynamical link
from B to G, therefore the corresponding free energies
FIB] and FIG] describe independent dynamics, just like
in the precritical region.

On the other hand, slightly above a. the coupling be-
tween the two invariant sets is manifested in the appear-
ance of orbits that are not restricted to either of the re-
gions B or G. In the limit a = a.+0, this dynamical cou-
pling is infinitesimally weak, as if there were only a single,
infinitely long trajectory mediating between B and G.
Since the birth of this orbit happens just at a = a., it
is marginally stable, and its free energy function is iden-
tically zero: BFIM] (8) = 0. This nicely reflects that
attractor enlargement occurs together with an intermit-
tent dynamics, often called crisis induced intermittency
[7]. (It is well known that a vanishing free energy for
B > 1 is always a sign of intermittent behavior [32].)
The role of the marginal orbit in our case is analogous to

that of a marginal fixed point in intermittent fully devel-
oped maps. Since there are three dynamical components
with only infinitesimally weak couplings among them, the
resultant free energy for a — a. + 0 is the absolute min-
imum of the free energies of the three components [the
solid line in Fig. 3(b)], just like in the case of classical
thermodynamics of coexisting phases.

The resultant free energy has thus two phase transi-
tion points, B¢ = 0.75799 and BM] = 1, where the free
energy function of the three-piece component intersects
those of the two-piece and the mediating components,
respectively. It is interesting that the fully developed
three-piece invariant set (the old attractor) hardly con-
tributes to the total free energy: apart from the small
segment between BS] and BIM], it is determined by the
contributions of the former repellor in the gap region and
the mediating orbit only. (The third transition at BBl
coming from the three-piece component alone, does not
appear at all in the resultant free energy.)

Figure 3(c) shows the enlargement of the crossing of
the three-piece chaotic attractor’s and the two-piece re-
pellor’s free energy function around B[€! right at crisis.
We have also depicted the values obtained by choosing
X = A = BUG for the two leading eigenvalues of the
corresponding operator H éA). The results clearly show
that the first eigenvalue follows the maximum of the two
subsystems’ eigenvalue, while the second eigenvalue co-
incides with the mininium of them. The error bars them-
selves show that the error of the estimation due to the
phenomenon of critical slowing down is indeed increased
by magnitudes around the phase transition point, and
has a maximum right there.

D. Postcritical situation

Figure 3(d) shows the thermodynamical potentials
somewhat beyond the crisis situation. The two-piece and
the three-piece invariant sets (both repellors now) form
two subsets of the total invariant set of the attractor with
free energy functions BFIG](3) and BF!B(B). Increasing
the control parameter makes their fractal dimensions de-
crease and their escape rate increase continuously, while
their topological entropies remain fixed. Although they
no longer bear separate dynamical meaning in the asymp-
totic sense, they are still useful by serving as upper limits
for the resultant free energy function of the whole invari-
ant set, F[(4(8), or for characterizing finite time mea-
surements. Since the escape from the former attractor is
very infrequent and the corresponding dynamical link be-
tween B and G is very weak, we anticipate that F[4l(g)
can be very well approximated by the minimum of the
free energy functions of the two repellors.

Indeed, the BF4l(B) curve of the enlarged attractor
apparently runs below the curves belonging to the two
repellor components. The breaks at the former phase
transition points are smoothed out. These findings are
the consequences of the nonzero contribution of the third
component, the mediating orbits, to the total free energy.

Knowing the partial free energies FIG!(8) and FIBl(3),
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however, is also useful since they contain information on
the dynamical behavior inside the enlarged attractor A.
In particular, close to a. the escape rate, x5! = F[Bl(1),
from the three-piece invariant subset gives 1/7, the re-
ciprocal of the average lifetime before bursts into the old
(two-piece) repellor region G. The escape rate of the in-
verse process, k¢l = F [G](l) > kBl results in much
shorter staying times in region G than in B.

VI. DISCUSSION AND CONCLUSIONS

By applying the concept of conventional thermody-
namics [18,19], the Legendre transform of the free en-
ergy FIX](B) yields an entropy, SX!(E). This quantity
characterizes the dynamical multifractal properties of the
invariant set within X by specifying the topological en-
tropy SX! of its orbits with local Lyapunov exponent E
as a convex function of E. In particular, the maximum

of this function yields K([)x], the topological entropy of
the whole invariant set within X.

Figure 4(a) shows SIGl(E) and SIPI(E), the Legen-
dre transforms of the free energies of the precritical two-
piece repellor and three-piece attractor [cf. Fig. 3(a)]. It
demonstrates spectacularly that in this case the transient
chaos is indeed stronger than the coexisting permanent
one: all local Lyapunov exponents occurring on the at-
tractor are smaller than the minimal Lyapunov exponent
on the repellor (which by chance happens to be A, the
local Lyapunov exponent of the period-3 boundary or-
bit). Due to the properties of the Legendre transforma-
tion, the entropy curve of the attractor just touches the
S = F diagonal, while the repellor’s spectrum is shifted
by AE = kl€ to the right.

When the control parameter is increased to a., the
boundary orbit belongs to both invariant sets (cf.
Sec. II B). Figure 4(b) shows that in this case the period-
3 orbit is the least unstable orbit on the repellor and the
most unstable one on the attractor at the same time:
the two entropy curves just touch each other at the com-
mon point £ = A. The third partial entropy compo-
nent, belonging to the marginally stable periodic orbit
at birth, consists of a single point in the origin (M), and
corresponds to the horizontal branch of the F[4](8) for
B > 1. The entropy function of the invariant set of the
whole A interval is obtained from the three partial en-
tropy components as their convex hull. Thus the straight
line segments with slopes ™! = 1 and B(%! are the Leg-
endre transforms of the two phase transition points con-
necting the three-piece attractor’s partial entropy func-
tion to the graphs belonging to the marginally stable or-
bit and the two-piece repellor, respectively.

In the postcritical regime the two chaotic sets within
G and B remain joined at the period-3 orbit and, accord-
ingly, the corresponding curves SIG](E) and SIBl(E) still
touch each other at F = A [see Fig. 4(c)]. These functions
describe the chaotic dynamics during the two intermit-
tent chaotic phases which can be observed if the control
parameter is not too far above the critical value a.. Note
that the SIBI(E) curve does not reach the diagonal any
longer since the three-piece invariant set has turned to be

arepellor. The entropy S[4l(E), characterizing the whole
attractor, runs somewhat above the common envelope of
the two components and extends to the diagonal. This
“extra entropy” can be interpreted as the contribution of
the orbits taking part in the coupling between the com-
ponents. The most sensitive part of S[4lI(E) is the one
around the smallest accessible value of E. Since there
are several very tiny periodic windows above crisis, it de-
pends very strongly on the actual control parameter a. If
one accidentally finds a marginally stable orbit at birth,
the S(E) function will be similar to that at the criti-
cal case with a zero minimal local Lyapunov exponent.
At slightly different parameter values, however, the at-
tractor may be strictly chaotic, yielding a positive lower
bound for E. Then, the left part of the asymptotic result
deviates from that obtained at crisis. For intermediate
and large values of the exponent E one finds that the
shape of the resultant entropy function is always close to
the convex hull of the contribution of the basic compo-
nents.

The concept we have outlined in this paper for de-
termining dynamical properties via the thermodynamic
potential of component chaotic sets can be easily applied
to other one-dimensional maps. Moreover, by making
appropriate generalizations in the definition of the ther-
modynamical quantities (cf. Ref. [33]) our method can
be extended to multidimensional maps as well. Qualita-
tively the same phenomena should occur around internal
crises of all dynamical mappings as we have demonstrated
here on the example of the quadratic map (1).

If the system has certain symmetries, internal crises
often happen as symmetry recovering attractor merg-
ings [1]. Then the precritical attractors have identical
free energy functions and the mediating orbit sits on the
(chaotic or regular) saddle on the basin boundary be-
tween them. This latter invariant set plays the role of
the repellor of our example.

Finally we would like to mention that the fact that
the S(E) functions of the disjoint components do not
lap over is a consequence of the specific map, and this is
not necessarily true for every one-dimensional map and
is certainly atypical for higher-dimensional cases.

Our results support the view that the concept of multi-
transient chaos [17] can be applied usefully when weakly
coupled repellors can be distinguished whithin a chaotic
attractor: the weaker the coupling is, the better the
scaling exponents, calculated from the individual com-
ponents, approach that of the full attractor.

The importance of nonattracting chaotic sets very close
to crisis has briefly been mentioned in a few previous pub-
lications [9,3] from the point of view of different multi-
fractal spectra. Very recently, independently of our work,
Leven et al. [13] have made several calculations for the
f(a) spectrum and other metric quantities in the peri-
odic window of a flow. Their results concerning the met-
ric quantities associated with coexisting disjoint chaotic
attractor and saddle are in accordance with our results
in the precritical regime. We anticipate that in the post-
critical regime the partial metric quantities, if someone
measured them, would also behave analogously to our
findings.
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FIG. 4. Entropy spectra corresponding to the free energies of Fig. 3. In the precritical region (a) the entropy spectra of the
three-piece attractor (B) and the coexisting repellor (G) describe independent dynamics (a = 1.785). At the crisis value (b),
besides these, the contribution of the marginally stable heteroclinic orbit is a single point (M) in the origin. On arbitrary large
but finite time scales G and B correctly reflect the dynamics. The asymptotically exact entropy of the entire system (A) is given
by the convex hull (solid line) of the three components. The Legendre transforms of FI4! (+) and FI®! (A) obtained numerically
gradually approach the hull from above according to the rules of critical slowing down. In the postcritical region (c) the entropy
spectrum B is shifted to the right, below the diagonal. The other basic component, G, remains practically unchanged. These
spectra reflect short lifetime behaviors of the two intermittent chaotic phases. The entropy of the entire attractor (A) describing
the asymptotic dynamics is somewhat over the convex hull of the two repellors. Note that despite the small change in the

system parameter, the shape and the contribution of the three-piece invariant set undergo a drastic change in the course of
attractor explosion.
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