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Sudden enlargement of a small-size chaotic attractor occurs when it collides with a coexisting
aoaattractiag chaotic set. Before the collision. the two dynamically independent invariant sets are
characterized by difI'creat thermodynamical potentials, e.g. , by free energies. The in5nitesimally
weak dyaamical coupling appearing at crisis generates a third compoaent, and the resultant free
energy of the enlarged attractor is obtained as the minimum of the three partial free energies. Not
far beyond the crisis the free energy of the enlarged attractor is still very close to the minimum of
those belonging to the remnant of the old attractor and the other noaattracting chaotic set. We
demonstrate this general pheaomenon by one-dimensional maps. By extending the concept of Fro-
benius-Perron operators we invent the constrained generalized Frobenius-Perron operator providing
us with a method to compute the free energies of invariant chaotic sets which are either coexisting
side by side each other independently or being embedded in a larger set.

PACS number(s): 05.45.+b

I. INTRODUCTION

Dramatic changes in the structure of chaotic attrac-
tors might take place as some control parameter a passes
through certain critical values. These changes can be ei-
ther sudden destruction8 or enlaryement8 of attractors or
attructor meryings. Such critical situations, called cri-
sis situations [1], attracted recent interest from both ex-
perimental [2—4] and theoretical [5—14] points of view.
Attractor enlargement, which is experimentally most ac-
cessible, occurs, for example, at one edge of any periodic
window mithin the chaotic regime of any dynamical sys-
tem.

From a dynamical point of view, the geometric change
of the size and shape of the attractor is accompanied in
such cases by the phenoxnenon of the so-called crisis in-
duced intermittency [7]. This means that trajectories on
the attractor somewhat past the critical value a, stay in
the phase space region of the precritical chaotic attractor
for some time, then burst into a chaotic motion over a
larger region before turning back to the original region
again. This process then repeats again and again, how-
ever, the duration of the chaotic motions in the region of
the former attractor varies unpredictably. Crisis induced
intermittency can be characterized by the average time 7

between subsequent bursts which tends to infinity as the
critical value a is approached.

The key observation [15] in understanding the phe-
aomenoD of attractor enlargement is that the precriti-
cal chaotic attractor, which may well consist of several
disjoint pieces, coexists with a nonattractiny chaotic 8et
(either a saddle or a repellor [16]). The attracting and
nonattracting sets are independent in the sense that they
have tmo dHFerent natural invariant measures not con-
nected dynamically. %hile gradually approaching the
crisis point, the nonattracting set changes only hardly
and smoothly, but the attractor becomes closer and closer
to its fully developed chaotic state. The crisis con6gu-

ration is that special situation when the attractor just
touches its basin boundary on which the nonattracting
chaotic set sits. By this touch, a heteroclinic connection
is created between the unstable manifold of the attractor
and the stable manifold of the nonattracting set. Due to
this dynamical coupling, beyond crisis there exists only
a single enlarged chaotic attractor which contains both
of the former attracting and nonattracting invariant sets.
In the postcritical region the remnant of the old multi-
piece attractor also becomes a nonattracting chaotic set
(via the same mechanism as for attractor destruction).
It coexists with the other —practically unchanged-
nonattracting chaotic set. The two sets are connected
via heteroclinic tangles. In particular, the average life-
time of trajectories staying in the close neighborhood of
the new nonattracting set practically equals the average
time between bursts into the region which has not be-
longed to the precritical attractor [7].

%e would like to emphasize that attractor enlarge-
ment provides a good example for multitransient chaos
[17) where the dynamics of weakly coupled nonattract-
ing chaotic sets can be successfully used to analyze the
motion on the joint chaotic attractor.

The thermodynamical formalism [18]of dynamical sys-
tems has proved to be a powerful method in characteriz-
ing chaotic motion. It is a question of principal interest
how it should be applied when two or more chaotic sets
coexist, as in the case of attractor enlargement before
and after crisis.

In this paper we point out that in the precritical region
two different free energies [19] characterize the system:
one for the attracting and another one for the nonat-
tracting chaotic set. They are associated with different
sorts of dynamics: permanent and transient chaos, and
are, therefore, independent. It is to be emphasized that
although transient chaos refiects the properties of a set
with a basin of attraction of measure zero, the chaotic
motion on this set is more pronounced than the one on
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the attractor in the sense that it has greater Lyapunov

exponent and topological entropy.
At crisis the two sets become coupled, although 6rst

in an extremely weak manner only. Consequently, the
free energy for the»~ion of these sets is just the abso-
lute minimum of the two partial &ee energies. Because
of taking the minimum, the resultant free energy will
show a break at some inverse temperature. At the very
same crisis point a third component appears as well: the
heteroclinic connection. Since this component is just at
birth, it is connected with a marginally stable periodic
orbit. Consequently, the &ee energy of this component is
equal to zero and practically independent of the other two
components. Thus another break shows up which makes
the resultant free energy identically zero for P ) 1.

Beyond crisis the remnants of the precritical chaotic
sets are no longer independent. It is nevertheless worth
dealing with their partial &ee energies characterizing the
corresponding subdynamics. The resultant &ee energy is
now somewhat below the absolute minimum of the partial
ones and does not exhibit any nonanalyticity.

In order to be speci6c, we study one-dimensional
maps around the end of periodic windows which are
accompanied by crisis induced intermittency. In such
one-dimensional cases the use of generalized Frobenius-
Perron operators (FPO's) [20—28], whose largest eigen-
value directly yields the &ee energy, has proved to be
very efficient. We show that different partial free energies
arise by choosing the functions on which the generalized
FPO acts from diferent function spaces Tech.nically we

introduced the concept of constrained generalized FPO's
that are restricted to certain subsets X of the entire in-

terval on which the map is de6ned. The constrained FPO
is shown to yield the &ee energy of the invariant set that
is contained in region X.

The paper is organized as follows. In Sec. II the invari-
ant chaotic sets relevant for the phenomenon of attractor
enlargement are described. Next, we de6ne the corre-
sponding cylinder sets and &ee energies. The constrained
FPO is introduced in Sec. IV. The numerical methods
applied and the &ee energies characterizing the precrit-
ical, critical, and postcritical situations are presented in
Sec. V. In the last section, in addition to some general
remarks, we give a description of attractor enlargement
in terms of another thermodynamical potential, the en-

tropy, obtained as the Legendre transform of the &ee
energy.

II. INVARIANT SETS AROUND
CRISIS INDUCED INTERMITTENCY

As a working example we chose the main period-3 win-

dow of the quadratic map

x„+~ = f(x„) = a —x„2

lying in the parameter range 1.75 ( a ( a
1.79032749199.. . , which has been studied intensely in
the literature [1].

The attractor enlargement takes place at the critical
value a, . We briefly summarize the topological changes
in the phase space structures as a passes through this
critical value &om below.

A. Precritical situation

Figure 1(a) shows that slightly below a, the map f re-
stricted to three bands Bq = (z~, z~), B2 = (zs, z~), and
B3 = (xc', x,) has the following property: B2 is mapped
onto B3, B3 onto B~, and Bq into B2, the latter follows
since the image of the maximum point of the parabola,
f (0) = a, is less than x~. Therefore these intervals form
a primary range of attraction with three pieces of the
chaotic attractor located inside. The boundary points of
this range are the unstable period-3 points x, zg, and
x„ together with three subsequent preimages of xg. z~,
zc, and z~ (cf. Fig. 1).

It is worth considering the effect of the mapping on the
two gaps in between the three parts of the attractor. Gap
Gq = [z„z~] is mapped onto gap Gz = [z,zs], but G2
is mapped onto [z„zs] = Gq U Bq U G2. Thus the map
restricted to Gq U G2 is not closed in dynamical sense:
typical trajectories started &om here sooner or later leave
this region by being mapped into Bq. However, there ex-
ist periodic orbits of infinite number in this region (like-
wise aperiodic ones) which never escape. These orbits
form another invariant set besides the attractor and the
external fixed point z, —:—[1/2+ (a+ 1/4) ~ ]. Since
all orbits on this nonattracting set of measure zero are
strictly repelling, it is called the chaotic repellot. The
repellor is located within the two intervals Gq and G2,
therefore it will be referred to as the "two-piece repellor"
in the following, for simplicity.

Thus in the precritical situation there are two dynam-
ically independent chaotic sets in the system: the three-
piece attractor and the two-piece repellor, producing per-
manent and transient chaotic behavior, respectively. We
would like to draw attention to the fact that the period-3
points x, zp, and z„ the boundary points of the range
of attraction, are the sidepoints of the repellor, at the
same time.

B. The crisis situation

At a = u, [see Fig. 1(b)] the maximum point is just
mapped on x~, thus the three-piece chaotic attractor ex-
tends to the whole primary range of attraction (Bq, B2,
and Bs) This fully dev. eloped chaotic attractor touches
the repellor at the boundary points, thus the unstable
period-3 orbit now belongs to both the three-piece at-
tractor and the two-piece repellor. The existence of a
common periodic orbit will be reflected in the dynamical
properties.

C. Postcritical situation

If the control parameter is increased beyond the crisis
value a„ then a = f(0) ) z~ and the maximum point
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is mapped outside B2 [see Fig. 1(c)]. Since the image of
the interval Bq sticks out of B2, the map restricted to
the former three-piece range of attraction is not closed

any longer. In fact, the chaotic attractor undergoes a
sudden enlargement: it becomes a one-piece attractor by

extending to the whole interval A = [f(a), a], which in-

cludes both the bands of the former three-piece attractor

and the gaps where the two-piece repellor was located.
The former chaotic sets, however, did not disappear

without a trace. It is possible to distinguish those orbits
that never leave the two-piece gap region G = Gq U G2
in which one, therefore, 6nds a two-piece repellor again.
Analogously, it is also possible to define a set consisting
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FIG. 1. The quadratic msp (1) snd the natural coverage of its basic invariant sets around attractor enlargement. z denotes

he external unstable fixed point. The mediating period-3 orbit (z, zs, z ) and the points zA, zc, and zn on its stable

manifold determine the end points of the band (B) and gap (G) regions. The arrows indicate how these are mapped onto each

other. The dotted line shows that in the precriticsl (a), critical (b), and postcritical (c) cases the maximum point is mapped

into Bq, exactly on x~, and outside of B2, respectively. In the latter case the first tmo images of the origin define the edges of
the enlarged attractor (A). The actual control parameter values were a = 1.785 (a), a, = 1.7903. . . (b), and a = 1.8 (c).
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III. THERMODYNAMICAL QUANTITIES

A. Cylinders and free energy

The thermodynamical formalism of one-dimensional
dynamical systems is based on the definition of a hi-
erarchically nested set of intervals, the so-called cylin-
ders [18,19].

As the first step of cylinder construction the chaotic
set has to be covered with a single "level-0" cylinder.
This covering has to be refined to a level-1 partition so
that the map restricted to each partition interval is con-
tinuous and invertible. The level-1 cylinders are then
defined by taking within each partition the closest possi-
ble coverage of the chaotic set. Each level-1 cylinder can
be further divided by taking its intersections with the
preimages of every level-1 cylinder set one by one. Then
the coverage can be refined again by taking new, level-
2 covering cylinders within each intersection. Repeating
this process iteratively one obtains the whole hierarchy
of cylinder sets.

The partition at the 6rst level is called the generating
partition [18] if it is chosen so that in the resulting hi-
erarchy the maximal length of level-n cylinders vanishes
as n —+ oo. In the cases investigated in this study, this
criterion always holds.

Let the set

p(ra) g(ra) g(va)
N(n) (2)

contain the lengths of level-n cylinders, where N(n) de-
notes the total number of cylinders.

The number of cylinders increases exponentially,

N(n) e (3)

of orbits that never escape &om the band region B =
Bq U B2 U B3. This set will be called hereafter the three-
piece repellor arising beyond crisis as the remnant of the
three-piece attractor.

It may be worth mentioning that the shape of the
two-piece repellor practically does not change while the
system is passing through the crisis: it has wide gaps
and a relatively small &actal dimension. On the other
hand, while departing &om the crisis point the gaps of
the three-piece repellor open up. Their width is propor-
tional to (a —a, ) ~~2, so the fractal dimension of this set is
very close to 1 around a, . The period-3 orbit (z, z&, z,)
on the boundary between the two- and the three-piece
repellors belongs to both invariant chaotic subsets.

Although being only zero measure subsets of the whole
attractor, these two repellors basically determine the dy-
namical behavior of the system if a is not very far from
the crisis value. In this case the heteroclinic coupling be-
tween the two regions is so weak that the dynamics of
the system can be considered as intermittent switchings
between two sorts of transient chaotic behaviors: long
chaotic paths in the three-piece region escape to the two-
piece region, from where relatively short chaotic tran-
sients, bursts, lead back to the three-piece region again.

for large n's where the exponent Ko is the topological
entropy of the set.

The &actal dimension, Do, of the chaotic set can also
be obtained in the large n limit &om the implicit equation

N(n)

) (/I"1) ' = const. (4)

In the case of repellors Do is less than one, and the total
length of the covering cylinders vanishes exponentially
when n m oo:

(5)

Here x denotes the escape rate &om the invariant set.
The free energy function of the chaotic set based on the

cylinder construction is defined [19] by the asymptotic
scaling relation

N(~)

) ~ (g(a))p pF(p)n— (6)

As a fundamental thermodynamical potential, the free
energy function can be used to derive important dynam-
ical scaling quantities. For example, a direct comparison
to the definitions (3), (5), and (4) shows that the topo-
logical entropy, the escape rate, and the fractal dimen-
sion of an invariant set can be extracted from the PF(P)
function by taking it at P = 0 [Ko ———limp~o PF(P)],
at P = 1 [e = F(1)], and by determining its root
[F(DO) = 0], respectively. It can be shown [19] that
the average Lyapunov exponent A (taken with respect to
the natural measure) is the derivative of PF(P) at P = 1:
& = [PF(P)]p=i.

B. Construction of cylinders around crisis

Now we carry out the construction of cylinders for
each chaotic invariant set. First we show the cylinder
construction of the attracting chaotic sets, then the con-
struction for the nonattracting ones.

a. The one-piece poatcritical attructor beyond crisis
is the interval 2 = (f(a), a) [cf. Fig. 1(c)]; we consider
it as the level-0 cylinder set. By cutting this interval at
z = 0, one obtains two subintervals, Co —(f(a), 0)I&l-
and C~ 1:—(O, a), on which the map is monotonous

[Fig. 2(a)]. We take Co and Cz as the level-1 cylinders.
These latter intervals, being the preimages of the attrac-
tor, occupy more space than the attractor itself. There-
fore the level-2 cylinders then can be obtained by taking
the intersections C, . = C,. A f ~[C. ] (i, j = 0, 1),
allowing that some of these may be empty. Similarly,
the level-3 cylinders can be obtained from the level-2
cylinders by splitting them according to their preimages:
C1 1 —

C~I~~1 P f—1[~( 1] CI 1 P f—1[~( 1] (
'

0 1)
etc. The number of symbol subscripts gives n, the level
in the hierarchy.

The number of cylinders is at most doubled in each step
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FIG. 2. The construction of the generating partition and the erst few level of cylinders of the enlarged attractor (A) at
a = 1.8 (a), the precritical attractor (A3) (b), and the precritical repellor in G (c) at a = 1.785. The attractor constructions
give joint cylinders with incomplete symbolic grammars since a g a . The repellor construction, yielding disjoint cylinders
whose number follows the Fibonacci sequence, goes exactly the same way in the postcritical regime as shown here.
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of the construction: K~ ~(n) & 2". According to (3), this
yields the obvious upper limit

Ki i & log(2)

for the topological entropy of the enlarged attractor.
The ensemble of the lengths of cylinders C, ,-,. pro-[x]

vides the length set

associated with attractor A.
b The. three-piece precriticot attractor (A3), located

within the band region B [cf. Fig. 1(a)], provides a good
example to show how the cylinder construction of the
attractor divers when it consists of several pieces.

In this case a partition of four level-1 cylinders is re-

quired to cover the attractor [see Fig. 2(b)]: C2
[xs]

[f~ &(0),f(0)] covers the right piece of the attractor

within B2, Cs~'= [f& l (0),f~sl (0)] the left piece

within Bs, while Cs—: [f~ &(0), 0] and CI
[0, f~ &(0)] cover the monotonous parts within Bq The.
cylinders at subsequent levels then can be constructed
along the same lines as it was done in the case of the
one-piece attractor [cf. Fig. 2(a)].

An alternative method of construction is based upon
the constrained visiting order Bq -+ B2 -+ Bs -+ Bq.
of the three pieces. Therefore it is possible to con-
struct the cylinders of the attractor of the third iterated
map f ~ l within the central band Bq, using the first or-

der partition to Cz and C&, as defined above. The[ws] [as]

level-3n cylinders of the three-piece attractor can then be
obtained by taking the level-n cylinders of the threefold
iterated attractor and their first and second preimages
within Bs and B~. This method of construction implies
the upper limit

struction ends up with the Cantor set structure of the
repellor, for which

m[~](~)
g[&]( ) ~ 0

Using Eqs. (4) and (5) yields a nontrivial fractal dimen-

sion Do ( 1 and a positive escape rate e[ ] for the
two-piece repellor.

It is simple to show that the number of cylinders fol-
lows the Fibonacci sequence, which results in

K~~' —lKo = log I
~ (l.O)

The above consideration for the construction of the
two-piece repellor is independent of whether the system
is beyond or above crisis. Therefore the topological en-

tropy of the repellor does not change when the attractor
undergoes crisis.

d. The three-piece postcriticol repeltor (B3) replac-
ing the precritical attractor beyond crisis can be con-
structed in the simplest way by again taking advantage
of the restricted visiting order of the bands B,. Then
one can construct the level-n cylinders of the repellor of
the third iterated map within band Bq by excluding the
higher and higher order preimages of the small "principal
band" around 0. The cylinders of the three-piece repel-
lor at level 3n can be obtained by taking two subsequent
preimages (with respect to the map f) of this structure.
The resulting repellor will then be three copies of a di-
adic Cantor set, one in each band B;, with a nontrivial

fractal dimension Do ( 1 and a topological entropy[as]

Ko~ j & —log(2) (s) C. The free energies of invariant sets

for the topological entropy.
In the crisis situation, at a = a„ the three pieces of

the attractor exactly fill up the three bands Bq, B2, and
Bs. The inequality in the previous expression for the
topological entropy is then replaced by an equality.

c. The two-piece repellor [see Fig. 2(c)]. The level-0
coverage of this set is the interval [x„zs]= Gq U Bq UG2.
This is to be divided in the next step at x = 0 into
two pieces on which the map is invertible. Excluding
Bq, which does not contain points of the two-piece re-

pellor, leads us to choose CD
——Gq and C& ——G2

[G'] [G]

as level-1 partition sets. Note that Bq is the only
way out &om this region, thus by excluding its order-
n preimages, one can obtain the points not escaping in n
steps. Consequently, the level-n cylinder sets t,. ;
CJ~jnf '[C~,.j,. ] = f,. [C,-„.j, , ] (where fo 'and f~

'
stand for the inverse of f for the left- and right-hand
branch, respectively), are just the complements of the
order-n preimages of Bq. In the n + oo limit this con-

According to Eq. (6), the free energies of the chaotic
sets can be extracted &om the asymptotic scaling rela-
tions

N[x] (n)

) (E,
" )~ exp[ —PF~ j(I9)n],

where the superscripts X=A, G, A3, and R3 in the square
brackets distinguish quantities belonging to the postcriti-
cal enlarged attractor, the two-piece repellor, the precrit-
ical three-piece attractor, and the postcritical three-piece
repellor, respectively.

Because the construction of the three-piece attractor
and repellor are done the same way, there is a trivial
transition between the resulting cylinder structures with

lengths (E,. "l}and {8,. "l},respectively. Therefore
it is possible to introduce a single free energy function

F[gyj(~) F~ j(P) if a & a,
F~ j(P) ifa) a,
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for the "three-piece" invariant set located in the band
region B.

Knowing the functions F I I, it is possible to determine
all dynamical quantities such as Ko, Do 7

A or K-[X] fxj

corresponding to the respective chaotic sets.

IV. THE CONSTRAINED FROBENIUS-PERRON
OPERATOR METHOD

II
, I~( )IP

(xl f(x)=x'}
(14)

provides an even more powerful method. It has already
been successfully used to determine the spectrum of dy-
namical scaling exponents both for chaotic attractors and
repellors in cases when there is only one chaotic set in the
map. Starting from an arbitrary initial function $0, the
consecutive use of the operator yields a sequence of func-
tions:

The determination of the cylinders (2) and their length
scaling relation (6) is a reliable way for the numerical
approach of the &ee energy function. However, the use of
the generalized Frobenius-Perron operator, Hp, defined
[20] via

Let us now take the P = 0 case. If the initial function
@0(x) = 1 everywhere then, according to (15), g„(y)
simply gives the number of the order-n preimages of a
point y:

5.
(~]f(-)(~~=&}

We would like to remark that there is a significant asym-
metry between the dynamical roles of the two chaotic in-
variant sets: any point y of the attractor has preimages
both on the attractor and on the repellor, while points
on the repellor have preimages only on the repellor itself.
Thus, if y belongs to the repellor, the growth rate of ex-
pression (17) is governed by the topological entropy of
the repellor. If, however, y belongs to the attractor, the
number of its preimages on the attractor and of those on
the repellor increase with difI'erent topological entropies.
The resulting growth rate thus will be dominated by the
maximum of the two exponents. In contrast to the P = 1
case, the g„ functions do not shrink asymptotically to
the attractor.

By taking difFerent initial functions at P = 0, the local
growth rates may change as well. If go(z) is chosen to
be 1 on the attractor B and 0 elsewhere, then Eq. (15)
reads

i/o(~)
4~ (0): P Po (J): ) Iy(~)1( ) IP

(15)
(~&&lf("'(~)=v}

(18)

The asymptotic growth rate of these functions, Ai(P) =
lim„~~ Ig„(y)/go(y) I

~", is unique for almost all smooth
initial functions and independent of it. It can be inter-
preted as the largest eigenvalue of Hp which has been
shown [20,27] to be related to the above-defined free en-
ergy through

(16)

In this section we discuss how the generalized FPO can
be applied to dynamical maps with coexisting chaotic in-
variant sets. I et us suppose first that a region G con-
tains a chaotic repellor within the range of attraction of
a disjoint chaotic attractor B. We consider two examples
below to demonstrate that in such cases the growth rate
lim„ Ig„(y)/@0(y) I

~" depends on y, as well as on the
particular choice of the initial function go.

As the first example we study the case P = 1 (the
conventional FPO). In this case the operator describes
the time development of probability distributions due to
the map f Thus any norm. alized smooth initial func-
tion can be considered as a probability density function
which asymptotically "shrinks" to the attractor and ap-
proaches the density function of the natural measure.
Because the natural measure is invariant, the eigenvalue
Ai(1) = g~(y)/g~ i(y) will be 1 for all y points on the
attractor. This, by (16), yields /3I" (P) = 0. (The cor-
responding eigenfunction of Hq is the natural density it-
self. ) However, if y is chosen on the repellor, one finds
that the density asymptotically decays wj.th the escape
rate e of the repellor: @„(y)/@„ i(y) = e "",yielding a
diferent free energy value, PF(P) = K

&(~)

Hp @(~') = & I x~y( )= I I& ( )I

0

ifx'gX

otherwise.

(We do not require X to be contiguous: it may consist of
several intervals as well. ) This operator acts on a space
of functions with their support restricted to X.

Note that using the operator iteratively n times, the
SuIIl

i.e. , @„(y) counts those order-n preimages of y that lie
on the attractor. Therefore if y is on the attractor, @„(y)
grows exponentially according to the topological entropy
of the attractor, while if y lies outside the attractor, g (y)
remains 0 for any n since it has no preimages in B [cf.
Eq. 18]. Along similar lines, it is easy to see that choosing
gp(z) so that it is 1 on the repellor and 0 elsewhere yields
the same growth exponent, the topological entropy of the
repellor on both sets.

These examples show that in the case of coexisting dis-
joint invariant sets the generalized FPO method as out-
lined above does not provide us with a unique &ee energy
function. But, as (18) shows, by a careful selection of y
points and initial functions, it is possible to avoid the
contribution of the unwanted invariant set(s). This has
led us to extend the concept of the FPO by involving
the necessary constraints into the operator itself. There-
fore we define the generalized Frobenius-Perron operator
constrained to a closed set X (constrained FPO) as
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A(*)
If '"'(&) l~

(20)

takes into account only orbits that remain within X
during all the n steps. If there is an invariant {non-
wandering) subset inside X, i.e., orbits never escaping
this region, then the points x in the sum above converge
to this subset. This subset is typically a kactal repellor.
As n ~ oo (20) refiects the properties of the invariant
subset within X only.

The essential difference between formulas (15) and (20)
is that the former takes into consideration the reBux of
trajectories to X, provided the dynamics allows this,
while (20) describes just the contribution from the in-

variant set inside X without any feedback to other parts
of the phase space. By using the constrained operator
with a suitably chosen X one can get rid of the initial
function or y dependence of the iteration.

When there are several disjoint invariant sets, X
should be set so as to contain only the one in question.
Then the growth rate of the Q„ functions yields the first

eigenvalue, A& (P), of the operator II& for (almost) all[x] " Ix]

y points within X and initial functions restricted to X.
The &ee energy F~xj(P) describing the dynamics of the
investigated invariant set then follows from (15).

For example, choosing X=G or X=B in the quadratic
map (1) makes it possible to determine the &ee energy
functions F+j (P) or F~ j (P) of the two-piece repellor or
the three-piece attractor, respectively, in the precritical
parameter range.

The possible use of the constrained FPO is, of course,
not restricted to disjoint invariant sets. The filter" set X
can be chosen arbitrarily, and the corresponding &ee en-

ergy function will give the dynamical scaling exponents
of the invariant subset within X only. For example, one
can use the cylinder construction scheme as described in
Sec. III A and specify X as the union of certain cylinders
so as to exclude or include paths with selected symbolic
sequences. The FPO constrained to this X then can be
used to analyze this artifically pruned dynamics.

This method can be applied in the postcritical regime
(a ) a, ) of the quadratic map (1). The natural choices
are the two-piece and three-piece repellors, embedded in
the attractor as described in Sec. III, whose &ee energy
functions can be obtained by setting X=G or X=B, re-
spectively. Of course, by choosing X=A, one can obtain
the free energy of the enlarged attractor as well.

V. RESULTS

A. Numerical methods

We compared the cylinder construction method (cf.
Sec. III) and the FPO method (Sec. IV). Our experi-
ence has shown that the latter method can be used more
successfully.

When using the FPO technique, one applies the same

operator {and, therefore, the same computer program)
for the determination of the free energy functions of all
diferent invariant sets. The only thing one has to do is
to adjust X, the support domain of the function space,
properly by specifying it as the union of the level-1 cylin-
ders. On the other hand, the algorithms of the cylinder
construction method are different for each invariant set:
they depend on whether the invariant set is an attractor
or a repellor and on how many pieces it consists of. This
requires a detailed topological analysis of each invariant
set for any individual map to be investigated.

The other disadvantage of the cylinder set construc-
tion is that in order to obtain the level-n cylinder sets
one has to store the end points of all cylinders on the pre-
vious level. The storage capacity requirement thus grows
exponentially with increasing n. This gives a practical
upper limit which is on the order of 20 for the level of
cylinders which is often insuHicient to obtain satisfactory
asymptotics in n. On the other hand, we managed to
combine the Frobenius-Perron method with an effective
algorithm to track down a (in our case binary) tree of
preimages whithout storing too much data. By this op-
tion it is possible to go as far as n = 60, even on a fast
microcomputer.

Test programs proved that the difference between the
results obtained by the two methods were in agreement
far within the range of systematic errors. Our final nu-

merical results were obtained, because of its advantages,
by the constrained FPO method.

The determination of the asymptotic growth rates
lim„~ lQ„(y)/$0(y) l

~" and then the free energy
via (16) is based on the following considerations. The
function sequence (20) at a given P value is expected to
grow like

g„(y) = AAg(p)" + BA2(p)" (21)

0 (y) = & odd Al(P) + B odd A2(P)" (22)

rather than by (22). Here dq and d2 stand for the de-

provided that Aq(P) and A2(P), the two dominant eigen-

values of H&t, are discrete and n is big enough. In the
numerical experiments, however, seldom does such a sim-

ple decay occur. Rather, these sequences are typically
spoiled by strong osciQations. Because n is very much
limited due to practical reasons, they cause uncertainty
and a significant error in the final result.

The reason for these oscillations is that the eigensub-
spaces corresponding to the eigenfunctions of the con-
strained FPO are often degenerate. The simplest exam-
ple we can give is the case of the three-piece attractor
(or repellor): Due to the fixed visiting order among the
three bands Bq, B2, and Bs [cf. Figs. 1(a)—l(c)j, every

eigenfunction of H&
] is at least three times degenerate

since one or two time steps transform the eigenfunctions
into a linearly independent eigenfunction with the same
eigenvalue. (It may happen that the degree of degeneracy
is 6, 9, 12. . ., an integer multiple of 3.)

Owing to these degeneracies the time development of
the g functions is described by
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grees of degeneracy of the eigensubspaces belonging to
the first and second eigenvalues Ai(P) and Az(P), respec-
tively. Our numerical method determines the values and
the degrees of degeneracy of the two largest eigenvalues
[29].

Another technical problem arises if the two eigenvalues
Aq(P) and Az(P) become close to each other. Then the
rate of approaching the asymptotic exponent becomes in-
6nitesimally small. Due to the limited number of avail-
able n's, this phenomenon, the critical slowing down of
relaxation rates, is accompanied with extremely large er-
rors of the estimated eigenvalues. This effect can be used
to detect phase transitions in the dynamical system.

The numerical results presented below were obtained
by the constrained FPO method with the 6lter set choices
X = B, G, and A at different control parameter values.

B. Precritical situation

Figure 3(a) shows the results of numerical calculations
obtained for the &ee energy functions of the precritical

invariant sets. Apparently the PIii j(P) function of the
two-piece repellor is steeper than PFi+I(P) of the three-
piece attractor, and, therefore, the relation A~+~ & A~+~

holds for the respective I.yapunov exponents. The inter-
sections with the vertical axis show that the topological
entropy, Ko, ss also greater than Ko, in accordanceIG'l

with our findings in Secs. IIIBb and IIIBc. This means
that, in some sense, the repellor produces signi6cantly
stronger chaoticity in the system than the coexisting at-
tractor, although its support is smaller in dimension.

The PF~ ~(P) function incorporates the dynamical
scaling exponents of the permanent chaos, while the
PI" ~+j (P) function characterizes the dynamical properties
of the transient chaotic motion. Although these functions
cross each other at some P value below Do ( I, theirl~l

intersection cannot be interpreted as a phase transition
since they represent different dynamics.

We would like to mention here that if the filter set X
were chosen so as to contain both B and G, then-
for certain initial functions go and y values (cf. Sec. IV)

(a)
0.')

O = 1.785 & LL, CL = tLc

.) j'I;3) -0.:i

-0.5 0 r L)[C'] ()[M]

0 ')—

fL =— (L;
0. &

0.2.")—

, 3I (, ,3) -o.s

-0.2") 0.2'5 0.5 -0., ) 0 g

FIG. 3. The free energies of invariant sets obtained by the constrained FPO method. In the precriticsl regime (a) the
independent free energies F[+~ of the three-piece attractor in the band region and F of the repellor in the gaps is ho
At the crisis (b) the attractor collides to the mediating orbit snd this causes s break at p = —1.119 in + The»ope
eft of this breakpoint is A, the Lyapunov exponent of the mediating orbit which —being simultaneously the least unstable

orbit of the repellor —also gives the asymptotic slope of pEi i(p) for p ~ +oo. The newborn marginally stable heteroclinic
orbit M contributes with PFi i(P)—:0. The free energy of the full chaotic set A is the minimum of the three partial free
energies (heavy line). Therefore it has two breakpoints at P~ i = 0.758 and P™= 1. The level crossing at crisis of the leading
eigenvslues of the generalized FPO acting on the entire chaotic set A is also shown (c). The negative logarithms of the first

(+) and second (x) eigenvalues approach the ininimum and the maximum, respectively, of the partial contributions B and G
(full lines). In the postcritical regime (d) the I'ree energy of the entire attractor (A) runs somewhat below the contributions
F~ ~ and F[ ~ of the repellor components. All free energy components, except F~ ~, were obtained after 30 —60 iterations of
the constrained FPO. The parameters are the same as in Fig. l.
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—the numerical results would yield the minimnrri of
the two functions. In other words, at difFerent P val-
ues the stronger chaotic exponents of the transient chaos
would supress the exponents of the permanent chaos, or
vice versa. The appearance of a virtual phase transition
in this case would be an artifact only. Similarly, if X
were extended so as to contain the isolated external fixed
point z„ then the &ee energy of this coexisting regular
repellor, pF(p) = log [f'(x,) ~, would imply the appear-
ance of an additional false phase transition in the system
[30] as it was pointed out by Ref's. [31,26].

C. Crisis situation

Figure 3(b) shows the PF(P) functions found numeri-

cally at the crisis situation a = a, . The shape of the free

energy of the two-piece repellor does not change xnuch

while the control parameter is going through a, (cf. Sec.
IIIBc).

The free energy function of the three-piece attractor,
on the other hand, undergoes drastic changes at a, . Nu-

merically, the right side seems to be a straight line in-

tersecting the horizontal axis at P = De ——1 as before,[&j

and the vertical axis at —log(2)/3 since the topologi-

cal entropy Ko has reached its maximal value. The
left side is another straight line having the slope of
A = log f& &'(x ) /3, the local Lyapunov exponent of
the period-3 orbit on the boundary. This is due to the
fact that the attractor became fully developed after hav-

ing been collided to the border of its domain, and, thus,
a dynamic link has been created with the period-3 or-

bit {x,xs, z,). The break at p~+j = (1 —A/Kz~ j)
—1.11941, where the two parts join each other, reQects
a phase transition appearing because of this dynamical
link. (This sort of phase transition is analogous to the
case of a fully developed attractor at the external crisis
situation, a = 2 [27].)

In order to gain the best understanding of the global
changes of the thermodynamical behavior at crisis it is
worth considering separately what happens if a, is ap-
proached &om below and &om above.

In the limit a -+ a, —0, there is still no dynamical link
&om B to G, therefore the corresponding &ee energies
F~ I and F~ ~ describe independent dynamics, just like
in the precritical region.

On the other hand, slightly above a the coupling be-
tween the two invariant sets is manifested in the appear-
ance of orbits that are not restricted to either of the re-
gions Bor G. In the limit a ~ a, +0, this dynamical cou-
pling is infinitesimally weak, as if there were only a single,
infinitely long trajectory mediating between B and G.
Since the birth of this orbit happens just at a = a, it
is marginally stable, and its free energy function is iden-
tically zero: PEiMj(P) = 0. This nicely reflects that
attractor enlargement occurs together with an intermit-
tent dynamics, often caOed crisis induced intermittency
[7]. (It is well known that a vanishing &ee energy for
P & 1 is always a sign of intermittent behavior [32].)
The role of the marginal orbit in our case is analogous to

that of a marginal fixed point in intermittent fully devel-

oped maps. Since there are three dynamical components
with only infinitesimally weak couplings among them, the
resultant &ee energy for a -+ a + 0 is the absolute min-
imum of the &ee energies of the three components [the
solid line in Fig. 3(b)], just like in the case of classical
thermodynamics of coexisting phases.

The resultant free energy has thus two phase transi-
tion points, Pi+i = 0.75799 and Pi i = 1, where the &ee
energy function of the three-piece component intersects
those of the two-piece and the mediating components,
respectively. It is interesting that the fully developed
three-piece invariant set (the old attractor) hardly con-
tributes to the total &ee energy: apart &om the small
segment between P~+j and P~Mj, it is determined by the
contributions of the former repellor in the gap region and
the mediating orbit only. (The third transition at P~+j,
coming &om the three-piece component alone, does not
appear at all in the resultant &ee energy. )

Figure 3(c) shows the enlargement of the crossing of
the three-piece chaotic attractor's and the two-piece re-
pellor's &ee energy function around P~+j right at crisis.
We have also depicted the values obtained by choosing
X = A = B U G for the two leading eigenvalues of the

corresponding operator H& . The results clearly show
" [A]

that the first eigenvalue follows the maximum of the two
subsystems' eigenvalue, while the second eigenvalue co-
incides with the minimum of them. The error bars them-
selves show that the error of the estimation due to the
phenomenon of critical slowing down is indeed increased
by magnitudes around the phase transition point, and
has a maximum right there.

D. Postcritical situation

Figure 3(d) shows the thermodynamical potentials
somewhat beyond the crisis situation. The two-piece and
the three-piece invariant sets (both repellors now) form
two subsets of the total invariant set of the attractor with
free energy functions PE~+j (P) and PF~nj (P). Increasing
the control parameter xnakes their &actal dimensions de-
crease and their escape rate increase continuously, while
their topological entropies remain fixed. Although they
no longer bear separate dynamical meaning in the asymp-
totic sense, they are still useful by serving as upper limits
for the resultant &ee energy function of the whole invari-
ant set, Fi+i(P), or for characterizing finite time mea-
surements. Since the escape &om the former attractor is
very in&equent and the corresponding dynamical link be-
tween B and G is very weak, we anticipate that F +i(P)
can be very well approximated by the minixnum of the
&ee energy functions of the two repellors.

Indeed, the PE~+j(P) curve of the enlarged attractor
apparently runs below the curves belonging to the two
repellor components. The breaks at the former phase
transition points are sxnoothed out. These findings are
the consequences of the nonzero contribution of the third
coxnponent, the xnediating orbits, to the total free energy.

Knowing the partial &ee energies Fige(P) and Fi+~(P),
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however, is also useful since they contain information on
the dynamical behavior in8ide the enlarged attractor A.
In particular, close to a, the escape rate, r~+j = F+~ (1),
from the three-piece invariant subset gives 1/~, the re-
ciprocal of the average lifetime before bursts into the old
(two-piece) repellor region G. The escape rate of the in-
verse process, r~ ~ = F~ ~(1) && e~ ~, results in much
shorter staying times in region G than in B.

VI. DISCUSSION AND CONCLUSIONS

By applying the concept of conventional thermody-
namics 18,19], the Legendre transform of the free en-

ergy F~~rj(P) yields an entropy, S~ ~(E). This quantity
characterizes the dynamical multi&actal properties of the
invariant set within X by specifying the topological en-

tropy S~ ~ of its orbits with local Lyapunov exponent E
as a convex function of E. In particular, the maximum

of this function yields Ko, the topological entropy of
the whole invariant set within X.

Figure 4(a) shows S~ ~(E) and S~+~(E), the Legen-
dre transforms of the &ee energies of the precritical two-
piece repellor and three-piece attractor [cf. Fig. 3(a)]. It
demonstrates spectacularly that in this case the transient
chaos is indeed stronger than the coexisting permanent
one: all local Lyapunov exponents occurring on the at-
tractor are smaller than the minimal Lyapunov exponent
on the repellor (which by chance happens to be A, the
local Lyapunov exponent of the period-3 boundary or-
bit). Due to the properties of the Legendre transforma-
tion, the entropy curve of the attractor just touches the
S = E diagonal, while the repellor's spectrum is shifted
by AE = ]c~ ~ to the right.

When the coatrol parameter is increased to a„ the
boundary orbit belongs to both invariant sets (cf.
Sec. IIB). Figure 4(b) shows that in this case the period-
3 orbit is the least unstable orbit on the repellor and the
most unstable one on the attractor at the same time:
the two entropy curves just touch each other at the com-
mon point E = A. The third partial entropy compo-
aent, belongiag to the marginally stable periodic orbit
at birth, consists of a single point in the origin (M), and
corresponds to the horizontal branch of the PF~ j(P) for

p ) 1. The entropy function of the invariant set of the
whole A interval is obtained &om the three partial en-

tropy components as their convex hull. Thus the straight
line segments with slopes P~Mi = 1 and P~+j are the Leg-
endre transforms of the two phase transition points con-
necting the three-piece attractor's partial entropy func-
tion to the graphs belonging to the marginally stable or-
bit and the two-piece repellor, respectively.

In the postcritical regime the two chaotic sets within
G and B remain joined at the period-3 orbit and, accord-
ingly, the corresponding curves S~+i(E) and S~+~(E) still
touch each other at E = A [see Fig. 4(c)]. These functions
describe the chaotic dynamics during the two intermit-
teat chaotic phases which can be observed if the control
parameter is not too far above the critical value a . Note
that the S~+i(E) curve does not reach the diagonal any
longer since the three-piece invariant set has turned to be

a repellor. The entropy S~ ~(E), characterizing the whole
attractor, runs somewhat above the common envelope of
the two components and extends to the diagonal. This
"extra entropy" can be interpreted as the contribution of
the orbits taking part in the coupling between the com-
ponents. The most sensitive part of S~ ~(E) is the one
around the smallest accessible value of E. Since there
are several very tiny periodic windows above crisis, it de-
pends very strongly on the actual control parameter a. If
one accidentally finds a marginally stable orbit at birth,
the S(E) function will be similar to that at the criti-
cal case with a zero minimal local Lyapunov exponent, .
At slightly diH'creat parameter values, however, the at-
tractor may be strictly chaotic, yielding a positive lower
bound for E. Then, the left part of the asymptotic result
deviates &om that obtaiaed at crisis. For intermediate
aad large values of the exponent E one finds that the
shape of the resultant entropy fuaction is always close to
the convex hull of the contribution of the basic compo-
nents.

The concept we have outlined in this paper for de-
termining dynamical properties via the thermodynamic
potential of component chaotic sets can be easily applied
to other one-dimensional maps. Moreover, by making
appropriate generalizations in the definition of the ther-
modynamical quantities (cf. Ref. [33]) our method can
be extended to multidimensional maps as well. Qualita-
tively the same phenomena should occur around internal
crises of all dynamical mappings as we have demoastrated
here on the example of the quadratic map (1).

If the system has certain symmetries, internal crises
often happen as symmetry recovering attractor merg-
ings [1]. Then the precritical attractors have identical
&ee energy functions and. the mediating orbit sits on the
(chaotic or regular) saddle on the basin boundary be-
tween them. This latter invariaat set plays the role of
the repellor of our example.

Finally we would like to mention that the fact that
the S(E) functions of the disjoint components do not
lap over is a consequence of the specific map, and this is
aot necessarily true for every one-dimensional map and
is certainly atypical for higher-dimensional cases.

Our results support the view that the concept of multi-
transient chaos [17] can be applied usefully when weakly
coupled repellors can be distinguished whithin a chaotic
attractor: the weaker the coupling is, the better the
scaling exponents, calculated &om the individual com-
ponents, approach that of the full attractor.

The importance of noaattracting chaotic sets very close
to crisis has brief}y been mentioned in a few previous pub-
lications [9,3] from the point of view of different multi-
&actal spectra. Very recently, independeatly of our work,
Leven et aL [13] have made several calculations for the
f(a) spectrum and other metric quantities in the peri-
odic window of a How. Their results concerning the met-
ric quantities associated with coexisting disjoint chaotic
attractor aad saddle are in accordance with our results
in the precritical regime. We anticipate that in the post-
critical regime the partial metric quantities, if someone
measured them, would also behave analogously to our
findings.
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