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A practical algorithm is presented to obtain a reliable estimation of Lyapunov exponents from a
time series signal of plasma chaos. In particular, the effect of inevitable experimental noise on the
computation of Lyapunov exponents has been investigated. A full Lyapunov-exponent spectrum
has been achieved to confirm transition from quasiperiodicity to chaos in a plasma.
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I. INTRODUCTION

The deterministic chaotic behavior of nonlinear dy-
namical systems has become a very interesting subject
in many fields of science. In particular, plasma, as one
of the most attractive nonlinear systems, can exhibit not
only chaotic behavior with a few degrees of freedom, but
also spatiotemporal irregular behavior (turbulence). Re-
cently, some experiments have been reported on chaotic
behavior occurring in driven and undriven plasma [1-
3]. Three important routes to chaos, i.e., period dou-
bling, intermittent, and quasiperiodic chaos, are observed
in these experiments. The power spectrum, phase por-
trait, Poincaré section, universal constants, and correla-
tion dimension have been applied to these experiments
to characterize chaotic behavior. However, there exist
strange nonchaotic attractors in some dynamical systems
[4]; therefore, to verify the existence of chaos quantita-
tively and especially to identify periodic, quasiperiodic,
and chaotic attractors, a Lyapunov-exponent spectrum is
required. The Lyapunov-exponent spectrum provides a
quantitative measure of the sensitive dependence on ini-
tial conditions, and provides a classification of dynamics
systems. Once Lyapunov exponents can be determined,
the Lyapunov dimension (also called the Kaplan-Yorke
fractal dimension Dgy) and Kolmogorov-Sinai entropy
can be estimated as equalities and upper bounds [5-7].
Since the connection among transport properties, Lya-
punov exponents, and entropy per unit time has been
discussed recently [8], some transport properties might
be estimated from Lyapunov exponents and KS entropy
in experiments and it is possible that transport proper-
ties in fusion plasma could be investigated by means of
a Lyapunov-exponent spectrum and KS entropy. In ad-
dition, controlling chaos in physical systems has been an
active area where Lyapunov-exponents can be applied
to confirm the existence of controlled orbits on attrac-
tors [9]. Therefore the Lyapunov exponent is the most
useful dynamical diagnosis for studying chaos and turbu-
lence in plasmas. However, it is difficult to get a reliable
Lyapunov-exponent spectrum from noisy experimental
data. The identification of a quasiperiodic attractor by
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a Lyapunov-exponent spectrum especially becomes more
difficult because of noise.

Recently a Lyapunov-exponent spectrum has been es-
timated in some experimental studies of plasma chaos
[3,10,11]. The reliability of estimating Lyapunov expo-
nents depends on the practical algorithm. In this paper,
we would like to present a practical algorithm to esti-
mate the Lyapunov exponents from time series signals.
This algorithm is based on the works of Eckmann et al.
[12] and Sano and Sawada [13] with some modification
of technical details. This algorithm has been verified by
several known model systems with much attention to the
effect of noise on calculated Lyapunov exponents. A p-
average method and a local filter technique are suggested
to suppress the noise. By using this algorithm, we have
distinguished quasiperiodic attractors from chaotic and
periodic attractors in both computer and laboratory ex-
periments, and confirmed a quasiperiodic transition to
chaos observed in an undriven plasma [3].

II. BASIC ALGORITHM
OF LYAPUNOV EXPONENT

The calculation of a Lyapunov-exponent spectrum is
relatively easy for known model systems since the al-
gorithm based on a theorem demonstrated by Oseledec
[14] was proposed by Benetinn et al. [15]. However, it
is difficult to calculate it from time series of experimen-
tal signals, especially from low precise and noisy data.
Wright [16] and Wolf et al. [17] proposed different meth-
ods to calculate one or two positive exponents from ex-
perimental data. Eckmann et al. [12] and Sano and
Sawada [13] developed similar procedures to compute the
whole Lyapunov-exponent spectrum (including positive,
zero, and negative exponents). Recently, several authors
[18,19] have introduced further improvements of the algo-
rithm of Eckmann et al. However, all of these algorithms
require data of high precision and absence of noise. Zeng,
Eykholt, and Pielke [20] have recently proposed an ap-
proach for estimating the Lyapunov exponents from rel-
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atively short time series of low precision. But the er-
ror bars of zero exponents for noisy signal are not small
enough to diagnose quasiperiodic attractors and strange
nonchaotic attractors or otherwise clearly. Motivated by
all of the works mentioned above, we present a practi-
cal algorithm to extract the Lyapunov exponents from
real experimental data with noise. The basic steps of our
algorithm are as follows.

(1) Reconstruct a finite-dimensional phase space from
time series. Choose an appropriate embedding di-
mension dg and a delay time 7 to reconstruct a dg-
dimensional phase space by the time delay method [21]
from time series z; = z(tAt) (¢ =1,2,...,N). The mul-
tivariate vectors in dg-dimension space,

X; = (a:i,mi-}-ma '-'axi+(dg—l)m) )

are used to trace out the orbit of the system, where ¢ =
1,2,...,N —dg + 1, 7 = mAt, At is the sampling time
interval, and N is the total number of data points.

(2) Recover the tangent maps by the least squares fitting
method. A ball of radius r is selected at each central
point x;. Tracking the whole attractor, we search for the
points xg,(j) (j = 1,...,p) which are located within this
ball, and call them neighbors of the points x; (p is the
number of neighbors). When x; evolves into X;(,, the
neighbors evolve into Xg,(j)4+n (in this paper, a special
case n = m is set). Considering the maps (yet unknown)
Xi+n = F(x;), we expand F in a Taylor series about x;,

YS:(§)+n = X5;(j)+n — Xitn
=F(xs,j)) — F(x:)

1 2
= DF; - ys,j) + ﬂDFg V(s YsiGy) + oo

where DF?) are third rank tensors.
When the radius r is relatively small, the local linear
tangent maps can be used [19]. That means

Ysi(G)+n = DF; - ys,() -

The DF; can be regarded as the local Jacobian of x;.
The elements of the Jacobian are determined using the
least-squares error method [13].
(3) Calculate Lyapunov exponents from the Jacobian.
By QR decomposition [12], the Jacobians DF; are
transformed to Q; and R; (Qo = I, DF;-Q;_, = Q;-R;),
where Q; are orthodox matrices and R; are upper trian-

gle matrices. Then the Lyapunov exponents \; are given
by

1 M
Ai = M jzzlln(Rj)ii, i=1,..,dg

where M < (N —dgm + 1)/m is the available number of
the Jacobian.

III. IMPLEMENTAL DETAILS AND RESULTS
OF NUMERICAL EXPERIMENTS

The basic procedure of our method for estimating Lya-
punov exponents is given in the preceding section, and it

basically is similar to that of Refs. [12,13,20]. However,
the precision of Lyapunov exponents depends on practi-
cal algorithms and their implemental details. Moreover,
it is also known that many factors, such as noise, can hin-
der the successful application of the exponent extraction
algorithms. In this section, we address several issues re-
lated to the accurate extraction of Lyapunov exponents
from time series of low precision.

A. The best embedding dimension dg
and time delay 7

To implement this algorithm successfully, several re-
construction parameters (e.g., the best embedding di-
mension dg, time delay 7) should be chosen cautiously.
The embedding dimension d cannot be too large because
it can lead to spurious exponents. It also enhances the
problem of contamination by round-off or instrumental
error since the “noise” will populate and dominate the
additional d — dg dimensions of the embedding space
where no dynamics operate. On the other hand, when
attractor reconstruction is performed in an embedding
space whose dimension is too small, a “catastrophe” that
interleaves distinct parts of the attractor is likely to re-
sult. Therefore it is important to select the embedding
dimension as low as possible, subject to the condition
that trajectories will not intersect each other on the at-
tractor. The well known criterion of Mané and Takens,
dg > 2d4 + 1, is only a sufficient condition for the re-
construction of a d4-dimensional attractor via Takens’s
theorem. The usual method to choose the best embed-
ding dimension is to compute some invariants on the at-
tractor. For example, we can determine dg by noting
when the calculated value of the correlation dimension
starts saturating with increase of the embedding dimen-
sion used for computation. However, the problem with
this method is that it is certainly subjective and it takes
more data and more computation time to calculate dg
than to estimate the Lyapunov exponents [22]. Here we
apply the “false nearest neighbors” algorithm suggested
by Kennel et al. [23] to select the dg directly. The basic
idea is that in the passage from dimension d to dimension
d + 1, one can differentiate between points on the orbit
x; that are “true” neighbors and those that are “false”
neighbors which appear to be neighbors because embed-
ding space is too small (d < dg). A natural criterion for
identifying false nearest neighbors is that the increase
in Euclidean distance between the point x; and the rth
nearest neighbor x7 is large when going from dimension
d to d + 1. We state this criterion by declaring as a false
neighbor for which

1/2
> Rtol

[R¢2i+1(iv 7') - Ri(l,'l‘)]
R?i(za T)/d

where R2(i,r) = E;i;; [€itjm — T[4 j,,)? is the square of
the distance between x; and x} and R;, is some thresh-
old. In our numerical investigation below, the threshold
is taken to be R;,; > 30 and only the nearest neighbors
(r = 1) are considered, as Kennel et al. proposed. We
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examine every point on the orbit to count how many of
the nearest neighbors are false and record the results of
computations as the proportion of all points on the orbit
which have a false nearest neighbor. When the percent-
age of the false nearest neighbors first drops to zero, the
attractors are unfolded properly in a d-dimension phase
space. Thus this dimension d is chosen as the best em-
bedding dimension dg. It should be noticed that the
method is not only quite different from the nearest neigh-
bor (NN) approach [23] but also the criterion given above
is a little different from that proposed by Kennel et al.
In fact, the criterion of Kennel et al. fails to determine
a proper embedding dimension for white noise (a high-
dimensional signal) due to the dependence of their crite-
rion on the dimension d, and it needs a second criterion
system with the limited size of the data set. On the con-
trary, the criterion we use is independent of the dimen-
sion d and the point which does not have a “neighbor”
[that is, R4(7,1)/d > 0.1L, where L is the horizontal ex-
tent of the attractor] is not taken into account. So the
modified criterion can be used to determine the best em-
bedding dimension for both low- and high-dimensional
chaos, with little trouble and quite efficiently. For a time
series from the Lorenz equation with additional noise,
the proportion of false nearest neighbors (FNNP) is plot-
ted against the embedding dimension as shown in Fig. 1.
For a low-dimension experimental chaotic attractor as
reported before [3], the result in Fig. 2 shows that the
best embedding dimension dg is 4, which has a qualita-
tive agreement with the estimation from the saturation
dimension method. For a hyperchaotic attractor with
two positive Lyapunov exponents, the best embedding
dimension dg could be estimated to be 5 or 6. Clearly
the saturation dimension method is invalid, as for the hy-
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FIG. 1. The estimation of the best embedding dimension of
time series using the “false nearest neighbors” method. The
time series is generated from the Lorenz model with additional
white noise. The noise standard deviations are 0, 10%, 30%,
and 100% for filled circles, filled squares, filled triangles, and
filled rhombs. The filled upper triangles present results of
pure white noise. The R, used in this method is chosen as
35. “FNNP” represents the false nearest neighbor proportion.
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FIG. 2. The estimations of the best embedding of time se-
ries from experimental signal using the “false nearest neigh-
bors” method. Ri. is the same as in Fig. 1. The filled circles
show the result for a low-dimension chaotic attractor. The
filled squares show the result for a hyperchaotic attractor with
two positive Lyapunov exponents.

perchaotic attractor. In this way less data (< 5000) are
required for the estimation of the embedding dimension
of the low-dimension attractor. This method is very use-
ful for the estimation of the Lyapunov exponent when
one hopes to extract the exponent spectrum from the
short time series quickly.

The delay time 7 can, in principle, be chosen almost
arbitrarily in the limit of an infinite amount of noise-
free data. However, in the more likely event of a limited
amount of noisy data, the choice of 7 is of considerable
importance in trying to reconstruct the attractor because
the quality of the analysis depends on the value chosen
for 7. Three methods, i.e., the space-filling method, au-
tocorrelation function method, and average mutual in-
formation method, have been suggested for obtaining 7.
However, since it is still a matter of trial and error to
determine the best 7 [5], in this paper 7 is taken to be
the lag time at which the autocorrelation function of the
time series first falls to e~ 1.

B. Radius r and neighbor number p

In the approach of estimating exponents, the choice
of the radius r is a compromise between two conflicting
requirements: take r sufficiently small so that the effect of
nonlinearity can be neglected, but take r sufficiently large
so that the ball around x; contains enough neighbors
for unambiguous determination of the matrix DF;. In
our algorithm we take r=(0.05-0.10)L, where L is the
horizontal extent of the attractor. When the number of
one point’s neighbors is too small we drop it and count
for the next point, but we have found that is seldom
necessary.

Next we discuss the selection of the number of neigh-
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bors p around the fiducial point x;. Since there are dg
unknown independent elements of the matrix DF;, we
need at least dg + 1 neighbors for the least-squares fit.
Moreover, to obtain good statistics it is, of course, desir-
able to have a large number of neighbors. However, for a
large number of p, large data sets and more computation
time are required. Therefore in practice p is always given
to be appropriately larger than dg to make a compro-
mise among limitations due to statistics and limitations
due to data sets and time consumption in computation.
Eckmann et al. have taken p > min(dg + 4,2dg) as
a criterion for choosing the number of neighbors, and
in the algorithm of Zeng et al. p is given to be 10 for
embedding dimension dg < 5. As for the behavior of
the first exponent with increasing p in our numerical
experiments which is shown in Fig. 3(a), in our algo-
rithm, we have selected p as follows. We first choose
Pmin = 2min(dg +4, 2dg) and count the number of neigh-
bors of x; corresponding to increasing values of p > pmin.
If the number of neighbors around the point x; is less
than the preselected value p, we drop this point x; and
proceed to the next point x;,,. When the proportion of
dropped points is larger than a threshold, for example,
2% of the total number of points which have been used,
we stop increasing p and take this value of p as ppax-
Then Lyapunov exponents calculated for different values
between pyin and ppax are averaged. Using the p-average
method, we also study the first Lyapunov exponent of the
Lorenz system as the function of the precision of data,
with a range from 6 bits to 16 bits. As shown in Fig. 3(b),
when the precision of data is only 6 bits, the relative er-
rors is 3%. By increasing the precision, the relative error
is quite small, for 8 bits only 1-2%. This implies that
our algorithm is not so sensitive to the precision of data
on the estimation of Lyapunov exponents. In the next
section it is shown that by this p-average method, the
influence of noise can be suppressed significantly.
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FIG. 3. The first Lyapunov exponent of the Lorenz system
as (a) the function of the number of neighbors p; (b) the
precision of data. The dashed lines in (a) and (b) refer to the
accepted value 1.50. The parameter r is chosen as 0.05L for
(a) and (b), and 7 = 0.2.

C. Effect of noise on the estimation of exponents

Furthermore, the noise will take an important role
in the estimation of the Lyapunov exponent. When
Gaussian noise is added into the Lorenz time series, the
first Lyapunov exponent is almost proportional to noise
deviation (shown in Fig. 4). Before use of the p-average
method, the first Lyapunov exponent is quite different
from the accepted one, even the noise deviation A,, < 5%
(shown as filled triangles). Using the p-average method,
the relative error between the computed first Lyapunov
exponent and the accepted one has been reduced signif-
icantly for A,, < 5% (shown as filled circles). However,
the problem still remains open for A,, > 5% even though
a shell [12,20] is selected to minimize the noise in our algo-
rithm. In most of our experiments, A, < 5% [3], the Lya-
punov exponents can be estimated relatively accurately
by the p-average method. It is worth investigating how
to extract the Lyapunov exponent from time series with
A, > 5%. In performing the calculation of the Lyapunov
exponent a small ball radius is required for fitting the lo-
cal Jacobian matrix, however, when |Xg,(j)4+n — Xitn| is
so small that the noise effect becomes the greatest one to
result in the unreliable Lyapunov exponent. Therefore
the time series signal z(iAt) has to be filtered before the
reconstruction of a finite-dimension phase space. Here
a local filter method is suggested to suppress the noise
in the time series signal. The conceptually simple, local
filter method [24] with the help of interpolations is as fol-
lows. Let f;(t) be a cubic spine through every Jth point
z[(j +¢J)At],i = 0,1,... starting from the jth one. The
smoothed time series is obtained by the average of these

1‘5 | 1 1 1 1
0 5 10 15 20 25 30

A, (%)

FIG. 4. The first Lyapunov exponent of the Lorenz system
as the function of the deviation of Gauss noise included in
time series. The filled triangles show these results without
using the p-average and local filter methods, the results using
the p-average method without filter are shown as these filled
circles, and the filled squares refer to those results computed
by using the p-average method and prefilter performance. As
A, < 5%, p average is a quite useful method. For A,, > 5%,
an improvement has been achieved clearly when the local filter
method is used.
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spines at the time nodes,

1 J
zt =5 filt),
i=1

where z* = z*(nAt) is a filtered time series signals. It is
hoped that Lyapunov exponents of the dynamical system
are less affected by the local filter method. Therefore J
is selected carefully to avoid the changes of the original
attractor.

First, for given Lorenz time series including Gaussian
noise (A, ~ 5 — 30%), after the Lorenz times series in-
cluding noise are filtered, the practical algorithm men-
tioned above is applied to the filtered data. The results
are compared with the reported Lyapunov exponent. We
found that K = 2-10 could give satisfactory results. In
Fig. 4, the filled squares represent the estimation of the
first Lyapunov exponent with the local filter technique.
It is clear that the filter technique has improved the esti-
mation of Lyapunov exponents although the strong noise
still makes the value of the Lyapunov exponent rather
larger than the reported one. The detailed discussion on
noise reduction will be published elsewhere.

D. Numerical results on known models

Using the practical algorithm discussed above, we cal-
culated the Lyapunov-exponent spectra from the time
series of some known systems such as Lorenz, Réssler,
and Mackey-Glass. Lorenz data were generated from the
Lorenz system of equations:

t=o(y—z),
y=cx—y—zz,
z=—-bz+uzy,
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where 0 = 16, b = 4.0, R = 45.92. In generating the
Lorenz data we used a Runge-Kutta integration step size
0.005 and a sampling interval At = 0.02. Rossler data
were generated from the Rossler equations:

i::_z—yv
y=z+ay,
2=b+z(zx—c),

where a = b = 0.2, ¢ = 10.0. The integration step size is
0.05 and the sampling interval At = 0.2. The Mackey-
Glass data were generated from the Mackey-Glass delay-
differential equation:

ac(t —T)

=TT e =T} PG =Ty bx(t) ,

(t)
where a = 0.2, b = 0.1, ¢ = 10, T = 30. The integrat-
ing step is 0.0057 and the sampling interval At = 0.03T
(T = 30). In order to apply our algorithm to experimen-
tal signals, the elements of time series z; are transferred
to integers ranging from 0 to 255. The error bars, shown
in Table I, are computed from a few runs with changes of
r (radius) and 7. All the error bars are relatively small.
For the Lorenz system, difference between the computed
largest exponent A; and the accepted value is less than
3%. Since the A, is only 2% of A, and at least one ex-
ponent must be zero, we can regard A, as zero in spite
of its error bar. For the Rdssler system, \; is obtained
with a relative error less than 3%, and ), is less than 3%
of A;. For the Mackey-Glass equation, relative errors of
A1, A2 are about 4% and 25%, and the computed Dgy
is 3.53, which is similar to the accepted 3.59. The possi-
bility of measuring negative exponents depends on their
magnitudes and the signal-to-noise ratio of the data [13].
Because the precision of 8 bits is prescribed, as shown

TABLE I. Lyapunov-exponent spectra for several known systems. The entropy K2 and Dgky
estimated from the Lyapunov-exponent spectrum are also given in the table.

Model Accepted A; Computed A;
Lorenz 1.50 [17] 1.5440.08
(0=16,b=4.0,R=45.92) 0.00 0.034+0.21
(7=0.2,N=8000) —22.46 —3.70+0.42
K2=1.50 Ky=1.54
Dgy=2.06 Dgy=2.42
Rossler 0.069+0.003 [13] 0.069+0.002
(a=b=0.2,c=10) —0.0002+0.0003 —0.002+0.004
(r = 1.2, N = 8000) —4.978+0.02 —0.88+0.05
K, = 0.069 K, = 0.069
Dgy=2.01 Dgy=2.08
Mackey-Glass 0.0071 [13] 0.0068+0.0002
(@=0.2,b=0.1,¢c=10,T = 30) 0.0027 0.0020+0.0003
(7=13.5,N=16000) 0.000 —0.0023+0.0004
—0.0167 —0.0123+0.003
—0.0245 —0.0304+ 0.0009
K,=0.0098 K»=0.0088
Dgy=3.59 Dky=3.53
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in Table I, [Az] > 100[A;| for the Rossler system and
|Az] > 15|A] for the Lorenz system, the computed expo-
nent |Az| is very small compared with the reported one.
However, when the absolute values of the negative expo-
nents are comparable with the largest positive exponent,
as for the Mackey-Glass system, computed negative ex-
ponents are comparable to the accepted ones.

In addition, we have also calculated the Lyapunov-
exponent spectra of the two- and three-frequency
quasiperiodic and strange nonchaotic time series includ-
ing white noise (standard deviation 10%) that are gener-
ated from quasiperiodic driven damped pendulum [4].

1d? d
;Et—f + d—f —cos¢ = K + V(cosw;t + coswyt) ,

where w; = 1, wy = (V5 —1)/2, p = 3.0, and
V = 0.55. All the calculated results are included in
Table II. For a two-frequency quasiperiodic attractor
(K=1.34), the calculated Lyapunov exponent spectrum,
|A1] ~ |A2] < 0.16|A3]|, can be regarded as (0,0,-).
For a given three-frequency quasiperiodic attractor
(K=1.77), the calculated Lyapunov-exponent spectrum,
max([A;], |Az],|As]) < 0.18|A4], is regarded as (0,0,0, —).
For a strange nonchaotic attractor (K = 1.33), the cal-
culated Lyapunov-exponent spectrum, |A;| ~ |A2] <
0.2|A3|, can be regarded as (0,0, —). It is worth mention-
ing that noise included in quasiperiodic attractors could
be removed by the local filter method, and a quasiperi-
odic attractor almost is kept unchanged after the fil-
ter. Therefore a quasiperiodic attractor can indeed be
confirmed in the experiments by the Lyapunov-exponent
spectrum. However, the filter technique has to be care-
fully used for the chaotic attractor, because the filter
might change the chaotic attractor a little.

After the verification mentioned above, it is confirmed
that our algorithm can not only estimate the Lyapunov
exponents of chaotic time series but also distinguish the
quasiperiodic experimental signals from the chaotic and
the periodic experimental signals.

TABLE II. Lyapunov-exponent spectra for two-frequency
quasiperiodic, three-frequency quasiperiodic and strange non-
chaotic attractors with white noise (standard deviation
10%). The attractors are generated from a quasiperiodic
driven damped pendulum with different values of K [4]. (The
sampling time interval At = 7/25, 7=10-20At.)

Type of attractor Ai Ai
from equation from time series
two-frequency 0.000 0.034 + 0.02
quasiperiodic 0.000 —0.039 £+ 0.02
(K = 1.34, N = 8000) —0.239 —0.210 £+ 0.03
three-frequency 0.000 0.047 +0.03
quasiperiodic 0.000 —0.001 + 0.02
(K = 1.77, N = 16000) 0.000 —0.055 + 0.03
—3.000 —0.30 +0.10
strange nonchaotic 0.000 0.034 + 0.02
(K =1.33, N = 8000) 0.000 —0.037 + 0.02
—0.158 —0.180 + 0.03

IV. LYAPUNOV-EXPONENT SPECTRUM
OF EXPERIMENTAL PLASMA CHAOS

We have applied the algorithm to experimental data
of the undriven chaotic plasma system. A quasiperiodic
transition to chaos in undriven plasma has been investi-
gated experimentally (Ding et al. [3]). Plasma is pro-
duced by argon gas direct current discharged between the
anode and the hot cathode. Typical plasma electron den-
sity ne = 108-10° cm—3, electron temperature 7. = 1-3
eV, T;<T.. The signals of discharge current Ip(t) are
recorded by digitizers (data precision 8 bits, data size
N=8192). The quasiperiodic transition to chaos can be
found by varying the gas pressure P, when a periodic os-
cillation is initiated by varying the discharge voltage Vp.
The computation of Lyapunov exponents for experimen-
tal data has been summarized in Table III for different
controlling parameters P,. At P, = 7.9 x10~* torr, since
at least one of the exponents must be zero, we can recog-
nize A; as zero (well within the error bars). So the case
is easily identified as (0, —, —) which indicates that the
plasma is in the periodic state. Similarly, the exponents
for P, = 8.0x10~* torr are identified as (0,0, —, —) (since
[A1] = |A2|<|As3], |A4|) which indicates the appearance of
the quasiperiodic state. One for P, = 8.1 x 10~* torr
as (+,0,—,—) indicates the chaotic state (the detailed
experimental results can be seen in Ref. [3]). Finally, we
show in Table III the estimations of Kolmogorov entropy
K, and dimension Dgy = 2.86 which can be compared
to the correlation dimension Dy = 2.90 %+ 0.02 by using
the Grassberger-Procaccia algorithm [25]. In our exper-
iments usually the noise level is less than 5%. When
the modified algorithm (p average) is applied to experi-
mental data the leading Lyapunov exponent can be im-
proved 10% without the local filter method. Further-
more, in order to distinguish the quasiperiodic attractor
we use the local filter method for the experimental data
related to the quasiperiodic attractor. In this situation
we hope to get two comparable zero Lyapunov exponents
which indicate a quasiperiodic attractor. Without the lo-
cal filter method it is difficult to confirm an experimental
quasiperiodic attractor. It should be noticed that the lo-
cal filter method might change the original chaotic attrac-
tor a little and almost does not change the quasiperiodic
attractor.

V. DISCUSSIONS AND CONCLUSIONS

A full Lyapunov-exponent spectrum in nonlinear dy-
namical experiments is important to distinguish different
attractors. The practical algorithm presented has been
tested on several known models (e.g., Lorenz, Résseler)
and has been found efficiently and reliably. In order
to avoid spurious exponents the false nearest neighbors
method is used to select the best embedding dimension
dg directly. Compared with the calculations of corre-
lation dimension, the false nearest neighbors method is
performed with relatively little data and less computing
time is consumed. The estimation of the best embedding
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TABLE III. Lyapunov-exponent spectra for different plasma states at P, = 7.9,8.0,8.1 x 1077
torr, respectively. These results clearly indicate a quasiperiodic transition to chaos in a plasma.

PA,(IO“l torr) A1 A2 A3 A4 K, entropy Dxy
7.9 ~0.022 —1.503 —3.467 )
8.0 0.069 —0.054 —~1.322 —2.434 T
8.1 1.069 —0.080 —1.148 —3.363 1.069 2.86

dimension can be accepted for the data masked by up to
30% noise. The influence of noise on the best embedding
dimension is much less than on the Lyapunov exponents.
Although the determination of time delay 7 remains con-
troversial, the method of autocorrelation function could
be applied for our practical uses. Our algorithm is mainly
influenced by the appearance of the noise. For noise less
than 5%, a p-average method which we suggest in this
paper can be used to obtain relatively accurate results.
For larger noise, a local filter technique has to be ap-
plied to time series before the reconstruction of phase
space. Although removing noise from chaotic signals is
a challenging problem which has not been solved com-
pletely, anyway, an improvement of the estimation of
the Lyapunov-exponent spectrum has been achieved in
our performance with the help of a local filter. In or-
der to apply our algorithm to verify quasiperiodic and
strange nonchaotic attractors, we have also computed the
Lyapunov-exponent spectra from the time series of two-
frequency and three-frequency quasiperiodic and strange
nonchaotic attractors. Fortunately, Lyapunov exponents
found by means of the phase space reconstruction tech-
nique are in agreement with those found by solving the

equation directly. Furthermore, the algorithm has been
applied to real experimental data in the chaotic system
of undriven plasma [3], and the computed results corre-
spondent to that of power spectrum analysis and phase
space portrait very well. The calculation of Lyapunov
exponents quantitatively characterizes an experimental
quasiperiodic transition to chaos in an undriven plasma.
It is hoped that the practical algorithm presented here
has wide applicability to research on plasma chaos, tur-
bulence, and transport properties where the dynamics
equations might not be available.
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