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The dependence of the scaling properties of the structure factor on space dimensionality, range of
interaction, initial and Snal conditions, and the presence or absence of a conservation law is analyzed
in the framework of the large-N model for growth kinetics. The variety of asymptotic behaviors is
quite rich, including standard scaling, multiscaling, and a mixture of the two. The different scaling
properties obtained as the parameters are varied are controlled by a structure of 6xed points with
their domains of attraction. Crossovers arising from the competition between distinct Sxed points
are explicitly obtained. Temperature Quctuations below the critical temperature are not found to be
irrelevant when the order parameter is conserved. The model is solved by integration of the equation
of motion for the structure factor and by a renormalization group approach.

PACS number(s): 05.70.Fh, 64.60.Cn, 64.60.My, 64.75.+g

I. INTRODUCTION

In growth kinetics one deals with the relaxation to
equilibrium of a system quenched 6.om high to low tem-
perature [1]. The processes of interest are those which
exhibit scaling [2] in the asymptotic time regime. Denot-
ing with TI and TF the initial and final temperatures,
these processes can be grouped into three classes char-
acterized by (TI & T„TJ; & T,), (TI & T„T~ = T,),
and (TI = T„TF & T, ) where T, is the critical tempera-
ture. This subdivision arises &om renormalization group
arguments [3] whereby the temperature axis (Fig. 1) is
controlled by three fixed points at T = 0, T„T= oo and
T, is unstable both with respect to T = 0 and T = oo.
Such a Bow diagram leads naturally to the three univer-
sality classes listed above whose basic processes are those
originating and terminating in a fixed point. By far, the
most studied among these is the phase ordering process
from TI ——oo to TF ——0.

The reason for the continuing interest in this problem
is the persistent lack of a full understanding of scaling
which is observed both in laboratory [4] and numerical

[5] experiments. In terms of the structure factor (Fourier
transform of the equal time order parameter correlation
function) this asymptotic scaling behavior is of the form

where L(t) is a characteristic length which grows in time
with a power law

(1.2)

A scaling pattern of this type, which we refer to as stan-
dard scaling, is completely characterized by the pair of

Tc

FIG. 1. Renormalization group fjow on the temperature
axis.

exponents z, cr and by the scaling function F(x) These.

quantities depend to a diHerent extent on the various
elements entering in the specification of the process [6]
which, in addition to the classes (TI, Ty ) discussed above,
include the space dimensionality of the system, the vec-
tor dimensionality of the order parameter, the presence
or absence of a conservation law, and the short or long
range character of interactions.

The purpose of this paper is to explore in detail the de-
pendence of the scaling properties on the totality of these
elements in the framework of the large-N model [7]. This,
at the moment, is the only available nontrivial soluble
model with a structure suKciently rich to be adequate
for this kind of investigation. The picture which emerges
in the end is quite informative and exposes clearly the
profound difference between processes with and without
conservation of the order parameter.

%e consider a system described by an N-component
order parameter P(x) = (Pq(x), ..., P~(z)) and by a &ee
energy functional of the Ginzburg-Landau type,

where 'RLR[P] contains the long range interaction and
will be specified in Sec. II. The Gibbs equilibrium states
P,~[/] exp( —&'R[P]) are parametrized by the temper-
ature T and by the pair of coupling constants ts = (r, g).
In the large-N limit (N -+ oo) there is a critical temper-
ature T, (p) r/g and a phase —diagram (Fig. 2) in the
three dimensional parameter space (T, ts) with a surface
of critical points separating ordered states below it &om
disordered states above it. The interesting portion of this
phase diagram is the (r & O, g & 0) sector at or below
the critical surface where scaling is to be expected in a
quench process. As we shall see in the following, the set
of states at T = 0 on the g axis plays a special role since
it is located at the edge of both the critical surface and
the ordering region below it.
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FIG. 2. Manifold of Snal equilibrium states arith the crit-
ical surface separating disordered states (above) &om ordered
states (below).

As anticipated above, the characterization of a process
requires, in order, (i) specification of the space dimen-
sionality d; (ii) specification of the initial condition; this
we do by taking an initial structure factor of the form

C(k, o) = —„ (1 4)

where 6 is a constant and the value of 8 selects the initial
state of interest: 8 = 0 corresponds to an uncorrelated
initial state at infinite temperature (TI = oo) while e = 2
corresponds to the critical point (TI = T ); (iii) choice
between a nonconserved order parameter (NCOP) and
a conserved order parameter (COP); (iv) specification
of the short or long range nature of the interaction; (v)
specification of the final state. The interesting subsets in
the equilibrium phase diagram are [T~ = T, = 0, pi ——

(r = O, g = 0)], trivial critical state at zero temperature;
[TF = T, & 0, p, i ——(r = 0, g = 0)), trivial critical states
at finite temperature (T axis); [T~ = T = O, y2 ——(r =
O, g & 0)], nontrivial critical states at zero temperature

(g axis); [Tp = T. & O, p, = (r ( O, g & 0)], nontriv-
ial critical states at finite temperature (critical surface);
[T~ & T„ps —(r & O, g & 0)], phase ordering region.
It is convenient to regard the space dimensionality, the
initial condition, and the range of the interaction as form-

ing, so to speak, the environment of the process, while
the set (T~, p) and the specification NCOP or COP as
elements of discrimination which we will use to identify
processes.

Solving the model analytically and by renormaliza-
tion group (RG) we arrive at the following picture.
The asymptotic scaling properties [z, a, E(2:)]depend on
(T~, y). There is a universality class, under each heading
NCOP or COP, for each of the five regions (T~, p) listed
above. In RG language this means that there are five
fixed points (Tg, , y,*). The fiow in the parameter space
and therefore the extension of the universality classes de-

pends on the relative stability of these fixed points. This
in turn is regulated by the existence of critical dimen-
sionalities which depend on the environment, i.e., initial
condition and range of interaction.

The deep deference between NCOP and COP emerges
from how the scaling properties depend on the final
state (TJ;,p). The most striking difFerence is obtained
for quenches inside the phase ordering region. It was
found previously [8] that when the system is quenched
to (TJ = Q, ys) the standard scaling form (1.1) holds
only for NCOP, while for COP it is replaced by the more
general multiscaling behavior

C(k, t) L f l(t)E(x), (1.5)

where the exponent a also depends on x = kL(t). We
find now that, with some modifications to be discussed
below, this basic distinction, NCOP standard scaling and
COP multiscaling, holds not just for quenches to T~ ——0,
but for quenches anywhere in the phase ordering region
(T~ ( T„ps). Furthermore, while temperature pertur-
bations with 0 & T~ & T, are irrelevant for NCOP, it
is not so for COP. For quenches elsewhere, i.e., on the
critical surface, standard scaling holds both for NCOP
and COP. However, while with NCOP (T~, p) afFects o.
with no impact on z, the opposite occurs for COP.

The analytical tractability of the large %mod-el [7—9]
allows one to expose nicely the mechanism underlying
the picture outlined above and to compute, in addition
to the asymptotic properties, the crossovers induced by
the competing fixed points. The question of the extension
of the properties of the large-N model to finite N needs
to be treated with care. We shall comment on this in the
concluding section.

The paper is organized as follows: in Sec. II the general
features of the large-N model are presented, Sec. III is
devoted to the solution of the model by integration of the
equation of motion for the structure factor, and in Sec.
IV the model is analyzed by RG methods. Concluding
remarks are made in Sec. V.

II. THE LARGE-N MODEL

The long range part of the free energy functional (1.3)
is of the form

Rr.R[P) = J d z J d x P(x) . V(z —'x ), gf(x'), (2 1)

with the large distance behavior V(z —x')
~

e-
x'

~

l"+ ). Considering a time evolution of the order
parameter governed by the time dependent Ginzburg-
Landau model and neglecting [10, 11] k2 with respect to
k for u ( 2 the equation of motion for the Fourier trans-
form of the order parameter in the large-N limit is given
by [7]

= —I'

[wkly*+

y k&B(t)] 4 (k, t) + q (k, t),
Bt

(2.2)

where (o. = 1, ..., N), u) is a coefficient originating in
the smaH momentum expansion of the interaction, I' is
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a kinetic coefficient, p = 0 for NCOP, p = 2 for COP,
r)(k, t) is a Gaussian white noise with expectations

{q(k, t)) = o, (2.3)

{g (k, t)gp(k', t')) = 2I'T k~b pb(k + k')b(t —t'), (2.4)

and

(2.14)

Let us now analyze the 6nal equilibrium states. Since
there is no symmetry breaking, it is suKcient to look
at the structure factor in the limit t ~ oo, obtaining
(Appendix B) from Eq. (2.13)

R(t) = r+ gS(t), (2.5) C{k,oo) = + (2')"M'b{k), (2.15)

with S(t) = (ttr2 (i, t)), which is independent of n and
must be determined self-consistently [12]. In the follow-

ing we will let cr and p vary continuously since o & 2
describes long range interactions while 0 & p ( 2 de-
scribes nonlocal conservation of the order parameter [13].

Integrating Eq. (2.2) with a random initial condition

P(k, o) and dropping the label n we find gB(0)
{2.16)

where ( = [R(oo)] ir is the equilibrium correlation
length. Enforcing the self-consistency condition (2.14)
one finds (Appendix B) that there exists a critical tem-
perature

P(k, t) = P(k, 0)D(k, t) + dt'r)(k, t')
o D(k, t')

where

such that

( '
&0 adnM=Of roTy &T„

(2.17)

and

D(k, t) = exp( —I [urk"+ t+ k"q(t)])

t

Q(t) = dt'R(t').
0

(2.7)

(2.8)

' = 0 and M = Mrt(T, —Tz)/T, for Tz & T„
with Mo = r/g and—

d"k

(2vr)" ttrk d —(r
(2.18)

From (2.6) correlation functions of arbitrary order can
be obtained forming products of P(k, t) and averaging
over both initial condition and thermal noise. For the
average order parameter we 6nd

{&(»t))= {&(k 0))D(k t) (2.9)

which shows that if the initial state is symmetric

{P(k,o)) = 0, as we shall assume in the following, then

{P(k,t)) = 0 for all time, i.e., dynamics does not break
the symmetry. The more general case of a time evolution
with broken symmetry is outlined in Appendix A.

The structure factor (P(k, t)P(k', t)) = C(k, t)b'(k+ k')
is given by the sum of two contributions

Thus in the (Ty, ((t) parameter space (Fig. 2) the criti-
cal point as r and g are varied (g must be positive in order
to have a well defined theory) spans a surface which lies
on the r & 0 sector and separates ordered states un-
derneath it, where the structure factor displays a Bragg
peak, from the disordered states above it without Bragg
peak. Notice that from (2.16) and (2.18) limy~ T, = 0,
implying that 0 is the lower critical dimensionality of the
model.

As discussed in the Introduction, in the rest of the pa-
per we shall be concerned with the solution of Eq. (2.13)
with values of (Tz, )(t) lying on or below the critical sur-
face.

III. QUENCH PROCESSES

C(k, t) = Ci(k, t) + C2(k, t),

where

(2.10) From (2.10) and (1.4) the formal solution for the struc-
ture factor is given by

C, (k, t) = C(k, t = o)D'(k, t), (2.»)

t
C (k, t) = 2I'k~T D (k, t) dt'D (k, t'). (2.12)

0

From (2.10)—(2.12) one can easily verify that the struc-
ture factor obeys the equation of motion

—2I'[teak + t+k Q{t)] 2PT kP

t
X dCI

—2F(mkP+ (t—t')+k" [Q(t) —Q(t' }j}

V7e must now extract the scaling properties.

A. NCOP

(3 1)

BC(k, t) = —21'[ttrk~+ + k"R(t)]C(k, t) + 2I'k"T,

(2.13)

which is closed by the self-consistency condition

With p = 0 by dimensional analysis we can identify
the characteristic length

I,{t)= (2it)'~, (3.2)

which enters (3.1) in the combination x = kI (t). It is
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worthwhile to rewrite (3.1) with this change of variable,

L8
C(k, t) = b,e ~(') —ex8

+crT~L~x ~ dx'x'~ e
0

x e
—2I f(t) —(t')]

which shows that (3.2) is the only available choice for
the characteristic length and therefore necessarily z = u
for any process with NCOP. In order to solve for Q(t)
we integrate (3.3) over k and we use the definitions (2.8)
and (2.14) to derive the equation

1 d——e"~(') = re"~(') + gaA(t)2I' dt
t

+2I'Ty g dt'As(t —t')e q( ), (3.4)
0

where

with Kd = [2 n "~zi'(d/2)], A is a momentum cutoff,
and Ao(t) is the same as A(t) with 8 = 0.

X. Ty ——0

( tp
e2rq(t) = e2I' t

1 + 2I' ~
~

dtle 2I' t'A—(ti)
0

t
dti —zr~t'A(t')

~

tp
(3.6)

I et us now make a further restriction by considering
quenches to zero temperature. With T~ ——0 (3.4) can be
integrated, obtaining

ddt e—2Fmk t

(27r)" ks
AL

Ls d(t) K —
d (3.5)

Next, choosing to such that AL(to) 1, from (3.5) we

may approximate

(t)A(t) Kd Jo &z = Kd[AL(t)]" /(d —8) for t & to
I —f d~~d s i e mz- — —

for t &to (3.?)

and inserting into (3.6) finally we get
C(k, t)- F(z),tt+ oIgb, [Ld. d —Ls' ]/(d,

——d)t
e2I'Q(t) 2I'et + ~I 2I'rt dtl 2rrt'Ls d—(tiq—

tp (3.12)

C(k, t) = b,L'F(x),

with

(3.9)

(3.8)

where r, = 1+gbKdAd s(1 —e 2r"to)/(d —8)r
The next step is to extract the behavior of Q(t) from

(3.8) after specifying the set of coupling constants p =
(r g).

p, i ——(r = O, g = 0) . In this case Q(t)—:0. Thus
from (3.3) we get

with d, = 8+ o, Lo ——L(to), and F(x) given by (3.10).
Now scaling is no longer an exact property obeyed over
the entire time history, but only asymptotically. Further-
more, Eq. (3.12) shows that d, is a critical dimensional-
ity, in the sense that difFerent asymptotic behaviors are
obtained depending on d ) d, or d & d, . For d & d the
asymptotic behavior is the same as for the quench to pq,
with the denominator producing a correction to scaling
at early times. Instead for d & d, there is a crossover
time t' (b,g) '-&. such that

F(x) = (3.10) )
LsF(x) for t « t'
L,' F(x) for t » t-' (3.13)

Note that C(k, t) obeys the scaling form (1.1) from be-
ginning to end over the entire time history of the process
with a = 8. In this case dynamics propagates the scaling
properties of the initial condition.

pz ——(r = O, g & 0) . Setting r = 0 in Eq. (3.8)
C(k, t) - F(x). (3.14)

At d = d we 6nd a logarithmic correction due to
marginality,

e2FQ(t) AIo.
[Ls+cr—d Ls+u —

d]8+v —d

which gives

(3.11)
In order to illustrate the above results we have in-

tegrated numerically the equation of motion (2.13) for

p = 0, u = 2, d = 3, r = 0, T~ ——0, and diHerent val-
ues of g . Since the crossover involves only the exponent
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it is convenient to discuss it in terms of S(t) . The
analytical behavior of S(t) is obtained integrating (3.12)
over k,

NCOP, d=3, tIt =2, &=10, r=0

L8—d

S(t)-
r. + oIgb, [L~. ~ —Lo "]/(d, —d)

(3.15)

g=10

which implies for the structure factor

L8

r. + oIgh[L~ " —Lo' ]/(—d, —d)

xF(x)e 'r"',

C(k, t)-
(3.17)

showing that in &ont of the exponential actually there is

The case d & d is realized taking 0 = 0, which yields
d, = 2 . The double logarithmic plot of the numerical
solution for S(t) shows (Fig. 3) that the power law L
t ~ is asymptotically obeyed with deviations &om it at
early times which become smaller as g decreases, i.e. , as
pq is approached along the p2 axis. Conversely, for
d ( d, , obtained by setting 0 = 2 which implies d = 4,
the numerical solution for S(t) behaves as L ~ t
for t « t' and as L 2 t for t )& t' (Fig. 4).

ps ——(r & O, g ) 0) . With these values of r and g
the quench is made inside the region of the coexisting
ordered phases, which is the process normally considered
in the kinetics of phase ordering. In a process of this type
usually one makes the distinction between the early stage
of exponential growth due to the instability generated
by r ( 0 and the late stage characterized by scaling
behavior. However, due to the existence of crossovers,
we should expect to find a scaling regime also at early
time with the exponents appropriate to p, q or pq when
r and g are pushed sufficiently close to p, q or p2. In
fact for short time (t & I/2I'~r~) Eq. (3.8) yields

e r&(') e r"
~

K+rrI [L"' "—L~' "] ~,
gb.

d, —d )
' (3.16)

g=100

SLOPE=-1.0

log t

FIG. 4. Behavior of S(t) in a quench to yz for NCOP with
rr = 2, A = 10, and d & d, : (d = 3, 8 = 2). The top dashed
line has slope —0.5, the others below have slope —1.0.

C(k, t) MoL E(2:) (3.i8)

for any d. This means that for quenches inside the phase
ordering region there is not an upper critical dimensional-
ity such that above it one obtains an asymptotic behavior
with o, = 8.

The crossover structure is illustrated in Fig. 5 through

a prefactor identical to (3.12). Hence if ~r] is sufficiently
small one can detect a scaling regime identical to the one
discussed for quenches to p~ and preceding the usual
early time regime of exponential growth.

Instead, when time is large we can set to zero the left
hand side of (3.4), obtaining for the structure factor the
late stage scaling behavior

NCOP, d=3, @=0. ~=10, g=1

NCOP d=3

D =10 t)=0 r=o

SLOP E=-1.50

a-4 P

g=10
-2

6 I

g=100 -3 SLOP E=-1.45
r=-0.01

1.5
log t

2.5

1

log t

2 5

FIG. 3. Behavior of S(t) in a quench to p2 for NCOP
with o = 2, A = 10, and d ) d: (d = 3, 8 = 0). The straight
dashed lines have slope —3/2.

FIG. 5. Behavior of S(t) in a quench to yq for NCOP with
cr = 2, A = 10, d = 3, 8 = 0 at fixed g = 1 as r approaches the
p2 axis. The straight dashed line has slope —1.45.
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the behavior of S(t) computed numerically for d = 3, 8 =
O, o. = 2, g = 1, and decreasing values of r in order to
explore the influence on S(t) of the power law associated
to the p2 axis. While away &om p2, e.g. , at r = —1.0,
the behavior of S(t) shows only the asymptotic scaling
regime S(t) Mo2 ——1, as [r[ is decreased and» is
approached for [r[ sufficiently small, e.g. , r = —0.01,
S(t) indeed displays at intermediate times the power
law L "~ t ~ which we have found previously as an
asymptotic behavior in the quenches to p,~ . The case
with 8 = 2 yields qualitatively similar results.

C(k, t) - L T.F,(z),

with

1

F,(z) = dy(1 —y)
'~ e

0

(s.24)

(s.25)

Notice that lim, ~o F,(z) = Fs(z). Thus at the up-
per critical dimensionality 2' the nontrivial fixed point
merges with the trivial fixed point on the temperature
mls.

In summary, with NCOP we have found the following
asymptotic scaling properties:

2. Tg&0

For quenches to a finite final temperature 0 & T~ &
T, we restrict the choice of the initial condition to high
temperature, taking 8 = 0 in (1.4).

pi ——(r = 0, g = 0). For quenches to the trivial critical
states at finite temperature (T axis in Fig. 2), setting
Q(t):—0 in (3.3), we find

(1)[TF= O, yi],

C(k, t) - L'(t)F(z),

(2) [T~ = T, & 0, pi],

C(k, t) - L (t)T.F,(*),

(s) [T& = 0,»],

(3.26)

(3.27)

C(k, t) = b,e + L Ty Fp(z),

where

Fo(z) = (1 —e )/iaz .

(s.19)

(s.2o)

Ls(t)F(z) for d & d,
C(k, t) ~

& )„&~~~))F(z) for d = d, = 8+0
L~ (t)F(z) for d ( d„

(3.28)

Thus for these processes the asymptotic scaling behavior
is given by L T~Fo(z) while the strength b, of initial
correlations is an irrelevant parameter with correction to
scaling behavior L

ps ——(r ( O, g & 0) The solution of Eq. (3.4) in the
general case has been obtained by Newman and Bray
[12]. For large time and for cr ( d ( 2o they find

(4) [Tp = T, & 0, »],
L (t)T,Fs(z) for d & 2o
L (t)T,F,(z) for d (2o,

(5) [TJ: (T„IJ,s],
C(k, t) - L'(t)F(z),

(3.29)

(s.so)

with

—2I'Q(t) L (t)

e =2o —dfor T~ ——T,
d for TJ (T.

Inserting into (3.1) we find

(3.21)

(3.22)

where L(t) ti~, z = kL(t), and

F(z) = e /zs,

Fs(z) = (1 —e )/urz ,
1

F.(*)= dy(1 —y) '"" "
0

(3.31)

(3.32)

(3.33)

C(k, t) = C(k, to)

1—(xp/c)
+L Ty

0
dy(1 —y) ~ e

(3.23)

where to is some microscopically short time such that
scaling holds for t & to and where zs ——kL(to). For
T~ ( T„recalling that T ) 0 requires d & o. and us-
ing (3.22) the asymptotic scaling behavior is still given
by (3.18) with T~ acting as an irrelevant perturbation
whose correction to scaling behavior is given by L
For T~ ——T, the role of the two terms in the right hand
side of (3.23) is reversed. The thermal contribution pro-
vides the dominant scaling term L while the first term
yields correction to scaling L ". Taking 4 = 0 and
setting the coupling constant g at the fixed point value
[14, 15], the first term can be made to vanish (to +0), -
obtaining

with e = 2' —d.

B. COP

f. Ty ——0

Considering first, as before, quenches to zero temper-
ature the structure factor is given by

C(k q [m(sL)~+ +a(kA—)~]
7 (s.s4)

where a = sgn(Q). To begin with, let us rescale lengths
with respect to L(t),

Let us now go back to Eq. (3.1) with p g 0. The
important new feature is that now by dimensional anal-

1
ysis we can form the two lengths L(t) = (21't) ~+ and
A(t) = (21'

~ Q [) ~". In order to establish the scaling
behavior we must know which of the two is the dominant
one.
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where

(3.35) with

F( )
—[m~~+ +ca~ j

x~ (3.45)

—u z"+
e

(3.36)

(3.37)

showing that there is scaling with the same exponents as
at pi, but with a modified scaling function.

Finally, assuming P(t) ~ oo, from (3.38) it follows
that

p(t) ~ I {&—e+s j ~ (3.46)
with x = kL(t) and the reason for the notation F&(x)
will be clear below. Again, we must solve for Q(t) using
the analogue of Eq. (3.4),

which for consistency requires d & d, . Therefore we
must now scale with respect to A, obtaining

~Le—d~ d d 8—1 —( + P )

dt 0

(3.38)

pi ——(r = 0, g = 0) . Since in this case Q(t) = 0,
implying A(t) = 0, clearly L(t) is the dominant length
and z = p + o. From (3.35) we have, as in the NCOP
case, that standard scaling is exactly obeyed over the
entire time history with

C(k, t) A [1 —iDP (t)x'"+ ]F((x'),

where
Ip

F((x') =

and x' = kA(t), A(t) - t'~' with

z =d+p —I9.

(3.47)

(3.48)

(3.49)

C(k, t) = b,L'F, (x). (3.39)

When the nonlinearity is present it is no longer pos-
sible, contrary to the NCOP case, to solve directly for

Q(t) . Hence we now make statements about the solu-
tion of (3.38) for large time by consistency checks on the
assumption that either one of the two lengths L(t) and

A(t) prevails over the other.
p2 = (r = 0, g & 0). From (2.5) and (2.8) in this case

a is positive. Let us first suppose that L prevails over A,

i.e. , P(t) + 0 as t ~ oo. For large time Eq. (3.38) can
be replaced by

This result is interesting because a pattern qualitatively
difFerent from the corresponding case with NCOP is ob-
tained. In the latter case when the nonlinearity becomes
relevant below d, the exponent n changes from the value
8 to the dimensionality dependent value (d —a), while
the exponent z and the scaling function remain the same
as for the quench to the trivial fixed point p, q. With COP
instead we find that o, always keeps the trivial value 8,
while there is a change in the scaling function and the
growth exponent picks up the value (3.49) dependent on
the space dimensionality of the system.

ps = (r ( O, g & 0) . For the quench in the phase
ordering region Eq. (3.38) can be rewritten in the form

~Le d~ d
—d 8 i —m~" +- —

dt 0

and integrating we find

(3.40) dQ gA= r + s It.gj(P),
dt

where

(3.50)

Ld, +P—d

Q(t) + const,
d~+p —d

(3.41) I(P) = d —8—1 —Pf(x)dxx e (3.51)

where d, = 8+ o . Inserting this result into (3.36) it
follows that f(x) = ax" + mp 'x"+ (3.52)'L" ford&d, +p

p(t) ( L "lnL for d = d, +p
Ld " for d(d, +p)

(3.42) Making the assumptions to be verified a posteriori that
P is asymptotically divergent and that a is negative we
can make a saddle point evaluation of (3.51),

which is consistent with the assumption if d ) d . Thus
for d & d~ from (3.35) we find

C(k, t) - L' [1 —P(t)x&]F (x). (3.43)

This result together with (3.42) shows that there exists
yet another critical dimensionality d = d, + p afFecting
the behavior of corrections to scaling.

Assuming next that P(t) takes a constant value c, we

find that this is consistent only for d = d, and from
(3.35) it follows that

2

I(P) 2 e ~ "u~,
u)0 (p+ cr)

where

p
m(p+ 0.)

(3.53)

(3.55)

C(k, t) - L'F(x), (3.44)
For large time we can set to zero the left hand side of
(3.50), obtaining I(P) = rL" /gKgb, . Next, using—
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(3.53) and taking the logarithm we find the asymptotic
re ation

scaiing is a smooth one as p is varied continuously from
p=2top=0.

e exponentNotice that from (3.58) and k t ~' th
z eve ops a time dependence which asymptoticall is
given by

ica y is
p(d —H)

'll = ln L — ln u.
QPCT VOCE

Inserting the leading contribution into (3.54) we obtain

consistently with the assumption. Thus in this case A(t)
and L(t) diverge in the same way up to a logarithmic
factor. As fundamental length we choose [8] the inverse of
the wave vector k (t) where C(k, t) reaches its maximum
value

(3.56)

z-(p+o) 1+ lnlnt
lnt

(3.64)

2. Tg&0

yi ——(r = 0, g = 0). Again, with Q(t) = 0 and H = 0
it is straightforward to derive from (3.1) the standard
scaling resultk (t) = L 'u~+-. (3.58)

Inserting this result in (3.35) and introducing the variable
z = k/k we obtain C(k, t) = be * +L TpFo(z), (3.65)

C(k, t) ~8/(P+cr) x8
where

(3.59)
Fp(z) = (1 —e )/iox

where
(3.66)

~(x) — xP xP+~p+ cr

p

and the same considerations made about (3.19) apply
here.

0 &0
p3

—— r & 0, g & 0). For quenches to pP3 —— r &

, g & 0) now we cannot solve explicitly for Q(t). Then
we proceed differently by rewriting (3.1) as

(3.60)

Next iterating once (3.56) and inserting the result into
(3.59) we obtain the asymptotic expression [8, 10]

ks ~(k L)
C(k, t)- (3.61)

winch, up to a logarithmic factor in the amplitude, is in
the multiscaling form (1.5)

C(k t) k o()—

C(k, t) = b,e"( )+( )

t
+2rT~I ~

0
(3.67)

where &p(z) has been defined in (3.60) and u(t) is related
to Q(t) by (3.54). In the following we will drop the bar
over x. If by analogy with what we have found at T~ ——0
we make the ansatz

(3.62)

with

d —H p~o(*) = V(*)+H

This exponent no(z) is plotted in Fig. 6 for H = 0, o = 2

showing that the transition &om multiscaling to standard

e" = cL (t), (3.68)

with p ) 0, the quantities to be determined are the con-
stant c and the exponent p. Inserting into (3.67), and
assuming k i(t) L(t) up to logarithmic factors we find

C(k, t) = S(cL~)~(*)
1

X 1+TFL Ip+~ —i I p~(~ )

QJx
'x'x

0

I I I I

d=3, 0=0, a=2

p=0

x pg(x') 1n L (3.69)

For large L the integral in the right hand side can be
evaluated by steepest descent. Keeping in mind that p )
0 and that &p(z) behaves as in Fig. 6, we must distinguish
between x & z* and x & z* where x' = (

+
) is

the nontrivial zero of y(x). For & * thr x x e exponential
reaches the maximum value at x' = 0 hix =, w e orx)x'
the maximum is at x' = x, yielding

C(k, t) A(cL )~ + (cL )~
TyL
vox~

(3.70)
0

0 for x & x* and

FIG. 6. Plotot of o.s(z) for diFerent values of p. Multiscal-
ing goes over smoothly to standard lar sea mg as@ ~ O.

C(k, t) b, (cL )~ * +
'wx

(3.71)

SCALING AND CROSSOVER IN THE LARGE-N MODEL FOR ~ ~ ~
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for x & x'.
We now determine c and p by using the self-consistency

condition (2.14). From (3.54), where P is defined in

(3.36), and (3.68) follows B(t) = Q(t) (pin L) &+ L
On the other hand, B(t) can be computed from (2.5) with

S(t) obtained by integration of (3.70) and (3.71) over k.
Thus for T~ ——0 dropping logarithmic factors one finds I

F (x)—
)

(3.so)

From the self-consistency condition (2.14) now we find

AI
L =r+ AKL" d

0
(3.72)

For large I the integral picks up the dominant contribu-
tion at z = 1, giving

where we have used the definition (2.16) of T, Fr. om

(3.79) for large x we have F, (1 —cbx ) where

c = +" Jz doge ~ . Inserting into (3.80) and defining

f(b) = I dzz" i[F,(z) — i
] we have

L = r+gAK c "L( (3.73) (p+ o)gKgT, A~

2I p(d —2o)
gKgL f (b)

21@

AI
dxx" (3.74)

Furthermore, taking into account that for large L the
dominant contribution to the first integral is obtained at
x = 1 and that the contribution at z' is negligible in the
second one, finally we obtain

The right hand side can vanish only if p = pd jo, in agree-
ment with (3.63), and c ~i' Mo2.

For T~ g 0, the first terms in the right hand sides
of (3.70) and (3.71) are asyinptotically negligible with
respect to the second ones, yielding in place of (3.72)

x'
L = r+gTpL Kg dzz '(cL )~*

0

C(k, t) - L,'(t)F, (x),

(2) [Tz = T., yi],

(3.s2)

(3.81)

from which follows 6 = 0 for d ) 2o, while for d & 20 the
value of b is given by the condition f (b) = 0. Solving this
equation in the e expansion [15] one finds b e as for
NCOP, which implies the same structure of fixed points.
Namely, for e m 0 the nontrivial fixed point still merges
with the trivial one and lim, ~p F (z) = Fp(z).

The summary of the asymptotic properties with COP
is given hereafter:
(1) [TF = O, Pi],

with

La(z)
C(k, t) - TF (3.76)

L = r~
'

~
+ gTyKgc ~"L ~+ ". (3.75)T )

For TF & T, this implies p = p(d —o)/ oand c ~i'-
Ms2( & &~). Inserting into (3.70) and (3.71) one finds

C(k, t) L (t)T Fp(z),

(3) [Tp = 0, p2],

'Ls(t)F)(z) for d ) d,
C(k, t) - ~ L'(t)F(z) for d = d. = 8+ o

, As(t)F((z') for d ( d„
where x = kL(t) and z' = kA(t),
(4) [TF = T. ) 0, »],

(3.83)

(3.84)

$(d —o)&p(z) + o for x & z*
(*) for x) z*, (3.77) L (t)T,Fs(z) for d ) 2o

L (t)T,F, (z) for d ( 2o. ,
(3.85)

showing that the structure factor obeys multiscaling for
x & x' and standard scaling for z & x'. Notice that the
two behaviors match at z' since Ip(z*) = 0.

If the quench is made on the critical surface (T~ = T,),
then Eq. (3.75) gives p = ~(d —2o'), which is negative
below the upper critical dimensionality contradicting the
initial assumption p ) 0. Hence we take p = 0 which
implies standard scaling with u(t) constant. From (3.68)
and (3.36) we have Q(t) = bD'(t). Inserting in (3.1) and
taking A = 0 for simplicity, we obtain

(5) [0 & TF & T„ps],

L (*)(t)
C(k, t) Tp.

(6) [T~ =o »]

C(k, t) - I; ~*~(t)—„
with

(3.86)

(3.87)

C(k, t) = L T.F,(x),

with

(3.78)
t /(u+-)

x(t) —t'« "+&-'~.

F,(x) = l /p+cr —1 —tur(x~+ —~'~+ )+b(~ —~'")]
toz 0

F&(z) = (3.90)
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F xj= —e
1

) —
g

Ip
eF.(*)= ... ~

F.(*) = .(1-e *
)

F,(*) = 1 d*' '"+
%OX 0

p+~ ~p+~)+g(zp + P) Ixe

(3.91)

(3.92)

(3.94)

terms of the geometry of the fixed points and their do-
mains of attraction.

In quench processes one deals with a time dependent
probability distribution P[P; t, T~, p] . Therefore RG
transformations performed on this object are expected to
give recursion relations for (t, T~, p) with a fixed point
structure which accounts for the variety of scaling behav-
iors obtained in Sec. III. In order to implement the pro-
cedure outlined above, we should construct P[P; t, T~, p]
and then carry out renormalization. However, since the
stochastic process is Gaussian and all the equal time in-
formation is in C(k, t), we can work directly with the
equation of motion (2.13). First we separate soft and
hard modes

~o(*) = (P(~) + 8(d —8)p

(r + $(d —o)rp(x) for x & z'
(*) for z) x',

(I (*) =
p

IV. RENORMALIZATION GROUP

(3.95)

(3.96)

(3.97)

C(k, t) = C.(k, t) + Ci, (k, t),

with

C (k )
C(k, t) for 0 & k & A/l
0 forA/E&k&A,

0 foro&k&A/l
C(k, t) for A/l & k & A.

(4.1)

(4.2)

(4.3)

We now discuss the scaling properties of the model
within the RG approach to the problem [16]. Let us recall
that in static critical phenomena the Wilson RG equa-
tions are obtained performing the following operations on
the equilibrium probability distribution P,~[/; T~, p]: (i)
elimination of hard modes P(k) with A/I & k & A where
l ) 1, (ii) rescaling of wave vectors and order parameter with

= —2r[mk"+ + k"R(t)]C, g(k, t)
Ot

+2I'k~Ty, (4 4)

The equation of motion for either component is given by

P'(k') = I "g7(k),

R(t) = r + gS.(t) + gSi, (t),

d"I[
S,,i, (t) = C, ,p, (k, t)

(4.5)

(4.6)
(iii) requirement of form invariance of P,q[P;Tz, p] .

These operations generate recursion relations for the pa-
rameters (T~, p) which allow one to describe scaling in

Then we proceed to eliminate hard modes. Integrating
the equation of motion for Ci, (k, t) we find

t

k ()
-»[ i'+ i+i'Q(i)i+2' ki T dt'e-' i ""('-')+"'[q(')-«')j)

0
(4.7)

where Q(t) = Q, (t) + Qi, (t) . After integrating over

k we should solve for Sq(t) and insert the result into
the equation for C, (k, t) . However, considering that
we must eliminate modes with k ) L (t) and that in
the scaling regime these have already equilibrated, with
a good approximation we can set

Next we carry out the rescalings for k & A/l,

C'(k', O) = l'-' (')C(k, O), (4.1o)

(4.11)

Cg(k, t) Cp, (k, oo) =
haik + R(oo)

and we are left with Eq. (4.4) for C, (k, t) with

R(t) = r + gS, (t) + gSI, (oo).

(4.8)

(4.9)

(4.12)

C'(k', t') = l' '"(*)C(k,t), (4.13)

where we have allowed for an order parameter scaling in-
dex dependent on the invariant quantity x = kt ~ . From
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(4.4) and (4.13) we obtain the transformed equation of
motion

Next, rewrite (4.17) as

r'+ g'S'(t') = l' "[r + gS, (l't') + gSr„(oo)], (4.22)
OC' k', t'

tU += —2I' l' — —~ k'~+ l' —"k'~R(l't')

+I-'"y„(*,) I l C'(k', t')
dt' Sh, (oo) = TFB(0)(l —l ") (4.23)

where for quenches to final states with R(oo) = 0 one
has

+2Fk'pE -p+d-"I'. )r~, (4.14) and B(0) is defined in (2.18). Since from (4.13) we have

which can be rewritten in the same form as the original
equation of motion (2.13),

S'(t') = l'&" "&S,(t) (4.24)

BC' k', t'
= —2I'[~'k'"+ + k'"R'(t')]C'(k', t')

inserting (4.23) and (4.24) in (4.22) we find r' = l' r [r+
gTFB(0)(l —l ")] and g' = l* "+ i" ~g. Introducing
the scaling field

defining

+2Fk'pTF (4.15)
~ = r+ gTFB(0) = r(T, —TF)/T, (4.25)

m' = E' pm

x~d lnER'(t') = l' ~R(l't-') +

(4.16)

(4»)

the whole set of recursion relations is given by

u)' = E'

(4.26)

(4.27)

Z" —
E

-P+ —~~*)ZF — P. (4.18)
(4.28)

In order to preserve the self-consistent structure we must
require

R'(t') = r'+ g'S'(t'),

yz —p+2(y —d)
g = E g,

Ez —p+d —2yyp

(4.29)

(4.30)

ddk'

Since the left hand side of (4.17) depends only on
the x dependence on the right hand side must disappear,
implying

We emphasize that the use of the same scaling index y for
t ) 0 as well as for t = 0 leads to fixed points as processes
for which scaling holds over the entire time history. For
processes where scaling invariance is only asymptotic it
is not necessary that there exist a nontrivial fixed point
solution of (4.26)—(4.30).

y(z) = c ln z + y(0) . (4.19) A. Fixed points

This forxn of y(z) diverges at z = 0 and we must neces-
sarily have c = 0.

So far w'e have managed to map the process described
by (2.13) in the new process governed by (4.15) with
new parameters 6', m', p', T+. We are going to be in-
terested in those processes (fixed points) whose param-
eters 6', m', p', T+ do not change under renormaliza-
tion. For these values of the parameters, since the
form of the original equation of motion (4.15) and the
self-consistent structure have been preserved, we have
C'(k', t') = C(k, ', t'). The existence of such fixed
points is compatible only with the standard scaling choice
y(z):—y, which seems to exclude the multiscaling solu-
tion found in the preceding section. We shall comment
on this later on.

We proceed to extract recursion relations. From (1.4)
and (4.10) it follows that

and

Z =P+0 (4.31)

o. = 2y —d = 0. (4.32)

Inserting these values into (4.28), (4.29), and (4.30) we
obtain

The next step is to look for fixed points
(A*,m', v', g', TF') of the recursion relations and to ex-
tract from them the exponents z and o.. These exponents
are determined by imposing that two of the parameters
have a finite fixed point value. In the remaining recur-
sion relations we consider the trivial fixed point solution
and the corresponding domain of attraction. In order to
show how this works in practice let us begin by requiring
that 4* and m' be finite. From this, using (4.26) and
(4.27) it follows that

C'(k', 0) = l + "b,/k'

implying

Ed+8

(4.20)

(4»)
I Edc —d

(4.33)

(4.34)
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(4.35)

withe, = 8+0. The trivial solution is w' = g' = T& ——0,
which coincides with (Ty = 0, pq). The corresponding
domain of attraction, considering that for quenches &om
high temperature to the critical surface 8 & 0, is given
by the g axis, i.e., (T~ = 0; pz) for d ) d, . Otherwise,
for d ( d„ this fixed point is unstable, and (4.31) and
(4.32) do not apply for quenches to (Ty = 0, pz). This
coincides with what we have found in Sec. III.

Next, let us require that 4' and g' be finite. Then we

find z = d + p —8, a = 8 and the remaining recursion
relations

Finally let us come to the discussion of quenches inside
the phase ordering region. For this we require that m'

and the fixed point ratio

M
E~) . & &. )

(4.45)

(4.46)

be finite, obtaining z = p+ o and o. = d. The other
recursion relations

m' = l" "cm (4.36) TF —l "Tp (4.47)

(4.37)

ld —2ey (4.38)

(4.40)

r~ = l"-dr~, (4.41)

yield a trivial solution which is unstable under all per-
turbations. The meaning of 4 Bowing to in6nity can be
understood Erom the result of Sec. III where the crossover
time t' vanishes for 6 -+ oo. In this limit we have a 6xed
point in the sense speci6ed above that the same scaling
behavior applies over the whole history of the process.

So far we have dealt with fixed points with T+ ——0 and
7' = 0, namely, with quenches to zero temperature crit-
ical points. In order to analyze quenches on the critical
surface at 6nite temperature, we must require T+ and m*

finite as it is usually done in static critical phenomena.
From these conditions it follows that z = p+ cr, a = cr,

and

(4.42)

(4.43)

l2cr —d (4.44)

Thus for quenches to finite temperature on the critical
surface 4 is irrelevant and the attractive fixed point goes
from trivial to nontrivial as the dimensionality goes from
above to below the upper critical dimensionality 2o.

with the solution m' = v.* = T+ ——0. m Bows to zero
for d & d, . This fixed point for COP corresponds to
the quench to (Ty = 0, p2). For NCOP this corresponds
to the case of independent particles and it is possible
to show that in this case the amplitude of the structure
factor vanishes. Thus in order to treat quenches to (T~ =
0, p2) for NCOP with d ( d, we must require that m' and
g' be simultaneously finite. This immediately reproduces
the results z = 0' and a = d —0 of (3.13). The ensuing
recursion relations for the other parameters,

(4.39)

lim z(t) = z = p+ 0.
t aboo

(4.48)

With these modifications and T~ = 0 in place of (4.14)
we find

' = —2l'[mk'++ + k'+l R(t)]C'(k', t')

-2 r z-z ~a'~+ +S'~l at

+, [0'(k', i') ln I. (4.49)

Imposing the requirement of form invariance we find that
(4.49) is of the form (4.15) if in place of (4.17) the fol-
lowing conditions are satisfied:

R'(t') = l R(t), (4.50)

show that temperature perturbations in the ordering re-
gion are irrelevant and that 6 Bows to zero. Now, with
6' = T& ——0 the structure factor C(k, t) vanishes iden-
tically, namely, the scaling form (3.18) is obeyed with
F(z) = 0. This means that a nontrivial scaling solution
for a quench in the phase ordering region with a = d
is necessarily asymptotic and cannot be made to hold
over the entire history of the process by any choice of the
parameters.

This completes the analysis of the fixed point structure
of the phase diagram and the derivation of exponents.
The RG treatment of the problem presented above re-
produces the whole structure found in Sec. III except
for multiscaling in the quench below T, with p g 0. The
point is that the RG procedure we have followed above
yields the exponents z and o. within a standard scaling
framework, but gives no information on the scaling func-
tion. If one goes further by performing the scaling ansatz
in the equation of motion an equation for F(x) is ob-
tained and it turns out that the scaling function vanishes
if Ty ( T, and p g 0. In order to recover multiscal-
ing through the RG approach the set of transformations
must be properly generalized. We do this only for the
(T~ = 0, ps) case [17].

As we have seen in Sec. III, when there is multiscaling
z is weakly time dependent. Let us then generalize the set
of transformations (4.10)—(4.13) by allowing z to depend
on t with the constraint
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dx x t dz
1 ———lnt

dt zt z dt
(4.52)

we obtain

I z[z —z„]t'-~~+.~~.

[1 ——' —' lnt]

x [u)z"+ ' + z" 't ~'R(t)]. (4.53)

In order to get rid of the time dependence on the right
hand side we must have

—I'z(z —z ) = ct&' '-&~'
~

1 ———lnt ~,
t dz

)
(4.54)

t i'R(t) = b, (4.55)

where b and c are constants. Integrating (4.53) we find

mxJ'+
y(z) = c + —z~ + y(0).P+& P

(4.56)

From (4.55) and the definition (2.5) of R(t) it follows that
the sign of b is determined by the paraineters p = (r, g) .
In particular, b is a negative quantity at p3. Imposing
y = d, as appropriate for quenches to p3, taking the
position of the maximum at z = 1, and using y(0) = (d+
8)/2 &om (4.56) we find b = —ip, c = (8 —d)p(p+ cr)/20,
and

2y(z) —d = ap(z), (4.57)

where o.p(z) coincides with (3.63). Hence, for quenches
to p3, by allowing for a time dependence in the growth
exponent z, we have recovered via RG the multiscaling
behavior of the exact analytical solution.

The explicit time dependence of z(t) is obtained by
extracting the asymptotic behavior from (4.54),

lnlnt
z(t) z 1+

lnt
(4.58)

which is consistent with the assumption (4.48) and re-
produces (3.64). Finally, inserting this result into (4.50)
we find

(4.59)

in agreement with (3.57).

V. CONCLUSIONS

In this paper we have investigated in detail the solution
of the large-N model for growth kinetics with the aim
of giving a comprehensive view of the influence on the
scaling properties of the various elements which enter into

—"= —I'[z(t') —z ][urk'"+ + k'"R'(t')].
dt'

This latter equation holds also for unprimed variables
and using

the specification of the problem. These are the presence
or the absence of a constraint on the order parameter
(COP or NCOP), the initial condition, the structure of
the phase diagram of final equilibrium states, the range
of the interaction and the dimensionality of space.

What the model shows, apart from quenches to the
trivial fixed point, is that scaling properties are quite dif-
ferent with and without conservation law. This is due to
the existence of only one divergent length L(t) for NCOP
and of two divergent lengths L(t) and A(t) for COP. It
is the interplay between these two lengths which leads to
phenomena not observed with NCOP such as (i) a change
in the growth law when crossing the critical dimensional-
ity for the quenches to (TJ; = 0, p2) and (ii) multiscaling
for quenches inside the phase ordering region. About
multiscaling, the availability of the rich variety of cases
illustrated in the paper should allow speculation about
its origin. Thus we have found that for NCOP in no cir-
cumstance is there multiscaling and the same holds true
for COP, except for the quenches below T,. What, then,
is the peculiarity of these latter processes? One possible
interpretation is that in these processes the system orders
and tends to do so by condensing, i.e., by growing a peak
which scales as L, at k = 0. This is fine with NCOP,
but with COP there is a conflict with the conservation
law which prevents anything from happening at k = 0.
In this case the peak is formed at some k g 0. The
compromise realized in the large-N model is multiscal-
ing whereby the behavior L ' ~ ~ of the structure factor
interpolates smoothly between the behaviors L at k = 0
and L" at k . This picture fits nicely with the absence
of multiscaling in any process with NCOP and in all pro-
cesses with COP on the critical surface. In fact, in the
latter case there is nothing to condense at k = 0 and
in the former there are no constraints at k = 0. How-
ever, with this mechanism for multiscaling there should
be nothing special about N = oo and multiscaling should
be found also for N ( oo. Numerical simulations [18] so
far have reported no evidence for multiscaling for N = 1
and N = 2 in two and three dimensions. This could mean
that multiscaling disappears for N & d, when localized
topological defects appear in the system. However, an
argument against the existence of multiscaling for any
finite N is the result of Bray and Humayun [19]. By
analyzing an equation of motion for the structure fac-
tor which includes the first order correction in 1/N, they
have reached the conclusion that multiscaling does not
survive for N ( oo since the correction term sustains a
standard scaling solution.

What we can say is that both standard scaling and
multiscaling imply scale invariance of the structure fac-
tor due to the presence of a divergent length. So far we
have not found a criterion to predict a priori which one
should hold. Only a direct calculation, either analyti-
cal or numerical, can discriminate between the two. It
must be emphasized that these concepts apply also to
other models. For example, in the DLA (diffusion lim-
ited aggregation) model in two dimensions it has been
found numerically [20] that multiscaling holds. In any
case, even if there is not a general criterion, multiscaling
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should be more likely to occur in situations where the
width of the interface becomes very large.

Let us then comment on those features of the N = oo
solution which we believe to be of general validity. The
crossover structure which emerges as the parameters of
the quench are moved over the manifold of final equi-
libri»m states is a generic feature which is expected to
hold beyond the large-N model. The main point; of our
analysis is that it is quite possible, before the true asymp-
totic behavior is reached, to detect a preasymptotic scal-
ing behavior due to a less stable fixed point lying in the
neighborhood of the final equilibrium state. It is natural
to pose the question of the observability of these effects.
Here we suggest (Appendix A) that the duration of this
preasymptotic behavior can be magnified and observed
in off-critical quenches [21].

Furthermore, the crossover picture we have illustrated
suggests the possibility of observing a crossover in the
growth law (1.2) in the symmetrical quench of a system
with scalar (N = 1) COP. In that case asymptotically
L(t) grows according to (1.2) with z = 3. On the other
hand, in the trivial theory (r = 0, g = 0) one has z = 4 for
COP, irrespective of the order parameter being a scalar or
a vector. Thus, for a quench to (T» = 0, ps) sufficiently
close to (T~ = 0, pi) with N = 1, it should be possible

Let us consider a process where symmetry breaking
along one direction is allowed, e.g. ,

(P (z, t)) = N'i'M(t)b, (A1)

This may be due to nonsymmetrical initial conditions, or
to the presence of an external field, or to both of these
circumstances [22]. Introducing the external field along
the 1 direction &om (1.3) and dropping the long range
term we obtain the equation of motion for the order pa-
rameter

N*') = —I('V)
l

—V —) P ( t)
l

x4 (z, t) —h + q (z, t), (A2)

where h = N )2hb
Defining the fiuctuation field @(z,t) by

4, (z, t) = N' ')M(t) + @(z,t) (A3)

and inserting into (6.2) we obtain the pair of equations

to observe the inauence of the trivial fixed point at early
time, producing a crossover in (1.2) &om z = 4 to z = 3.

APPENDIX A

a Ni~2M+ = —I'(iV)" —V g+r(N ~ M+@)+ (N ~ M—+g) ) gP

+gl N M +3M Q+ ] MQ vP
l

—N —h +pi(z, t), (A4)

' =-r('v)" v'4p+r0p-+ ').4,'4p+—gl M'+ „,M4+ —4' l6 +~p (A5)

with P g 1.
Taking the large-N limit we replace &~ Pp&i Pp2(z, t)

by (Pp(z, t)) = S~(t) and collecting terms of the same
order of magnitude, &om (6.4) and (6.5) we obtain the
set of equations

Bgp(k, t) = —rk& —V'+r-+gs (t) Pp(z, t)

+rjp(z, t), (A9)

trivial since M(t) does not change in time and keeps
the initial value M(0) . In this case Eq. (A8) for the
transverse components, after Fourier transforming, can
be rewritten as

+SSt(t)M{t) —)tj, (A6) where

r = r + g[M(0)] . (A10)8@(z,t) = —I'(iV)i' —V' + r + 3gM'(t) + gS~ (t)

x@(z,t) + q, (z, t), (A7)

&4'p(z t) 2
Bt

= —r(iV')" [—V +r+gM (t)+gS~(t)j
x Pp(z, t) + qp(z, t). (AS) APPENDIX B

Thus r can be modulated by varying M(0). In particular,
a quench to p2 can be realized as an oK-critical quench
to T~ ——0 and at the edge of the coexistence region
M2(0) = rjg. —

Notice that the behavior of {(tt(z, t) is immediately ob-
tained once the pair of coupled equations (A6) and (A8)
have been solved. Furthermore, for COP Eq. (A6) is

In the limit t + oo the left hand side of Eq. (2.13)
vanishes and we have
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0 = —2I'[wk"+ + k "R]C(k, oo) + 21'k"Ty, (81)
where R stands for R(oo).

Let us first consider p = 0 and a system in a finite
volume V . Assuming R & 0 f'rom (Bl) it follows that

is a non-negative monotonously decreasing function of R
with a maximum at B(0) = KgA /[w(d —o)) . A is a
momentum cutofF and Kg = [2" 7r ~ I'(d/2)] . From
Eq. (84) it follows that when r ( 0 there is a critical
temperature

C(k, oo) =
gB(0)

(86)

where R must satisfy the self-consistency condition

1 ~ TFR=r+g—
V mk + R'

k

(83)

R = r+ gTyB(R) +g TQ
(84)

where, allowing for the possibility that the solution R m
0, the zero wave vector term in the summation has been
separated out and

B(R) = d"k 1

(2vr)" wko + R (85)

which always admits a solution with R & 0 .
In the infinite volume limit Eq. (83) can be rewritten

such that for T~ & T there exists a solution with R & 0
and therefore the last term in the right hand side can be
neglected, but for T~ ( T, Eq. (84) can only have the
solution R = 0 provided that R vanishes in the infinite
volume limit as R 1/V. Hence, defining the constant

TQ

VR
and inserting into (84) we find

(87)

M = Mo (T, —Ty )/T„

with Mo ———r/g. Notice that for TF = T, Eq. (84)
admits the solution R = 0 provided R V with
0 ( z ( 1 . In conclusion, the structure factor is given
by

Tg/(wk + R) with R & 0 for TF & T,
Ty/wk + (2vr) M b(k) for TF & T, .

For p g 0 Eq. (82) applies only for k g 0. Due to
the conservation law C(k = 0, oo) is determined by the
initial condition. If we consider an initial state without
symmetry breaking we have P(k = 0) = 0 and C(k =
0, t = 0) = 0. Then Eq. (83) must be replaced by

g ~ TFR=r+—
V mk +R

%go

(810)

r 1
T(V) = ——

g V Pigo wk
(811)

such that R & 0 for T~ & T(V), while R ( 0 for

Solving the above equation for R we find that there exists
a temperature

R = r + gTpB(R) +-g TF
V mk, .„+R (812)

For T~ ) T there is a solution R & 0 and the last
term vanishes, while for Ty ( T, Eq. (812) admits the
solution R = 0 provided (k;„+R) 1/V. Writing

TF'

V(wk, .„+R)
(813)

in place of (87), in the end we recover the results (88)
and (89).

T~ ( T(V) with [R[ ( k~;„where k;„V ~ is
the minimum value of the wave vector in the summation.
When the infinite volume limit is taken from (811) it.

follows that T(V) m T, and the anlogue of (84) is
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