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Simple model for quantum chaos
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A simple second-quantized model exhibiting quantum chaos is introduced. Experimentally, this
model could be realized as a triplet excitation of a molecule. Numerically, it requires only a minimal
amount of computer time. Two cases of this model with and without inversion sy~~etry are
discussed. The level spacing distribution of the case without inversion symmetry shows an especially
close resemblance to the Wigner distribution. A related classical billiard model on a 1/r-potential-
energy surface is presented as a continuum extension of our model. The real-space representation
of the Hamiltonian shows a self-similarity, whose &actal dimension is calculated to be 1.5.

PACS number(s): 05.45.+b, 03.65.—w, 71.20.Hk, 71.35.+z

The study of quantum chaos has followed as a nat-
ural sequel of the study of chaos in classica1 dynamics
which has generated abundance of surprises, and has pro-
duced many impressive results [1—6]. While the study of
classical chaos has bene6ted enormously &om the use of
simple maps and toy theoretical models and various sim-
ple experiments, the study of quantum chaos has relied
heavily on extensive numerical calculations (e.g., [7]) and
there are not many experiments for the study of quan-
tum chaos. Steeb et al [8] stud. ied simple models related
to the Hubbard model in condensed matter physics, and
could not see the energy-level repulsion which seems to
be the most promising criterion for quantum chaos.

In this paper, we construct a simple second-quantized
model for quantum chaos which could be realized exper-
imentally as a triplet excitation of a linear molecule, and
demonstrate an aspect of quantum chaotic behavior of
this system, i.e., energy-level repulsion, which requires
only a minimal amount of computer time to get a high
accuracy. We discuss a related classical billiard model
as a continuum extension of our model. In addition, our
model introduces a class of Hamiltonian matrix as a gen-
eral feature of a many-body system, i.e., a self-similar
Hamiltonian matrix.

Our model Hamiltonian describes the dynamics of two
spinless electrons on a quasi-one-dimensional lattice, or
more realistically, the dynamics of a triplet excitation of
a linear molecule.
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where c~ creates one electron on the mth site and
~ )

denotes the vacuum. The restriction m & n is given
to avoid double counting. Our model Hamiltonian in
this real-space representation provides very interesting
contrasts with random matrices.

Since

creases. V;~ describes the electron-electron interaction
between the ith and the jth sites. For the sake of sim-
plicity, we set the nearest neighbor hopping integral to
to be —1 and the lattice constant a to be 1. Then our
model has two parameters, p and Vo.

This model is somewhat diferent &om the Hubbard
model which includes only the nearest neighbor hopping
and the on-site Coulomb interaction. In our model, there
is no on-site electron-electron interaction since the two
electrons cannot occupy the same site. The extended
hopping has been considered in tight-binding calculations
of the Csp molecules [9,10]. The long range Coulomb in-
teraction is important in the discussion of excitonic effect
in conjugated polymers [11,12]. We show below that our
model exhibits level repulsion and related level spacing
statistics.

To calculate energy levels of this model Hamiltonian,
we construct the Hilbert space of the two electrons on
a 20-site chain. The total number of basis elements is
20C2 ——190. A possible basis set consists of the following
states:
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where c~ creates an electron on the ith site, c~ destroys
an electron on the jth site. r;~ is the distance between
the ith and the jth sites. t;~ describes the electron hop-
ping integral between the ith and the jth sites, which
decreases exponentially as the distance between them in-

(kl~c,. c;c,.c, ~mn) = ( (c)cyclic, ctc, c~ ct
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= bl„.bp,-b;b„,-, i & j (6)
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First, let us consider the case with inversion symmetry.
All the lattice points are on a straight line. Figure 1
shows the energy levels of this Hamiltonian between 2.5
and 2.7 at p = 0.8 and Vo varying &om 0.5 to 1.1. We
can see level repulsions as well as level crossings. Energy
eigenfunctions have even or odd parities as expected from
the inversion symmetry of our Hamiltonian. Opposite
parity levels can cross each other, but same parity levels

repel each other. This aspect is reflected in Fig. 2, which
shows the energy-level spacing distribution for the energy
levels &om the 15th to the 190th at Vo ——0.8 and p = 0.8.
It shows a peak around 0 like a Poisson distribution, and
another peak around 80% of the average level spacing
like a Wigner distribution.

To gain additional insight we show in Fig. 3 a por-
tion of the Hamiltonian matrix in real-space representa-
tion for Vo ——0.8 and p = 0.8. Positive numbers are
depicted as empty circles with area proportional to the
numbers and negative numbers as solid circles. Hamilto-
nian matrices with random matrix elements are known
to have a Wigner distribution for the level spacings. Our
Hamiltonian matrix does not have entirely random el-

ements. Among the 1902 matrix elements, about 80%%uo

(isC2/2oC2) are true zeros which are depicted by the
gray squares in Fig. 3. There is a self-similarity among
off-diagonal elements. This is a consequence of the hop-

ping terms in (1), which are very common in many-body
Hamiltonians. Diagonal elements are constructed from
the interactions among the particles on various lattice
sites. For example, we can calculate the fractal dimen-
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sion of the region occupied by the nonzero elements.
Let us call the 1xl region at the right-bottom corner
the first stage, (1 + 2) x (1 + 2) or 3 x 3 the second,
(1+ 2 + 3) x (1 + 2 + 3) or 6 x 6 the third, and so on.
Let g(X) be the number of nonzero elements at the Kth
stage. Then g(1) = 1, g(2) = g(l) + 8 = 1 + 8 = 9,
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FIG. 2. The energy-level spacing distribution for energy
levels from the 15th to the 190th at Vo ——0.8 and p = 0.8. S
is the level spacing and D is the average level spacing. Dashed
line is the Poisson distribution and solid line is the signer
distribution.
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FIG. 1. The energy levels between 2.5 and 2.7 at p = 0.8
and Vo varying from 0.5 to 1.1. Label e means even parity,
and o odd parity. Same parity levels repel each other, but
opposite parity levels can cross each other.

FIG. 3. A portion of the Hamiltonian matrix in real-space
representation for Vo ——0.8 and p = 0.8. Positive numbers

are depicted by empty circles vrith area proportional to the
numbers, and negative numbers by solid circles. True zeros
are depicted by the gray squares. Left top corner element
is (10 15IHI10 15), left bottom (19 20IHI10 15), right top
(10 15IHI19 20), arid right bottom (19 20IHI19 20).
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g(3) = g(2) + 21 = 30, and so on. We can construct a
recursion relation

g(N) = g(N —1) + N + 4[(N —1) + (N —2) + . . + 1]

= g(N —1) + 3N —2N. (8)

Thus

N2 N
g(N) = N

2 2

At each stage, linear dimension of the matrix expands by
N or as zN(N + 1), and the region of the nonzero ele-

ments grows as N + 2
—

2 . Thus the &actal dimension
of the region of the nonzero elements is

3.0

N3+ N2 N
d = lim

~
= 1.5.

in[~ N(N + 1)]
(10) 2.8

It would be interesting to further study the conse-
quence of this self-similarity in a renormalization schexne.
But one thing to keep in mind is that Hamiltonians with
hopping terms only or interaction terms only are inte-
grable.

Now consider the second case without inversion sym-
metry. The lattice is straight &om the first site up to the
13th site, then it is bent perpendicularly like a capital let-
ter L to destroy the inversion symmetry. The structure of
the Hamiltonian matrix is the same as the previous one
except that some of the nonzero elements have somewhat
different values because of changes in distances between
lattice points.

Figure 4 shows the energy levels of this Hamiltonian
between 2.7 and 3.1 at p = 1 and Vp varying &om 0.7 to
1.3. No level crossing is observed here, as expected &om
the lack of symmetry. If there were no extended hopping
or long range interactions, this kind of geometry change
would not make any difference.

Figure 5 shows an eigenfunction with energy E 2.72
at Vp ——1 and p = 1. Even though this model is purely
quantum xnechanical, this eigenfunction strongly reminds
us of Heller's 8car8 of classically periodic orbits on quan-
tum eigenfunctions in chaotic systems [13—15]. We can
think of a periodic orbit related to this eigenfunction: ini-
tially two electrons trapped between the 13th and 20th
sites are residing on the 14th and 16th sites repelling
each other; then they separate and bounce off the 13th
and 20th sites and head toward each other again, set-
tling down on the 17th and 19th sites for some time and
separate and so on.

Figure 6 shows the level spacing distribution for the
energy levels &om the 18th to the 190th at Vp ——1 and
p = 1. Even though about 80% of the matrix elements
are true zeros as in the case with inversion symmetry, it
shows close resemblance to Wigner distribution like the
random matrices.

Since our xnodel describes two electrons in a quasi-one-
dimensional system, it must be related to a one-particle
two-dimensional systexn. Since we have two fermions and
the wave function should have odd parity for the ex-
change of the coordinates of the two electrons, we need
only the upper triangular part of the square as in Fig. 5
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Vp

1.2

FIG. 4. The energy levels between 2.7 and 3.1 at p = 1 and
Vo varying from 0.7 to 1.3 without inversion symmetry. No
level crossing is observed. Apparent crossings are due to the
resolution.
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FIG. 5. The real-space representation of an eigenfunction
with energy E 2.72 at Vo ——1 and p = 1 and the related
periodic motion of two electrons. The probability amplitude
of ~m n) is depicted by an empty circle with a radius propor-
tional to the amplitude if it is positive, and by a solid circle
if negative. So the area is proportional to the probability.
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FIG. 6. The energy-level spacing distribution for the en-

ergy levels from the 18th to the 190th at Vo ——1 and p = 1

without inversion symmetry. S is the level spacing and D is
the average level spacing. Dashed line is the Poisson distri-
bution and solid line is the %'igner distribution.

instead of a whole square. The first neighbor hopping
terms are in exactly the same form as the discretization of
a kinetic energy term, and the diagonal terms due to the
interaction between electrons translate into a potential-
energy term on a two-dimensional plane with the distance
Rom the hypotenuse being the distance between the two
electrons.

In other words, our model can be extended to a con-
tinuum limit by neglecting the hopping terms except the
first neighbor hoppings and by expanding the size of the
lattice to infinity: a billiard ball in an isosceles right
triangle with a potential energy rising toward the hy-
potenuse as I/r, where r is the distance &om the hy-
potenuse. Take the vertex of the right angle in the isosce-
les right triangle as the origin, the line starting &om the
origin bisecting the hypotenuse as y axis, and the line
perpendicular to this y axis and passing through the ori-
gin as z axis. If the distance between the origin and the
hypotenuse is set to 1, then the distance between the
electrons or the distance &om the hypotenuse becomes
1 —y. Thus the Hamiltonian of the continuum model
becomes

( 2+ 2)+

with a boundary

y=» y= —+) y=&-

Without a potential-energy variation, this billiard ball
system is integrable [16]. With a linear potential energy,
i.e., the billiard table tilted toward the corner of the right
angle, it is still integrable. But with a 1/r-potential en-
ergy as in our model, its classical dynamics shows chaotic
behavior as the surface of section in Fig. 7 indicates. In
Fig. 7, we plotted the surface of section for six initial
conditions with the same energy. While five of the initial
conditions give continuous invariant curves, evolution of
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FIG. 7. Poincare surface of section for a billiard ball with
E = 14.5 in an isosceles right triangle with a 1/r-potential
energy, where r is the distance from the hypotenuse. The ab-
scissa is for the 2: coordinate of the billiard ball at the moment
of collision with the sides. The ordinate is for the momentum
of the billiard ball in the x direction just after the collision.

one initial condition fills a wide area of the phase space
quite randomly.

In conclusion, we have introduced a second-quantized
model of two spinless electrons on a quasi one-
dimensional lattice, which could describe triplet excita-
tions in a linear molecule. When the system possesses
inversion symmetry, energy levels with opposite parity
can cross each other, while energy levels with same par-
ity repel each other. Thus the energy-level spacing dis-
tribution shows a mixture of Poisson and Wigner dis-
tributions. With the inversion symmetry removed &om
this model, no energy-level crossings were observed and
the energy-level spacing distribution shows close resem-
blance to the Wigner distribution despite the fact that
the matrix elements are far &om random.

Experimentally, our model is feasible in one-
dimensional systems such as conducting polymers or
quantum wires. Nuxnerically, this model is simple and
comparable to the simple maps and toy models in the
study of classical chaos. Thus our model Hamiltonian
represents a very simple model for quantum chaos and in-
troduces a self-similar Hamiltonian matrix as a new class
of matrices. As such it deserves further explorations.
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