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Scaling laws and simulation results for the self-organized critical forest-fire model
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We discuss the properties of a self-organized critical forest-fire model which has been introduced
recently [B. Drossel and F. Schwabl, Phys. Rev. Lett. B9, 1629 (1992)]. We derive scaling laws

and define critical exponents. The values of these critical exponents are determined by computer
simulations in one to eight dimensions. The simulations suggest a critical dimension d, = 6 above
which the critical exponents assume their mean-Geld values. Changing the lattice symmetry and
allowing trees to be immune against fire, we show that the critical exponents are universal.

PACS number(s): 05.40.+j, 05.70.Jk, 05.70.Ln

I. INTRODUCTION

Some years ago, Bak, Tang, and Vliesenfeld intro-
duced the sandpile model which evolves into a critical
state irrespective of initial conditions and without fine
tuning of parameters [1]. Such systems are called self-
organized critical (SOC) and exhibit power-law correla-
tions in space and time. The concept of SOC has at-
tracted much interest since it might explain the origin of
fractal structures and 1jf noise. Models for earthquakes
[2,3], the evolution of populations [4,5], the formation of
clouds [6] and river networks [7], and many more have
been introduced and investigated by computer simula-
tions, but in contrast to the sandpile model, most of
these SOC models are barely understood. For most of
them there exists no proof that they really are critical,
and little analytic treatment has been presented so far.
It even has been conjectured that systems without con-
servation laws cannot be SOC.

This conjecture has been refuted when a forest-fire
model without conservation laws was shown to be crit-
ical under the condition that time scales are separated
[8]. In one dimension, where the model is still nontrivial,
the exact values of the critical exponents have been cal-
culated [9], thus proving the criticality of the model. A

scaling theory presented in [8] suggested classical values

for the critical exponents in two and more dimensions but
has been shown to be too simple [10—12]. Scaling laws

for the static properties of the model have been given in

[12]. The values of several critical exponents for the two-
dimensional model have been determined by computer
simulations [10,12]. These simulations difFer in the val-

ues of two of the critical exponents. Simulations in up
to six dimensions [11] suggest that the critical behavior
of the forest-fire model becomes percolationlike above six
drome ns tons.

In this paper, we present a scaling theory for the stat-
ics and dynamics of the system and present simulation
results in one to eight dimensions. Additional critical
exponents and scaling relations are introduced, and the
values of the critical exponents are determined by com-
puter simulations, which are performed closer to the crit-

ical point than the earlier simulations. The universality
of the values of the critical exponents is investigated by
changing the lattice symmetry and by considering the
case of nonvanishing immunity.

The outline of the paper is as follows. In Sec. II the
rules of the model are introduced and the origin of the
SOC behavior is explained. In Sec. III the scaling theory
of the model is presented. In Sec. IV simulation results
in one to eight dimensions are given, and the critical be-
havior in high dimensions is discussed. Section V inves-

tigates the universality of the critical exponents. In the
final section, the results are summarized and discussed.

II. THE MODEL

pe+ p~+ py = & (2.1)

The forest-fire model is a stochastic cellular automaton
which is defined on a d-dimensional hypercubic lattice
with L" sites. Each site is occupied by a tree, a burning
tree, or it is empty. During one time step, the system
is parallel updated according to the following rules: (i)
burning tree, ' empty site; (ii) tree: burning tree,
if at least one nearest neighbor is burning; (iii) tree
burning tree with probability f, if no neighbor is burning;
and (iv) empty site' , tree with probability p.

An even more general forest-fire model also contains
an immunity g [13,14]. In its original version, introduced
by Bak, Chen, and Tang, the forest-fire model contained
only the tree growth parameter p [15]. This version of
the model shows regular spiral-shaped Bre fronts in the
limit of slow tree growth [16,17]. Throughout this paper,
we will assume that the system size L is large enough so
that no finite-size eEects occur. In the simulations, we
have always chosen periodic boundary conditions.

Starting with arbitrary initial conditions, the system
approaches after a transition period a steady state the
properties of which depend only on the parameter values.
Let p, pz, and pf be the mean density of empty sites,
of trees, and of burning trees in the steady state. These
densities are related by the equations
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py = ppe- (2.2)

The second relation says that the mean number of grow-
ing trees equals the mean number of burning trees in the
steady state. Large-scale structures and therefore criti-
cality can only occur when the fire density pf is small.
When the fire density is large, trees cannot live long
enough to become part of large forest clusters. Equa-
tion (2.2) shows that the fire density becomes small when
the tree growth rate p approaches zero. In addition, the
lightning probability f must satisfy

(2.3)

p«T '(8 „), (2.4)

where T(s~~) is the time the fire needs to burn down
a large forest cluster and will be determined below [see
Eq. (3.20)]. In the simulations, this condition is most eas-
ily realized by assuming that forest clusters burn down
instantaneously, i.e., during one time step. This sim-
plified version of the SOC forest-fire model [8] has been
mentioned first in [18].

The inequalities (2.3) and (2.4) represent a double sep-
aration of time scales

T(s )«p '«f ', (2.5)

which is the condition for SOC behavior in the forest-fire
model. The time in which a forest cluster burns down
is much shorter than the time in which a tree grows,
which again is much shorter than the time between two
lightning occurrences. Separation of time scales is quite
&equent in nature, while the tuning of parameters to a
certain finite value only takes place accidentally. Thus
the forest-fire model is critical over a wide range of pa-

Otherwise a tree is destroyed by lightning before .'ts
neighbors grow, and no large-scale structures can be
formed.

These conditions are not yet sufhcient to bring about
critical behavior in the forest-fire model. When lightning
strikes a small forest cluster, it burns down very fast,
before any tree can grow at its edge. But when light-
ning strikes a large forest cluster, it needs some time to
burn down, and new trees might grow at the edge of this
cluster while it is still burning so that the fire is never
extinguished. In order to observe critical, i.e., self-similar
behavior, small and large forest clusters must burn down
in the same way. We therefore choose the tree growth
rate p so small that even the largest forest cluster burns
down rapidly, before new trees grow at its edge. In this
case, the dynamics of the system depend only on the ra-
tio f/p, but not on f and p separately. When f and p are
both decreased by the same factor, the overall time scale
of the system is also changed by this factor, but not the
number of trees that grow between two lightnings and
therefore not the size distribution of forest clusters and
of fires. The condition that forest clusters burn down
rapidly can be written in the form

FIG. 1. Snapshot of the SOC state in two dimensions.
Trees are black, empty sites are white. The parameters are
L = 1024 and jjp = 1/500.

rameter values. A snapshot of the critical state is shown
in Fig. 1.

III. SCALINC LAWS
AND CRITICAL EXPONENTS

In this section we will derive scaling laws and rela-
tions between the critical exponents for the SOC forest-
fire model.

First, we calculate the mean number 8 of trees that are
destroyed by a lightning stroke. During one time step,
there are

lightning strokes in the system and

ppe p 1 A
fpc f pi

(3.1)

In the last step, we have neglected the fire density which
is very small due to time-scale separation. For small val-
ues of f/p, the forest density pi assumes a constant value.
If this constant value is less than 1, the second factor on
the right-hand side of Eq. (3.1) is also constant for small

f/p, and Eq. (3.1) then represents a power law

growing trees. In the steady state, the number of growing
trees equals the number of burning trees, and therefore
the mean number of trees destroyed by a lightning stroke
ls
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a~(fjp) '. (3.2)

In d & 2 dimensions, the critical forest density

p, = lim pg,
f/I ~o

(3.3)

p, = ) an(a),
1

(s.4)

in fact, must be less than 1, as the following considera-
tion indicates: If the critical forest density were p~ = 1
in d & 2 dimensions, pz would be very close to 1 for small
values of f/p T.hen the largest forest cluster would con-
tain a nonvanishing percentage of all trees in the system,
and the average number s of trees burned by a lightning
stroke would diverge in the limit I ~ oo with fixed f/p,
in contradiction to Eq. (3.1). In one dimension, there is
no infinitely large forest cluster in the system as long as
p«1, and therefore the critical forest density is p,

' = 1.
Nevertheless Eq. (3.2) holds also in one dimension since
the forest density approaches its critical value only log-
arithmically slowly, as will be shown below. Equation
(3.2) indicates a critical point in the limit f /p -+ 0. Close
to this critical point, i.e., if f && p, there is scaling over
many orders of magnitude.

Let n(a) be the mean number of forest clusters per
unit volume consisting of s trees. Then the mean forest
density is

a oc R(a)", (3.10)

with the &actal dimension p.
The pair connectedness C(x, fjp) is the probability

that a site at distance x from an occupied site is also
occupied and belongs to the same cluster [19]. The cor-
relation length ( is defined by

g„xzC(x,f/p)
E.&(» fjp)

2E ( )(E;= R,')
Q, an(a) g;. , 1

2 P, an(a) aR2(a)
SAS S

oc (f/p) daa + "C(a/a )
1

~ (f/p) '"'" (s.11)

where () denotes the average over all clusters of size a.
We conclude

clusters per unit volume Pz n(a), therefore, decreases
to zero for f/p ~ 0, and consequently the forest density
approaches the value 1.

We also introduce the cluster radius R(a) (radius of
gyration) which is the mean distance of the trees in a
cluster &om their center of mass. It is related to the
cluster size s by

and the mean number of trees destroyed by a lightning
stroke is ( oc (f/p) " with v = A/p. (s.12)

a = ) azn(a)/p, .
1

(s.5)
Another quantity of interest is the mean cluster radius

n(a) oc a C(a/a ), (3.6)

with 2 & w & 3 and

a (f/p) oc (f/p) "oc a". (3.7)

The cutofi' function C(x) is essentially constant for x & 1
and decreases to zero for large x. Equations (3.5) —(3.7)
yield s oc s, which leads to the scaling relation

A = 1/(3 —~). (3.8)

In the case r = 2, the right-hand side of Eq. (3.6)
acquires a factor 1/ln(a ) and reads now

n(a) oc a C(a/a )/ln(a ), (3.9)

since the forest density given by Eq. (3.4) must not di-
verge in the limit f/p ~ 0. The mean number of forest

Since limyy~~o pq is finite and a diverges oc (f/p), these

equations imply that n(a) decreases at least like a z but
not faster than s . As long as the system is not exactly
at the critical point f/p = 0, i.e., for nonvanishing f/p,
there must be a cutoK in the cluster size distribution for
very large forest clusters. We conclude that [8]

R = ) an(a)R(a) ) an(a)
e=1 e=1

~

~

~

oc (f/p) ~" "+il if v —A+ 1 & 0

const if v —A+ 1 & 0.

This leads to

R oc (f/p)
" with v = max (0, v —(A —1)) .

In percolation theory, the hyperscaling relation

d = p(r —1)

(3.13)

(3.14)

4 —I ~ ~ (fjp)'~' (s.15)

One might try to calculate 1/b in the following way:

is satisied, but it is not satisfied in the SOC forest-fire
model in d = 2, as first stated in [12], where also an
interpretation of this relation is given: If Eq. (3.14) is
satisfied, every box of l" && 1 sites contains a spanning
piece of a large cluster when the system is at the critical
point. In the forest-fire model, there are at least in d = 2
many regions which contain no large forest cluster (see
Fig. 1), and consequently d & p(r —1).

The mean forest density pq approaches its critical value

p~ = limfy„~o pt via a power law
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p', —pI oc ) s' [1 —C(s/s „)]
s=l

ds s' [1 —C(s/s „)]
amax

s2 —T + (f/p)(T 2)/(3 T)— (3.16)

The simulation results for 7. and b, however, show that

(7 —2)/(3 —v. )

is much smaller than I/b (see Table I). We conclude that L

10

dxz' [C(z) —1] = 0
1

(3.17)

and that the above formula Eq. (3.6) for n(s) acquires an
additional factor

1 —(f/p)'/ b,n(s) .

Finally, we introduce dynamical exponents character-

Equation (3.17) says that the number of trees in the sys-
tem is not inHuenced by the cutoH' function. All trees
that were in large forest clusters if there were no cutofI'

can be found in smaller clusters. The size distribution of
forest clusters therefore has a bump (see Fig. 2). This
explanation of the bump has already been suggested in

[10]. The function An(s) determines how the distribu-
tion of forest clusters of size s ( 8 „deviates from the
critical distribution. Since the mean density of empty
sites decreases with decreasing f/p, fewer small forest
clusters are produced when the system is closer to the
critical point f/p m 0. Consequently hn(s) is negative
for small 8. Since the forest density increases with de-

creasing f/p, the function bn(s) must be positive for

larger values of s, leading to

izing the temporal behavior of the fire. Let T(s) be the
average time a cluster of size s needs to burn down when

ignited, and N(T) the portion of fires that live exactly for
T time steps. Then the exponents b and p' are defined

by

s oc T(s)" and N(T) oc T (3.18)

From

N (T)dT oc sn(s) ds

follows the scaling relation

6 = p'(r —2) + l.

The time scale of the system is set by

T „=T(s „)oc (f/p) with v' = A/p'.

The dynamical critical exponent z is defined by

(3.19)

(3.20)

FIG. 2. Normalized cluster distribution n(s)/n(l) in d = 2

to 6 dimensions. The values of f /p are 1/32 000, 1/2000,
1/1.000, 1/250, and 1/125 from right to left. The negative

slope yields the exponent w.

TABLE I. Numerical results for the critical exponents in one to eight dimensions (' with logarithmic corrections, calculated

from scaling relations). The exponents with index "pere" are those of percolation theory [19].

+per c

ljb
1j~percr —2
3 —r
Pg

1
2d —1
P
P pere

V

P
I

I pere
I

V
I

V

2
2
1
0
1
0
1
1
1
1
1
1
1
1

1
1
1
2

d 1
220 16384

2.14(3)
2.05
1.15(3)
0.48(2)
0.42
0.18
0.4081(7)
0.333
1.96{1)
1.90
Q.ss
0.43
1.S9{3)
1.68
0.58
0.44
1.04(2) t
1.27(7)t
1.72(S)

448
2 23(3)
2.18
1.3O(6)
o.ss(12}
0.56
0.30
0.2190(6)
0.200
2.S1(3)
2.53
o.s2(3) ~

0.25
2.o4(lo)
1.89
o.64(6) t

0.34
1.24{8)t
1.47(9)t
2.15(5)

80
2.36(3)
2.31
1.56(8)~

0.69
0.56
0.146(1)
0.143
3.0
3.06
o.s3(3)'( 0.02f
2.02(10)

o.7s(s) t

o.21(s)'
1.49(10)t

1.73(10)t
2.oo(s)

32
2.4S(3)
2.41
1.82{10)~

0.85
0.82
O. 111(l)
0.111
3.2 (2)
3.54
0.57{7)t
ot
1.98(1Q)

0.92(10}~

0.1(1)t
1.62(18)t

l.89(11)t
2.ol(s)

20
2.50(3)
2.5
2.01(12)~

1
0.090(1)
0.091

1.94(10)
2

1.O4(11)'
& 0.14t

1.97{11)~
1.95{10)

12
2.so(3)
2.5
2.01{12)'

1
0.076(1)
0.077

1.92(10)
2

l.os(11)t

( O.ost

1.96(ll) t

1.96(10}

2.50(3}
2.5
2.O1{12)'

1

O.066{1}
Q.067

ot
1.93(1O}
2

l.os(11)'( 0.08t

1.97{11}'
1.96(1O)
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T oc g',

which leads with (3.12) and (3.20) to

z = v'/v = p/p'. (3.21)

The condition of tixne-scale separation now can be ex-
pressed in terms of the critical exponents and reads

was done in [9]. In higher dimensions one has to resort
to computer simulations. Here, we shortcut the exact
evaluation of the critical exponents in d = 1 by using
sixnple arguments. In subsection IVB we present the
simulation results in two and more dimensions [21]. In
subsection IV C discuss the behavior of the system on a
Bethe lattice.

(f/p) "«p '«f
or equivalently

f «p« f"~'+"

The average lifetime of 6res is

T = ) an(a)T(a) ) sn(s) oc (f/p) ",
s=1 s=1

(3.22)

(3.23)

(3.24)

A. The critical exponents in one dimension

In one dimension, the critical forest density p~ equals
1, since otherwise there was no in6nitely large forest
cluster in the system. The consideration after Eq. (3.8)
shows that consequently 7 = 2 and [via scaling relation
Eq. (3.8)) A = 1. In the steady state, the density of forest
clusters P n(a) is constant, and therefore [22]

with

v' = max (0, v' —(A —1)) . (3.25)

).n(s) = [1 pi ——(f/p) pi]I/2
s=1

G(~) oc ) n(s)s ) N, (t)N, (t+ v.).
s=l t=O

(3.26)

The power spectruxn is the Fourier transform of the 6re-
6re correlation function

G(or) = 2 f dr G(r) cos(tcr) or m for small tc.

(3.27)

Using the function N, (t), the mean chemical distance of
the trees in a cluster from the site of the lightning stroke
can be defined [20]

(3.28)

The average number N, (t) of trees that burn t time steps
after a cluster of size 8 is struck by lightning enters the
de6nition of the temporal fire-6re correlation function
G(7.),

which leads together with Eq. (3.9) to

(1 —pi) oc 1/ln(a „)

s oc ( oc T oc (p/f)/ln(p/f).

The Fourier transform of the temporal correlation func-
tion is [9]

G((u) oc (u [1+const x ln(~s )], (4.1)

indicating a deviation &om the trivial u 2 dependence
towards 1/(d noise. Table I summarizes the values of the
critical exponents. They are con6rmed by our simula-
tions.

and 1/h = 0. One-dimensional forest clusters are com-
pact, therefore p = 1 and [with Eq. (3.12)] v = 1. From
T(a) oc R(a) it follows that p' = v' = z = 1. The
exact calculation in [9] yields additional logarithmic cor-
rections:

This definition is analogous to the definition of the clus-
ter radius as the xnean distance of the trees of a cluster
&om the center of mass. When the structure of the for-
est clusters is coxnpact or &actal, the chemical radius is
proportional to the lifetixne of the fire:

t(a) oc T(a), (3.29)

and t(s) introduces no new critical exponents. Conse-
quently T is proportional to a chemical correlation
length, which could be defined by a relation similar to Eq.
(3.11). Our computer simulations confirm Eq. (3.29).

IV. VALUES OF THE CRITICAL EXPONENTS
IN ONE TO EIGHT DIMENSIONS

In this section, we determine the values of the critical
exponents in one to eight dimensions. In one dimension,
the critical exponents can be determined analytically, as

B. Simulation results in taro and more dimensions

We obtained the values of the critical exponents in
d & 2 dimensions by computer simulations using the
same method as in [10] which iterates the following rules.

(1) Choose an arbitrary site in the system. If it is not
occupied by a tree, proceed with rule (2). If it is occupied
by a tree, then ignite the tree and burn down the forest
cluster to which the tree belongs. While burning the
trees, evaluate the size and the radius of the cluster, the
lifetime of the fire, and the function N, (t). Proceed with
rule (2).

(2) Choose p/f arbitrary sites in the system and grow
a tree at all chosen empty sites. Proceed with rule (1).

Time-scale separation is perfectly realized by these
rules, and Eq. (3.1) is satisfied.

In order to assure that the systexn is in the steady state,
a suKciently large number of time steps have been dis-
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P(s) = ds' s'n(a').
S

(4.2)

A plot of P(s)/P(1) for different values of f/p in d = 6
is shown in Fig. 3. As long as the finite size of the sys-
tem is not important, the scaling regime of P(s) becomes
larger, if one approaches the critical point. As soon as
P(a) is afFected by the finite system size, the curves bend
upwards (see the two uppermost curves in Fig. 3). Eval-
uating the curves not affected by finite-size effects, we

obtain the values of 7. shown in Table I. For d = 2, they
are consistent with [10,12]. The values of r for d = 2 to 6
are compatible with those given in [11]but have a smaller
error since they have been obtained using larger systems
closer to the critical point. Above d = 6 dimensions, the
numerical results suggest r = 2.5 as in percolation the-
ory. Our results indicate that the SOC forest-fire model
has the upper critical dimension d = 6, as already con-

carded in the beginning of each simulation. The simula-
tions were performed on a DECstation 5000. The system
length L for each dimension used in our simulations is
given in Table I. The simulations could not be performed
arbitrarily close to the critical point f/p -+ 0, since the
correlation length ( diverges, and, therefore, finite-size
effects occur when ( exceeds the system size. Especially
the distance-related exponents p, v, and v could not be
determined with available computer capacity in high di-
mensions. In the following, we discuss the simulation re-
sults obtained for the critical exponents and the critical
forest density.

a. Exponent w. In contrast to the rest of the criti-
cal exponents, the exponent w can also be determined in
higher dimensions, since the cluster distribution "senses"
more the overall system size L" than the edge length L.
Therefore the exponent w could be measured in 1 —8, 12
(I = 4), and 16 (L = 3) dimensions (see Fig. 2). Since
we evaluated the forest clusters struck by lightning, we
measured the fire distribution an(a), which gives r —1.

The values of f/p which just do not lead to finite-size
effects are determined by means of the integrated fire
distribution P(s), which is defined [10] by

P(s) f, da's' C(a'/s )
ln = ln

P(1) f, da's" C(a'/s )

= ln
~/&max

= A(s/s ) —A(1/s ).

dx z' C(x) —ln
& / &max

(4.3)

Equation (4.3) implies that the plots of ln[P(s)/P(1)]
vs ln(s) for difFerent values of f/p can be made to co-
incide, when they are shifted horizontally and vertically
(see Fig. 4). The logarithm of the horizontal scaling fac-
tor divided by ln[(f/p)i/(f/p)2] then yields A. Our sim-
ulation results in d = 2 and 3 are given in Table I. They
satisfy the scaling relation Eq. (3.8).

With increasing dimension, the range of admissible
values of f/p decreases due to finite-size efFects. Con-
sequently, the error in A becomes fairly large in d & 4.
Hence, in these dimensions, its value was calculated using
the scaling relation Eq. (3.8).

For d = 2, the value of A has also been determined
in [12], which agrees with ours, and in [10], which does
not agree with ours and is inconsistent with the scaling
relation Eq. (3.8).

c. The critical forest density p~ and the exponent b.
In our simula, tions the forest density A was determined
by dividing the number of burnt-down clusters by the
number of iterations. In order to calculate the critical
forest density pt and the exponent b, one needs at least
three simulations at difFerent f/p In d = 2., 3 we fitted
the results pt(f/p) with the function pt —const x (f/p)i/s
(Fig. 5). The error in 1jb is small enough to rule out the
possibility that 1/b = (r —2)/(3 —r) [see Eq. (3.16)]. In
d ) 3 the change in pt(f /p) and the error in p& are of the
same order of magnitude, making the Gt useless.

The results for pt and 1/b as well as 1/b in percolation
theory and (r —2)/(3 —r) are given in Table I. Also shown

in Table I are the corresponding values of the mean-Geld

jectured in [10,11]. An analytic proof, however, is still
mlsslng.

b. Exponent A. The determination of A is slightly
more difFicult. Consider again the normalized integrated
distribution function P(a) /P(l):

10
10

10

10
CL

10

10
CL

10

10

FIG. 3. Normalized integrated fire distribution P(s)/P(1)
for f/p = 2/125, 1/125, 1/250, 1/500 in d = 6 (from left to
right).

s/s

FIG. 4. Normalized integrated fire distribution P(s)/P(1)
for f/p = 1/16 000 and f /p = 1/$2 000 in d = 2.
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10

10

10 10

FIG. 5. p~
—pq in d = 2 (o) and d = 3 (Cl). The inverse

slope yields the exponent 8'.

d

d(x, x') = ) iz; —z';i, (4.4)

since this is the length of the shortest path between them.
In six and higher dimensions the R(s) plot has no scaling

10

10

10

forest density. In mean-field theory the critical forest
density equals 1/(2d —1), when taking into account that
burning trees always have an empty neighbor where the
fire has come kom. p~ is indistinguishable &om the mean-
field density for d & 5.

Our value of pt in d = 2 is consistent with [10,11].
The result in [12] for d = 2 as well as the results in [11]
for d = 3 to 6 are moderately larger than ours, which
is probably due to the smaller system size of these other
simulations.

Our values of 1/b are compatible with [10,11],whereas
the result in [12] for d = 2 seems to be too small. In
three dimensions our result for b is already very close to
the percolation value.

d. Exponents p, v, and v. The fractal dimension p
of the forest clusters is obtained from the slope of the
cluster radius R(s) (see Fig. 6). The distance between
two lattice sites x, x' is defined by

region, therefore p could only be determined in d = 2 to
4 and, with relatively large error, in d = 5. Unlike [8,10],
we find p ( d in d = 2, in accordance with [12]. From the
results in Table I it seems that p approaches the fractal
dimension of percolation clusters and we suggest that
y, = ItI~„,for d & 6. The hyperscaling relation Eq. (3.14)
is definitely violated in d = 2, but holds within error
margins in d = 3, 4, 5.

The correlation length is dominated by large clusters
and consequently large radii. Therefore the exponent v
could directly be determined only in d = 2 dimensions.
Since R is less divergent than $, the exponent v could
also be determined in d = 3 dimensions. Our value of
v in d = 2 is compatible with [10,12], and all results
(see Table I) satisfy the scaling relations Eqs. (3.12) and
(3.13).

e. Exponents p,', v', and v'. The chemical dimension
p' [20] can be determined even in d = 16, since the scal-
ing regime extends over at least two decades. In three
and more dimensions, the results are compatible with
the mean-field value p' = 2. Just as v and v, the expo-
nents v' and v' could only be determined in d = 2 and
d = 2, 3, respectively. The results (see Table I) obey the
scaling relations Eqs. (3.25) and (3.20).

f EzporI.erIts b and z. Knowing the exponents y, , p, ',
and v, one can easily calculate the exponent of the distri-
bution of fire lifetimes 6 [see Eq. (3.19)] and the dynami-
cal exponent z, which characterizes the relation between
the time scale and the length scale of the system [see
Eq. (3.21)]. The results are shown in Table I. Both ex-
ponents seem to approach the value 2 for d ~ 6.

g. EzporIent cr. Assuming a simplified law N, (t) oc

t" i O(T(s) —t), one can show that (to leading order in
the frequency) a = 2 for d & 6. For 1 ( d ( 6, a has
to be determined by simulations. The results are shown
in Table I. The nonmonotonous behavior of a between
d = 1 and d = 6 is not so surprising if one recalls the
intricate dependence of a on p,

' and v [see Eq. (3.26)].
In summary we can conclude that the SOC forest-

fire model is likely to have an upper critical dimension
d, = 6, above which the critical exponents are identical
with those of mean-field theory, which again is identical
to the mean-field theory of percolation. The strongest
evidence for this behavior comes kom the exponent 7,
which approaches the percolation value v~„,= 5/2 for
d ~ 6 and is indistinguishable from 5/2 in all simulated
dimensions d & 6. But also the difFerence in the other ex-
ponents between forest-fire and percolation values seems
to vanish with increasing dimension. Of course a nonin-
teger upper critical dimensionality as d, = 11/2 would
also be compatible with our results.

10

10
I

10
I

10 10

FIG. 6. Cluster radius R(s) in two to six dimensions (from
left to right). The inverse slope yields the fractal dimension

C. The SOC forest-Bre model on the Bethe lattice

Often the critical exponents of a model in high di-
mensions are obtained not only by mean-field theory but
also on the Bethe lattice. This might also be true for
the SOC forest-fire model. The tree distribution on the
Bethe lattice, however is not random and therefore difFer-
ent from mean-field theory, as the following consideration
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indicates.
A forest cluster of s trees on a Bethe lattice with con-

figuration number z has

s(z —2) + 2

500

400

300

empty neighbors, independently of its form. It is de-
stroyed either when a tree grows at its edge (this hap-
pens with probability p [s (z —2) + 2] per time step), or
when it is struck by lightning (with probability fs) A.

new cluster is generated each time a tree grows. In the
steady state, the mean number of forest clusters is con-
stant, i.e. [22],

200

100
1000 2000

(«p)

4000 8000

p(1 —pt) = ).(fs+ p[2+ s(' —2)l)n(s)
e=l

pt [f + p (z —2)] + 2p ) n(s) .
s=l

(4.5)

FIG. 7. The correlation length ( as function of (f/p)
The slope yields the critical exponent v. (, square lattice;
E, triangular lattice; *, next-nearest-neighbor interaction. )

In the limit f /p m 0 it follows from Eq. (4.5) that

) n(s) = [1 —pt (z —1)]/2.
s=l

(4.6)
200—

If the stationary critical state were identical with mean-
field theory of the forest-fire model, which is known to
be identical with the mean-field theory of percolation
[11,23], i.e. , with percolation on a Bethe lattice, trees
were randomly distributed with

max

100

1/(z —1) .

With Eq. (4.6) this would lead to 1000 2000
(«p)

4000 8000

) n(s) =0,
8=1

i.e., the density of forest clusters would decrease to zero

in the limit f/p -+ 0. Consequently, the exponent v was

2 [see the comment after Eq. (3.8)]. Both results are
in contradiction to the well-known facts that a random
tree distribution with density 1/(z —1) leads to a finite
density of clusters and to 7 = 2.5 on the Bethe lattice.
Therefore the SOC forest-fire model on the Bethe lattice
has no random distribution of trees and is «Merent &om
its mean-field theory. But we cannot rule out the pos-
sibility that the critical exponents nevertheless are the
same as in mean-field theory. For the sandpile model on
the Bethe lattice, it has been shown that the asymptotic
power laws are the same as in mean-field theory, although
there exist short-range correlations between sites [24].

10
square

20) 10

FIG. 8. The lifetime of the largest fire T „asfunction
of (f/p) . The slope yields the critical exponent v'. (
square lattice; 6, triangular lattice; +, next-nearest-neighbor
interaction. )

V. UNIVERSALITY
OF THE CRITICAL EXPONENTS

10

10
10 10

The critical behavior of a system usually depends only
on properties such as dimension and conservation laws,
but not on microscopic details. %'e therefore expect that
the critical exponents of the SOC forest-fire model are

FIG. 9. Fire lifetime T(s) for various lattice symmetries.
The inverse slope yields the chemical dimension p'.
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10

10

close to g, . For g = 1/2, the SOC fixed point disappears,
and the size distribution of fires is identical to the size
distribution of percolation clusters in uncorrelated bond
percolation.

VI. SUMMARY AND DISCUSSION

10

10
10

I

10
I

10
t

10 10

FIG. 10. The temporal correlation function G(~) for vari-

ous lattice symmetries. The negative slope yields the critical
exponent a.

universal under certain changes of the model rules.
In order to check this assumption, we repeated the two-

dimensional simulations for other lattice types. First, we
chose a triangular lattice. This is equivalent to a square
lattice with fire spreading to next-nearest neighbors along
one of the diagonals. Then, we investigated the model on
a square lattice with next-nearest-neighbor interaction.

The simulations of both variations of the model were
done on a 4096 x 4096 lattice with f/p ranging f'rom

1/1000 to 1/8000. We compared the exponents 7, y, , p',
v, v', and o. with the results given in Table I and found
them to be exactly the same (see Figs. 7—10).

Looking at Eq. (3.1) one expects the forest density for
the triangular lattice to drop below the square-lattice
value of p~ 40.8%, and the forest density for next-
nearest-neighbor interaction to drop even further, since
the fire now has more possible paths to spread. The
values obtained from our simulations are p~

--34% for
the triangular lattice and p~ = 28%%up for next-nearest-
neighbor interaction.

Another modification of the model rules is obtained
when trees are allowed to be immune against fire. A
forest-fire model with immune trees but without light-
ning was investigated in [13]. Now we included the im-
munity in the SOC forest-6re model by changing rule
(ii) in the following way: (ii) tree ', burning tree with
probability 1 —g, if n nearest neighbors are burning.
A detailed account on immunity in the SOC forest-fire
model will be given elsewhere [25]. Here, we just state
the main result: If one increases the immunity g &om
0 to some finite value below the critical value g, = 1/2,
which is one minus the bond-percolation threshold, the
critical exponents remain unchanged. In order to see the
asymptotic critical behavior in the simulation data, how-
ever, one has to go to very small values of f/p, when g is

In this paper, we have presented a scaling theory for
the SOC forest-fire model, including also the dynamics
of the system. The appropriate critical exponents were
de6ned, and scaling relations between them were derived.

The critical exponents in one dimension, which are
known exactly [9], were rederived by simple arguments.
They turned out to be just the classical ones proposed
in [8]. In dimensions & 2, computer simulations then
determined the values of the critical exponents and con-
6rmed the scaling relations. Our simulations have been
performed closer to the critical point than any earlier
simulation. The values of many exponents have been de-
termined. Results which have already been obtained by
other authors are mostly confirmed, some of them are
corrected or improved.

The simulations suggest that the critical exponents of
the SOC forest-6re model in dimensions d & d, = 6 are
given by its mean-field theory, which is identical with
the mean-field theory of percolation. It still remains a
challenge to give an analytic derivation of the upper crit-
ical dimension. A short calculation showed that the SOC
forest-6re model on the Bethe lattice is different &om the
mean-field theory of the model.

Finally, we investigated the universality of the crit-
ical properties by changing the lattice symmetry from
"square" to "triangular" and by including next-nearest-
neighbor interaction. Furthermore, the new parameter
"immunity" was introduced into the SOC version of the
forest-fire model. No violation of universality could be
found.

As already pointed out in earlier publications [13,14],
there is a close relationship between the forest-fire model
and excitable media which comprise phenomena, so dif-
ferent as spreading of diseases, oscillating chemical re-
actions, propagation of electrical activity in neurons or
heart muscles, and many more (for a review on excitable
systems see, e.g. , [26,27]). These systems essentially have
three states which are called quiescent (= tree), excited
(4 burning tree), and refractory (k empty site). Excita-
tion spreads from one place to its neighbors if they are
quiescent. After excitation, a re&actory site needs some
time to recover its quiescent state. In many of these
systems, spiral waves have been observed. We expect
that a SOC state can be found in some of these systems,
if the appropriate range of parameter values is investi-
gated, i.e., if spontaneous excitation occurs rarely and if
excitation spreads much faster than the system recovers
from the re&actory state.
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