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We present a numerical study of asymptotic late-stage growth in a phase-field model. After
a long transient time the patterns are independent of initial conditions, and have a well-defined
shape-preserving envelope which propagates at constant velocity. To distinguish between implicit
and explicit anisotropies, a model with explicit fourfold anisotropy is solved on a triangular lattice.
Distinct morphologies are observed, characterized by the envelope shape and by their constituent
growth elements (dendrites, parity-broken dendrites, or tip-splitting fingers).
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During the last decade, a successful approach in the
study of diffusive patterning was to focus on the forma-
tion of isolated growth elements (e.g. , dendrites, fingers,
and bubbles) (see Refs. [1—5] and references therein).
This approach was motivated by the idea that many of
the most important features of pattern formation can
still be understood while ignoring the full time-dependent
growth of the entire structure (the morphology). This
strategy led to the discovery of the singular nature of
microscopic interfacial dynamics, and to the formulation
of solvability criteria for the existence of different types
of isolated growth elements [6].

Focusing on isolated elements is a reasonable approxi-
mation for the case of low undercooling, where the global
average density of the growing phase is small. However,
in general, and in particular at large undercooling, the
observed structures are much more complex [7—11], and
interactions between branches cannot be ignored. In this
case, it is necessary to consider the global morphology re-
sulting from the self-organization of the various growth
elements. On a larger scale, this self-organization forms
a well-defined envelope. Recent numerical simulations
[12] indicate that this envelope is shape preserving and
grows at constant rate. The shape of this envelope is
correlated to the internal structure, thus can be used as
a simple characterization to distinguish between various
morphologies. Moreover, different morphologies exhibit
different functional dependencies of the growth velocity
on the parameters. Under certain conditions, different
morphologies can coexist for the same control parame-
ters [13]. The transition between morphologies is sharp,
and accompanied with a discontinuity of the slope of the
velocity plot at the transition. These 6ndings suggest the
existence of a morphology determination principle.

Clearly, the interplay between growth elements and
the morphology requires a study of late-stage growth of
very decorated patterns. At present, all the informa-
tion on morphology properties is for algorithmic models
which are characterized by strong noise, whereas most of
our understanding of the formation of growth elements

is with respect to noiseless differential equations. It is
necessary to adopt a model tractable for the study of
both growth elements and global structures. In this pa-
per we employ the phase-field model [14,15] for the per-
formance of large scale numerical sixnulations, and for a
study of morphology diagrams in the large undercooling
limit. On the one hand, such numerical procedure incor-
porates much weaker noise than any algorithmic model.
On the other hand, the phase-Geld model reduces asymp-
totically to the free boundary model for which analytic
solutions for growth elements exist.

We take here the familiar form of the phase-6eld model
de6ned by the dimensionless equations

= e & 4'+ f(4' u)t

Bu 2 0$
Bt Ot

' (2)

l(
f(P, u) = P(1 —P) ~

P ———etanh Au ~,2

which is derived &om a double-well shaped potential with
minima at P = 0 (liquid) and P = 1 (solid). This func-
tional form has numerical advantages. First, the fact that
the equilibrium values of the phases remain constant for
all values of u saves computing time, as P is stationary
in most of the space. Second, the strong nonlinear de-

where P is the order parameter, u is the dimensionless
temperature subject to the boundary condition u(oo) =
—6, and 6 is the dimensionless undercooling. Lengths
are measured in units of the characteristic diffusion
length E, whereas time is measured in units of I2/D, D
being the heat diffusion coefficient of the substance. The
function f (P, u) is the "driving force" of the phase tran-
sition, derived from the homogeneous part of the free
energy. We adopt the form proposed by Kobayashi [16],
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u; = ——tanh (rc+ v„),
2

(4)

where e is the local curvature of the interface, and v„
is its velocity in the normal direction. This bound-
ary condition is a generalization of the familiar Gibbs-
Thompson (surface tension) and surface kinetic correc-
tions, u; = —doe —Pov„[19].

A rigorous way to include anisotropy is to derive the
Landau free energy &om an anisotropic interaction, as
proposed by Caginalp and Fife [20]. Introduction of four-
fold anisotropy implies the replacement of the Laplacian
operator in Eq. (1) by the fourth order operator

2+2 3 4 I'84$ 84$ 84$&:--ge
i

—6 + i+a V', (5)

the parameter g controlling the level of anisotropy. In
the &ee boundary limit, this modification affects only
the interfacial temperature, now given by

u; = ——tanh '
([p(8) + p" (8)] K+ b(8)v„), (6)

pendence of the potential-tilt function tanh(Au) (in all
our simulations 5 & AE & 10) ensures a rapid solidifica-
tion rate even when the interfacial temperature is close
to equilibrium. These two advantages enabled the exe-
cution of large scale simulations required for studies of
late-stage growth.

The parameter e is the characteristic thickness (in di-
mensionless units) of the domain wall connecting the
solid phase to the liquid phase at equilibrium (u = 0).
Since e is the ratio of a mesoscopic scale (the thickness
of the interface) and a macroscopic scale (decay length of
the temperature field), it is often considered as a math-
ematical entity used for taking the limit e ~ 0. In this
limit, the phase-field model reduces to the free bound-
ary model [17,18], with the boundary condition for the
temperature at the interface, u;, given by

The results presented here are for an open geometry
with e = 0.2, A = 10, 4 = 0.5 —1.0, and q = 0.0 —0.5.
The initial conditions consist of a solid nucleus (P = 1)
at equilibrium temperature (u = 0), surrounded by un-
dercooled liquid (P = 0 and u = —6). The shape of the
nucleus is a circle weakly perturbed with a superposition
of harmonics. In the following figures, the boundaries of
the solid domains are P = —contour lines.

The first issue is to provide a characterization of
asymptotic late-stage growth. A time sequence of four
solid contours is shown for an isotropic system (g = 0) in
Fig. 1. The mark of the initial perturbation is clearly visi-
ble in patterns c and b, fading out in pattern d, where the
structure forms a circular envelope which then remains
shape preserving. This behavior repeated itself for all the
initial conditions that we have checked.

Figure 2 shows a similar sequence of solid contours for
dendritic growth, where the growing structure forms a
diamondlike shape-preserving envelope. A more rigorous
definition of the envelope can be provided using a contour
line of the temperature Geld. Such contour lines surround
the entire structure close to the tips of the propagating
solid. A second possibility is to define the envelope using
an ensemble average of difFerent growth realizations (dif-
fering in their initial conditions), as was done by Shochet
et al. [12]. In our case such a procedure is numerically
impractical. Instead we note that, for shape-preserving
growth, ensemble averaging is equivalent to time aver-
aging over a rescaled system. To show that, we plot in
Fig. 3(a) superimposed solid contours. These contours
are rescaled in space P = P(z/R (t)), where R „(t)
is the maximum distance of a solid point to the center of
the initial nucleus. A shape-preserving envelope is con-
structed, forming a smooth shape as t —+ oo.

Another criterion for asymptotic late-stage growth can
be defined by the following dynamical quantities: (1) the
maximum radius of the pattern, R (t), and (2) the
solid fraction, p(t). The latter is calculated by dividing
the total surface integral of P by the area of a circle with

where

p(8) = 1+ —cos48,rI

80
h(8) = 1+—cos48,

3rj

80 (7)

and 8 is the angle between the normal to the interface
and the z axis.

A distinction between the implicit anisotropy of the un-

derlying computational grid and the explicit anisotropy
of the model is necessary for investigating numerically
the zero-anisotropy limit [21]. To this end, Eqs. (1) and
(2) were solved numerically on a triangular lattice, thus
creating a distinction between the six preferred orienta-
tions of the lattice, and the four preferred orientations of
the Inodel. The time evolution was integrated using an
explicit scheme. The size of the system was up to 2500 x
2800 grid points. Such a large system is required to sat-
isfy the following cascade of lengths: (grid size) & (decay
length of P) & (decay length of u) & (width of a growth
element) « (overall structure). Typical well-developed
structures required up to 10 CPU hours on a Cray YMP
for vectorized code.

FIG. 1. A time sequeace of solid contours for A = 0.8 and

g = 0. The average velocity of propagatioa of the frowst is 0.8.
The contours correspond to growth time of (a) t = 120, (b)
t = 180, (c) t = 240, and (d) t = 300.
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FIG. 2. A time sequence of solid contours for 4 = 0.7 and

g = 0.3. The average velocity of propagation of the front is
0.41. The contours correspond to growth time of (a) t = 120,
(b) t = 240, (c) t = 480, and (d) t = 720.

radius R (t). The asymptotic regime is attained when

both 6(t) = R (t) and p(t) reach asymptotic values

[Fig. 3(b)]. For isotropic systems (and therefore circular
envelopes), the asymptotic solid fraction p is equal to
the undercooling b, [12,22]. For anisotropic growth (four-
fold in our case), p ( —b, for a concave envelope and

p & —4 for a convex envelope. Hence p provides a
simple measure for the shape of the envelope.

Next, we turn to the description of the morphology
diagram presented in Fig. 4. Prom the point of view of
individual growth elements, four patterns are identified.
Compact growth is obtained for very high undercooling
(b, & 0.9). In this regime, growth is characterized by
a compact solid filled with liquid droplets. From ener-
getical considerations, steady-state compact patterns are
impossible for 4 & 1. Therefore steady propagation of a
compact &ont implies solid-liquid decomposition behind
the &ont. This solution can be calculated analytically by
considering a one-dimensional system, where the holes
are reflected as periodic oscillations of the phase [23].

The second pattern is the dendrite. Ordinary dendrites
have parabolic shapes with a train of sidebranches shoot-
ing out. Here, at relatively low undercooling, the den-
drites develop weak undulations rather than decorated
sidebranches. At higher undercooling, the dendrites are
densely packed, so that each dendrite is parabolic only
close to the tip which is connected to a straight trunk.

The third pattern is tip-splitting fingers, which are ob-
tained for low undercooling and weak anisotropy. The
fourth pattern is a parity-broken dendrite which has re-
cently been identified and studied by Ihle and Miiller-
Krumbhaar [21,24) (referred to as parity-broken fingers).
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FIG. 3. (a) Superimposed contours of the rescaled
solid-liquid interface, P(xjR ) = —, for E = 0.7 an
g = 0.3. The time interval between two consecutive con-
tours is Bt = 120. (b) The average solid fraction p and the
maximum distance of a solid point to the center, R „,versus
time.
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FIG. 4. Morphology diagram for A=0.6—0.9 and
=0.0-0.4. The asymptotic velocity of the envelope appears
at the upper-right corner of each pattern.
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In a forthcoming publication [25], we will show that this
growth element is a steady-state solution of the system in
addition to the dendritic one. In our simulations parity-
broken dendrites are obtained even for isotropic condi-
tions.

Next, we consider the global structures and the enve-

lope shapes. In the isotropic limit, both for tip-splitting
fingers (dense-branching morphology) and for parity-
broken dendrites, the envelope is circular. For very large
undercooling, where the morphology becomes compact,
the envelope and the liquid droplet ordering show a weak
sixfold symmetry. In the presence of anisotropy the en-

velope becomes fourfold symmetric. For low undercool-

ing, the envelope is concave and the growth elements are
dendrites. In Ref. [12], the space between the four main
trunks is filled with sidebranches emanating perpendicu-
larly &om the main trunks. Here, this space is filled with
dendrites parallel to the main trunks, which are emit-
ted &om oscillating fingers growing in the 45' directions.
For higher undercooling, the envelope is a convex four-

fold symmetric octagon, formed by a similar process of
tip splitting in the 45 directions. During each splitting,
two parity-broken dendrites are emitted to the 0' and
90' directions.

%e note that in the transition from a concave envelope
(dendrites) to a convex (parity-broken dendrites) enve-

lope the velocity undergoes a qualitative change. For
the concave morphology it is an increasing function of
anisotropy, whereas for the convex morphology it is the
opposite. The transition between the two regimes seems
to occur in the vicinity of the 6 = 0.7 and g = 0.2 real-

ization, where the envelope is partly concave and partly
convex.

To conclude, we showed in this paper the formation
of four types of growth elements creating dig'erent mor-
phologies via diferent mechanisms of self-organization.
At least three of these growth elements can be identified
as steady-state solutions of the model. In addition, the
dendritic morphology obtained here exhibits a difFerent
ordering compared to other models. Our conjecture is
that these results reBect a morphology selection princi-
ple. For the same control parameters, various growth
elements can grow, and perhaps can order in more than
one manner, but only one morphology is dynamically se-

lected. %e hope that such numerical studies will provide
new insight which will lead in the future to a formulation
of a generalized solvability mechanism of growth-element-
morphology interplay.
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