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Vortical scales for two- and three-dimensional turbulence
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Correlation analysis of two-dimensional (2D) turbulence is performed on the basis of the Navier-

Stokes equations. It is found that within the inertial range of scales (L Re '~ && r &&L; L is the external

scale, Re is the Reynolds number) there is a physically distinguished scale I, =L Re ' —a natural scale
for coherent vortex patches. A hierarchy of vortical scales for 2D and 3D turbulence is found from a co-
variance analysis of more detailed spatial structure of the vorticity field.

PACS number(s): 47.27.6s
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Here v;, co, s;, and f; are correspondingly velocity, vorti-
city, VG, and external random force in 2D incompressi-
ble fluid, v is kinematic viscosity and e;k is the unit
antisymmetric tensor. We use the concept of self-
amplification, because the tensor of deformation rates, re-
sponsible for amplification, is expressed in terms of local
characteristics (vorticity in 3D and VG in 2D) [2—6).

The statistical balances of vorticity and VG in homo-
geneous 2D turbulence have the forms [3-6]
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Here ( ) indicates statistical averaging, all fields are tak-
en at the same space-time location, and y is the mean
rate of enstrophy dissipation. The first terms in the
right-hand side (rhs} of (1}and (4) represent the effect of
self-amplification, connected with the compression of
fluid elements in the direction of VG. More detailed sta-
tistical analysis of this effect is done by the conditional
averaging of (1}with fixed VG at the same point [3—6].

Spatial differentiation of nonlinear equations, followed
by a covariance analysis, can also help to find new

Spatial differentiation of nonlinear equations can help
to reveal physical effects, which are hidden in the original
form of equations. In particular, the passage from the
Navier-Stokes equations for the velocity to the equations
for the vorticity illuminates the effect of self-amplification
of vorticity (stretching of vortex filaments) in three-
dimensional (3D) turbulence [1,2]. Similarly, additional
differentiation reveals the effect of self-amplification of
vorticity gradient (VG} in 2D turbulence [3—6]:
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The second equality in (7) corresponds to enstrophy bal-
ance (3) for statistically stationary turbulence. The exter-
nal scale and Reynolds number for such turbulence is
naturally defined by (compare with Refs. [6,10]}
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From (5) and (6) for statistically stationary turbulence we
have
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This is a balance between self-induced generation of VG
correlations, viscous smoothing, and the influence of

characteristic scales. In particular, such an approach re-
vealed a physically distinguished scale (21} for the "vor-
tex strings" in 3D turbulence [7]. The co variance
analysis of VG performed below leads to a new charac-
teristic scale, which we associate with coherent vortex
patches in 2D turbulence. Corresponding analysis for
various spatial derivatives of vorticity reveals a hierarchy
of vortical scales for 2D and 3D turbulence.

From (1}, by a standard procedure [7-9], we get an
equation for the correlation tensor of VG in homogene-
ous isotropic 2D turbulence:
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Here prime indicates that fields are taken at the point
x'= x+r. For the Gaussian, 5-correlated in time and sta-
tistically stationary random forces we have [6—11]

C&(r) =f dv(&t&(t, x)&t&(t+r, x+r)), C&(0) =2y . (7)
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large-scale motion. Let us note that Eq. (9}is simply the
result of application of the Laplace operator to the bal-
ance equation for the vorticity correlation. Such a pro-
cedure will lead us to a new vortical scale, because the
external force by definition is characterized by only one
scale L (8), while the balances of vorticity and VG corre-
lations depend also on viscosity.

Let us consider the inertial range, corresponding to the
spectral enstrophy flux in 2D turbulence [12—14]:

I +
R 1/[2(1+ m)(2+ m)]

I...
e (16)

This hierarchy deserves more detailed study in the future.
Let us now turn to a 3D turbulent vorticity field. The

basic equation is the balance of vorticity correlations [7],
which for statistically stationary turbulence can be writ-
ten in the form

Ip =L Re
—1/2 &&r ((L (10}
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The main parameter in this range is y. Neglecting possi-
ble logarithmic correction, we have from dimensional ar-
guments:

g( r) y2/3r —2

From (8) for r «L we get

b4(r) = 4yL— (12}

where we take into account that C)(r} is even (isotropy).
Substitution of (11) and (12) into the balance (9) shows,
that when we approach the internal scale l0, the contri-
bution of external force for large Re became negligible:
-Re '. Thus, self-production of VG is balanced by
viscous smoothing [3—6]. However, within the inertial
range (10), the influence of large-scale forcing became
comparable with viscous smoothing at the scale

I =LRe
C (13)

Thus, for m & 1 the influence of external forcing is shift-
ing to larger scales. This hierarchy of scales can be useful
in a statistical description of a net of thin and long vortex
layers —reminiscent of the processes of coalescence and
destruction of more compact vortices. At the same time,
the hierarchy represents an unusual "cascade" with scale
factor, depending on Re and m:

It seems that I, is a natural scale for coherent vortex
patches in 2D turbulence. We plan to check this by a
specially designed numerical experiment with suSciently
high Re.

We now extend the above presented covariance
analysis to the m-order spatial derivatives of the vorticity
field. In the inertial range (10), the corresponding terms
in the correlation balance are
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We see that the influence of large-scale forcing becomes
important starting at the scale
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Q(r)=( 0), 0)I .), F(0}=2@.
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Here the left-hand side represents self-induced generation
of vorticity correlations and F(r) corresponds to large-
scale random forcing, supplying energy at the rate e. The
external scale, Reynolds number, and inertial range are
defined by
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where l„ is the Kolmogorov internal scale. In the inertial
range:

Q(r)-e r 4, QF = 6EL— (20)

Comparison of two terms in the rhs of (17) gives the first
scale, which has been associated with "vortex strings"
[7]:

l', '=I =L ReS (21)
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Comparison of these terms gives a hierarchy of increasing
scales:

I(3) —L R —3/(10+6m)
(

—0 1 2 ) (23)

We can suggest again that this hierarchy corresponds to
the statistical structure of the net of vortex tubes and
sheets —reminiscent of the processes of formation and
destruction of vortex strings.

We hope that the presented results and interpretations
will stimulate more detailed studies of vortex structures
in 2D and 3D turbulence.
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[Superscript (3) means 3D]. In the correlation balance
for m-order derivatives of 3D vorticity we have terms:

g1+ g 2/3 —(10/3) —2 g1+ —2(1+ )
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