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Controlling unstable periodic orbits by a delayed continuous feedback
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A method is presented for stabilizing unstable periodic orbits of a dynamical system by applying
continuous feedback on a control parameter. The feedback signal is proportional to the difference
between two values of a dynamical variable, separated by a time equal to the unstable orbit period-
icity. This method has been checked numerically and experimentally on the control of the unstable
orbits of a COq laser with modulated losses.

PACS number(s): 05.45.+b, 42.60.Mi

The interest in the control of dynamical systems has
recently increased after the presentation by Ott, Grebogi,
and Yorke (OGY) [1] of a general method allowing con-
version of a chaotic motion into a periodic one. The main
idea relies on the fact that a chaotic attractor has typi-
cally embedded in it a dense set of periodic orbits, which
can be stabilized by a feedback technique. The interest
of the OGY method is twofold. It opens the way to an
efficient mastery of chaotic phenomena: in addition to
simply suppressing chaos by stabilizing unstable periodic
orbits [2], or steady states [3,4], methods derived from
the OGY one make use of chaos to direct trajectories
to targets [5], generate aperiodic orbits [6], and com-
municate [7]. Another interest has also grown in using
stabilization methods as investigation tools of dynamical
systems. This has been made possible because the appli-
cation of the OGY method leads to stable states which
are identical to unstable states (periodic or steady) of the
original system. Modi6cations of the OGY method have
allowed us to stabilize and characterize unstable periodic
orbits [8,9] which are embedded or not embedded in a
chaotic attractor, as well as unstable steady states [4]. A
drawback, shared by the feedback techniques based on
the OGY idea, is that these techniques cannot be ap-
plied to very fast systems. The limiting factor is the
use of a Poincare section, which implies the processing
of discontinuous signals. In this paper, we propose to
overcome this limit with a stabilization technique involv-

ing continuous feedback [10], and which verifies the two
following properties: (1) the stable periodic orbit of the
controlled system coincides with the unstable one of the
original (uncontrolled) system; (2) the feedback proce-
dure is applicable without knowing a priori the location
of the periodic orbit. These two properties allow us to use
this feedback technique as a means to study an unstable
periodic orbit, and to easily track it when a control pa-
rameter is varied as in Ref. [8]. This technique is checked
numerically and experimentally in the case of a CO2 laser
with modulated losses.

Let us consider a dynamical system with an accessible
control parameter m and a measurable dynamical vari-
able 2:(t). We suppose that an unstable orbit of period T
exists for a given value mo of m, our aim being to stabilize
it by applying a correction p(t) on the control parameter
[m(t) = mo + p(t)]. The proposed continuous-feedback

method presents common points with previous stabiliza-
tion techniques involving discontinuous corrections, and
it is thus important to recall some of their properties. To
ensure that the system with feedback contains an orbit
rigorously identical to the considered unstable periodic
orbit, we require that the correction p(t) vanishes when
the system is stabilized. In the original method proposed
by Ott et aL, the correction is proportional to the difFer-
ence between two unstable components of vectors taken
from a Poincare section: (X„"—Xg) where Xy denotes
the position of the unstable orbit and X the current
one. It is also worth noticing that the measure of un-
stable components is not always needed, and in many
cases the use of an arbitrary dynamical variable instead
of X„is suflicient. Applied to the original OGY method,
this leads to the simple proportional feedback technique,
and has succeeded in experimental systems [11].Another
modification of the OGY method has been performed in
order to allow an easy tracking of periodic orbits, with-
out knowing a priori the periodic orbit location. The
main idea consists in using a correction proportional to
(X„"—X„"i) [8]. Here, as for the OGY method, one can
simply use in many cases a dynamical variable instead of
X„"as has been shown in the case of a laser system [8].
The choice of a continuous-feedback procedure satisfy-
ing the conditions mentioned above (the vanishing of the
correction after stabilization) is not unique. We use here
the simplest one, which takes advantage of the simple
proportional feedback idea, and which does not involve
the 6xed point location. The applied correction is pro-
portional to the difFerence between two successive values
of an arbitrary dynamical variable z(t):

with o. the gain parameter of the delayed continuous feed-
back (DCF). The T-periodic orbit remains a solution of
the system with feedback, but the associated set of Flo-
quet multipliers is changed. The e%ciency of the method
depends on the possibility of choosing values of o. so that
all these Floquet multipliers are in the stable domain.
As in the case of the simple proportional feedback [11]
and the case of Ref. [8], we can expect that this method
will be often effl.cient for systems near a bifurcation point
and/or very dissipative systems. However, the linear sta-
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bility analysis of the orbit is made difBcult by the pres-
ence of a delayed term, and we will concentrate here on
checking its efficiency numerically and experimentally.

The DCF method has been implemented on a CO2
laser with a modulated parameter (in our case, a loss
modulation using an intracavity electro-optic modula-
tor). When the modulation index is increased, the laser
undergoes a classical period-doubling cascade leading to
chaos and periodic windows are commonly observed [12].
The numerical simulations have been performed on the
basis of the well-known two-level model without detun-
ing [13].Thus the behavior of the laser can be described
by the following set of two coupled nonlinear equations:

I = 2I[AD —1 —k(t)],

D = p[1 —D(1+ I)],
(2)

where the time t is in units of the cavity lifetime. In these
equations, A is the pump parameter and I and D are the
laser intensity and the population inversion, respectively.
p is the ratio of the population relaxation rate to the cav-
ity damping rate. k(t) is the additional loss introduced by
the modulator and is equal to ko(t) = m cos 2mft, where
m is the modulation index, and f the modulation fre-
quency. For the stabilization of an unstable nT-periodic
orbit (T = 1/f), a DCF term is added to the loss mod-
ulation:

k(t) = k (t) + ~[I(t) —I(t —nT)], (3)

where a is the gain of the feedback loop. The numeri-
cal parameters used in the simulations correspond to the
values already used by Dangoisse et al. [13] to describe

I I I I I

TINE (50 ps&d i v)
FIG. 1. Typical transient calculated after the activation

of the feedback: (a) stabilization of the unstable T orbit,
(b) stabilization of the unstable 2T orbit. The upper trace
represents the laser intensity in arbitrary units, and the lower
trace the correction applied to the modulator in units of the
modulation index [p(t)/m].

FIG. 2. Stability domain of the T-periodic orbit vs the
modulation index m and the gain parameter a. In the absence
of feedback, the T-stable orbit is destabilized at m = 0.015,
and the unstable orbit is embedded in the chaotic attractor
for m ) 0.0237. The asterisk indicates the case presented in
the Fig. 1(a).

the experimental situation of our laser. The frequency is
fixed at 400 kHz, the cavity damping rate is estimated to
be 6x 10 s ~, and the population relaxation rate is calcu-
lated to be 2.5x10 s . In the case of the numerical sim-
ulations presented here, the pump parameter A is fixed
at 1.1 and the modulation index m at 0.0246, in a pa-
rameter domain where the laser dynamics is chaotic. We
have performed the numerical simulations with a Runge-
Kutta algorithm. The possibilities to stabilize and the
transient signal duration depend significantly on initial
conditions. Figure 1 shows the calculated signals when
the feedback loop is activated: Fig. 1(a), in the case of the
stabilization of the unstable T-periodic orbit (n = 0.033),
and Fig. 1(b), in the case of the unstable 2T-periodic or-
bit (o. = 0.1). In both cases, the upper trace represents
the CO2 laser intensity and the lower trace, the correc-
tion applied to the system. We verify that, when the
unstable orbit is stabilized, the magnitude of the correc-
tion signal vanishes below the numerical accuracy. The
numerical study of the T-periodic orbit stability versus
o. and m reveals a great robustness of the DCF method.
For any value of m, in the investigated domain (0 to 0.3
corresponding to an unstable Floquet multiplier going up
to —7.33), there exists a value of a beyond which the T
periodic orbit is stabilized. In addition, by increasing n
up to 10, we have not detected an upper limit value lead-
ing to destabilization. Figure 2 represents the stability
domain for the values of m usually reached experimen-
tally. At the boundary, two types of bifurcations are
observed: a Hopf bifurcation for the small values of m
(before the angular point at m = 0.0134) and a subhar-
monic one for m ) 0.0134. One can remark that a single
value of the feedback gain a leads to the stabilization for
a large range of the modulation index m. This fact al-
lows us to keep a constant and to stabilize a particular
unstable orbit, even when a control parameter (here m)
is swept in a wide range. Therefore it is possible to track
an unstable orbit not only when it is embbeded in the
chaotic attractor but also when it is not.
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FIG. 3. Stabilization of the unstable T-periodic orbit: (a)

periodic sampling of the laser power in arbitrary units. (b)
Correction applied to the modulator in units of the modula-
tion index [p(t)/m].

After the numerical simulations, the DCF method has
been checked experimentally on a COz laser. The ex-
perimental setup [13] consists essentially of a sealed-off
waveguide containing the active medium, placed inside
a cavity in which an electro-optic modulator is inserted.
The control parameter is the modulation index applied to
the modulator near its mechanical resonance frequency

(f = 365 kHz). The laser power is monitored by an
Hg-Cd-Te photovoltaic detector and its output is used
to modulate a laser diode emitting at 845 nm. Thus
the time delay (2.74 ps) is obtained by propagating the
laser diode light in a 600-m-long fiber. The difFerence
z(t) —x(t —T) is directly obtained by two silicium pho-
todiodes connected top to bottom. The difference, ampli-
fied with an adjustable gain, is added to the modulation
signal [14].

Stabilization on the unstable T-periodic orbit has been
achieved with the DCF method. A typical transient ob-
served when the feedback control is switched on is rep-
resented in Fig. 3 [compare with Fig. 1(a)]. When the
trajectory lies on the T-unstable cycle, the correction
applied to the system decreases and amounts to a very
small value (less than 2% of the modulation index). The
remaining Huctuations are the superposition of two com-
ponents with the same order of magnitude. The first
is a random signal which corrects only the noise in the
system. The second is a residual T-periodic modulation
which arises &om an imperfection of the delay line and
could be suppressed by using a monomode fiber. It is
essential to note that the obtained magnitude of this
spurious signal does not represent a fundamental limit,
and may be decreased by improving the feedback device.
More precisely, because the remaining signal is close to
a sinusoidal one, its efFect is to slightly shift the mod-
ulation index (less than 2% of m). One can therefore
conclude that the stabilized orbit is identical to the un-
stable T-periodic orbit existing in the original system, for
a modulation index which is negligibly difFerent &os m.
In the experimental situation, the technical limitation of
the correction magnitude leads to transients longer than
the experimental ones. However, this does not prevent
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FIG. 4. Bifurcation diagram without (a) and with (b)
stabilization of the unstable T-periodic orbit. The stable
T-periodic orbit is destabilimed for a modulation index of M
= 7.2 V and the unstable orbit is embedded in the chaotic
attractor for M ) 16.8 V.
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stabilization for any initial conditions. As in the numer-
ical simulations, one can follow the unstable orbit when
a control parameter is slowly varied without modifying
any parameter of the feedback system (Fig. 4). Moreover,
we have checked that, all along the sweep, the correction
applied to the system remains small, showing that the
stabilized orbit is identical to the unstable one existing
without stabilization. So, it is also possible to charac-
terize the unstable T-periodic orbit in a large domain
(whether or not it is embedded in a chaotic attractor) and
to follow it down to the T 2T bifurcatio-n where this orbit
becomes stable. In this way, we show experimentally that
the unstable T-periodic orbit embedded in the chaotic at-
tractor after the C2-C transition of the inverse cascade
[15] comes from the destabilization of the T-stable orbit
through the T 2T bifurcat-ion.

To conclude, we have proposed here an alternative
method to suppress chaos in a dynamical system by lock-
ing it to unstable orbits, using continuous feedback. This
method, which appears to be efBcient in the case of a
CO2 laser with modulated losses, has allowed us to track
and characterize an unstable orbit in a large domain of
control parameters. This method is of practical interest
for the stabilization of numerous fast systems for which
the usual methods of control are hardly applicable. The
DCF method requires, a priori, the knowledge of the un-
stable orbit periodicity and may be easily applied to the
nonautonomous system in which this period is fixed by
the forcing term. However, it is also possible to extend
its ef6ciency to autonomous systems, even with swept
parameters, if in addition, we make use of a predictor-
corrector procedure for the adjustment of the delay time
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