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Long-time behavior of the semiclassical baker's map
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We study the long-time behavior of the quantized baker s map in the semiclassical approximation.
Our main object of investigation is the trace of the (n-step) time-evolution operator. We express
this trace as a phase-space integral which equals the semiclassical expression in terms of periodic
orbits. This enables us to follow the evolution explicitly up to the time at which the semiclassical
traces start to diverge exponentially from the quantum ones. Our data indicate that this breakdown
time scales with h in a way close to h

PACS number(s): 05.45.+b, 03.65.Sq

During the past few years there has been an increasing
interest in the range of validity of the semiclassical ap-
proximation (SCA). From general considerations about
the correspondence between quantum and classical quan-
tities one expects that, for any given value of Planck's
constant h, the SCA should correctly describe the quan-
tum dynamics for times shorter than a "breakdown" time
ts(h) which increases as h decreases. The knowledge of
the specific h dependence of ts is of central importance
for determining whether it is possible to resolve individ-
ual eigenenergies in the limit h -+ 0. For two-dimensional
systems, the mean level distance scales as h2 and, con-
sequently, a time of the order 1/h is required to do this.
For maps with a two-dimensional phase space quasiener-
gies are separated on average by 2xh, and these can be
resolved, again, if the breakdown time is proportional to
1/h.

The starting point for the SCA in the time domain is
the semiclassical propagator [1,2]. Using it, Berry and
co-workers [3, 4] (see also [5]) investigated the formation
of phase-space structures for chaotic systems and con-
cluded that ts O(lnh ~). On the other hand, from
formal expansions of quantum expressions into power se-
ries in h it seemed to follow that the breakdown time is
generically of the order of, at least, 1/h [6]. Recently,
numerical studies of various chaotic systems showed that
the SCA is able to give quantitatively correct pictures
for times well above lnh ~ (see Refs. [7, 8] for the cor-
responding study of the baker's map). Due to the expo-
nential proliferation of classical trajectories determining
the semiclassical evolution, such an explicit comparison
is, however, extremely dificult for still larger times.

Substantially more optimistic estimates of t~ were de-
rived recently using general qualitative arguments [9—13].
In [11] it was argued that for generic (two-dimensional)
chaotic systems ts O(h ) with n = 1/3. A detailed
study of the stadium billiard suggested even n 1/2
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[12]. Finally, in the case of the baker's map, similar con-
siderations gave a certain indication for a linear (in 1/h)
breakdown time [13]. One should note that these con-
clusions —in view of the absence of direct calculations
for such long times —are based on certain assumptions
about the "scenario" of the breakdown. In particular, it
is assumed that the breakdown is caused by those clas-
sical trajectories which enter during their evolution into
"dangerous" zones of phase space like the vicinities of
caustics or discontinuities, and that the breakdown time
is determined by the measure of such "bad" phase-space
areas. Although these assumptions give a plausible phys-
ical insight into the mechanism of breakdown, one can
hardly expect them to give quantitative predictions.

In view of these circumstances, it seems to be very use-
ful to follow the SCA, in a model system, explicitly up to
the time when it begins to fail. This turns out to be pos-
sible after rewriting sums over periodic orbits in terms of
phase-space integrals, the calculation of which requires
much less computational effort. (The basic concepts of
this approach can be found in Bogomolny's work [14];
see also [15].) In this Rapid Communication, we develop
such a phase-space integral formulation for a prototypical
hyperbolic system, the baker's map [16—18], and use it to
calculate the SCA to the traces of powers of the quantum
one-step time-evolution operator U. These traces are of
special interest, as they can be used to directly deter-
mine the eigenvalues of U. Possible deviations of these
eigenvalues from the unit circle signal a loss of unitar-
ity, and provide a basic indication for the failure of the
SCA. Our numerical results show that the semiclassical
traces start to diverge exponentially Rom their quantum
counterparts for times of the order of h

The baker's map is one of the simplest chaotic systems
[16, 17]. It is defined as a mapping of the unit square
onto itself,

1 1
~,+~ ——(2x,.), y,.+~ ———y,. + —[2x,.],2 2

where [2:] and (xj stand for the integer and fractional
parts of the coordinate x, respectively. Every point (x, y)
on the square is hyperbolic, with the stable and unsta-
ble manifolds being parallel to the y and x axes, cor-
respondingly. and has the same Lyapunov exponent of
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A = ln2. The map possesses two distinct discrete sym-
metries, T: (z, y) ~ (y, x) and R: (z, y) ~ (1—z, 1 —y).
It was shown in [16, 17] that the baker's map has a
simple Markov partition comprising the left and right
halves of the square. This enables one to uniquely la-
bel each trajectory by a doubly infinite binary code

vpvz. . .) in which the jth digit vi specifies
whether, at the jth iteration of the map, the particle
is in the left (0) or right (1) half of the square. The
operation of the map is then given by a Bernoulli shift
along this code. n-periodic points are points whose
symbolic code is n periodic; their coordinates and mo-
menta can be written as rational binary fractions: z =
0 vpvq . . v q

= v/(2" —1); y = v/(2" —1), where

v = g"
p vi2" ~;v = P"

p v&2~ . We label each
n-periodic point by the corresponding value of v. Note
that a periodic point is completely determined by its co-
ordinate x.

The action of a periodic orbit going through v was
originally derived in [18] and can be expressed as

(2)

TrUL, —tl. )
(n)

where

(4)

tz" ——) l
det(M„—I)l 'e'f "~"

Here, M„,S, and p„are the monodromy matrix, the
action, and the Maslov index of the vth n-periodic point,
respectively. For the baker's map, t& was considered in
detail in Refs. [18,8) and is given by

t( ) 2~~1.S„
2 sinh(n ln 2/2)

(6)

where I„ is an integer-valued function. Expressing v in
terms of z and using a particular choice of I„,we get [19]

n —1 n —1 n —1

S„=) v, z; —) v, = ) (x, —1)[2x,]. (3)
j=O j=O j=O

The action (3) is strictly invariaat under both R and T
symmetries, as well as under iterations of the map. More-
over, S„depends exclusively on the coordinates. [One
can show that the action recently given in [20] results in
aa expression similar to (3), with zi —1 replaced by zi.]
The quantization of the baker's map proceeds by con-
structiag a unitary one-step evolution operator U [17,7,
21]. A representation of U which preserves all symme-
tries of the classical map in a Hilbert space of dimension
L is givea by [7] UL, = GL x diag(Gr, i2, GL,i2), where

(GL, ) „=L ~ exp [—2mi(m+ 1/2)(n+ 1/2)/L];

m, n = 0, 1, . . . , L —1 . This quantization is possible only
if L(= 1/h) is a positive even integer.

We turn now to the quantity we are mainly interested
in, namely, the SCA of the trace of the n-step time-
evolution operator. For chaotic maps, this quantity can
be generally represented as a sum over all periodic points
of period n [22, 23]:

where the sum runs over all periodic points of period n
As was noticed in Ref. [18], special care must be taken
for the fixed points (0, 0) and (1,1) lying at the corner
generated in phase space by the chopping procedure un-
derlying the baker's transformation. For these points the
stationary phase approximation is invalid, and one can
show that they enter the semiclassical traces with an en-
hanced amplitude (as compared to other periodic points),
the enhancement factor depending logarithmically on h
[20]. We do not go into this discussion, since our main

aim in this Rapid Communication is the behavior of tl"
for large n, and the relative error caused by the improper
treatment of a single periodic point is of order 2 ", for
any 6xed h.

In order to construct a semiclassical transfer operator
for the calculation of tl", we make use of the partic-
ular structure of the baker's map which allowed us to
express, both on the classical and on the semiclassical
level, all relevant quantities in terms of the orbit coordi-
nates only. Let us de6ne the one-dimensional mappingB:x ~ x' = (2z); 0 & z & 1. From the discussion
below Eq. (1) it follows that the n-periodic points of this
mapping coincide with the coordinates of the n-periodic
points of the original baker's map. This implies that
any sum over periodic points of the baker's map with
momentum-independent weight factors can be written as
a sum over periodic points of the reduced map B. In par-
ticular, this applies to the expression (6) for t&f"l. A semi-
classical transfer operator can then be obtained by gen-
eralizing the classical Ruelle-Perron-Frobenius operator
U,~(z, z') [24] defined as the integral kernel transforming
an initial probability distribution pp(z) over phase space
into the corresponding distribution after one application
of the map:

1

pg (z') = U, i(z, z') pp(z) dz .
0

From the structure of the mapping B one immediately
concludes that

z'5 1' x'+ 11
U,g(z, x') = — b

l

z ——
l
+b

l

z—
2)

Iterating Eq. (7) n times, one obtains the corresponding
n-step operator as the nth power of U,~. The traces of
these operators can be expressed in terms of the peri-
odic points of the mapping B. Adopting the convention

J b(z)dx = 1/2, we have

(9)

where the sum goes over all n-periodic points and e
equals 1 for the inner, and 1/2 for the border points.

Equation (9) expresses a sum over periodic points in
terms of the trace of an operator defined over configura-
tion space. This suggests that other sums over periodic
points difFering &om (9) by the weight given to difFerent
points can be expressed in terms of configuration space
integrals as well. In particular, we wish to derive oper-
ators R'&, defined in terms of classical dynamics, such
that
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1

t,'") = T W,'"' = dxW,'"'(x, x) . (1o)
0

Comparing (9) with the semiclassical expression (6), one

sees that t&~") is given by the right-hand side of Eq. (9)
with c„replaced by c„2"~zexp(2ziLS„). Taking into
account that the action (3) factorizes into a sum of one-

step contributions, we conclude that WL" is given by the
nth power of a one step -operutor Wl, (x, x'):

Wr',"'(xo x ) = [(WL)"1 (xo x )
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WL, (x;,x,+g), FIG. 1. Comparison between ~tlat")~ and ~Tr(W~~ ))"~ for

K = 512 (circles) and K = 1024 (diamonds).

where

( x'
WL, (x, x') = 2 2)

I
ezs iL(e —1)[2ej (12)

2 )
Equations (10)—(12) are the main result of the present
Rapid Communication. They express the periodic or-
bit sum (6) for the SCA to the traces of the n-step
time-evolution operator of the quantnm baker's map in
terms of a semiclassical operator defined over configura-
tion space. We emphasize that Eqs. (10)—(12) give an
exact representation of the semiclassical traces, valid for
any number of iterations n. A detailed study of the prop-
erties of the operator Wl, allows, therefore, for a consider-
ation of the large n regime without explicitly considering
a huge number of periodic orbits.

It is convenient to study the operator Wl, in the Fourier
representation given (for even L) by

1 1

Wr, (m, k) = dx dx' e '( " ) WI, (x, x')
0 0

(&31
~(m —2r )(m+1,—2a) ~

0 otherwise .

m=2korm=2k —L

The indices m and k take all integer values from —oo to
OO.

In order for (13) to be useful, one must be able to

efBciently approximate tI" via finite dimensional trun-

cations of WL, . For this purpose we truncate R'I, to a
K-dimensional matrix W& with indices ranging from
—K/2+ 1 to K/2. Our numerical results show a fast

convergence of the approximations to t&" with enlarg-
ing the truncation size: Fig. 1 gives a comparison be-

tween the expressions for t&" obtained by directly corn-
puting the periodic orbit sum (6) and the traces of
the nth power of difFerent approximations to R'L„ for
L = 200 and L = 250, in the range 1 & n & 31 for
which periodic orbit data exist. One sees that, except
for very small n, a good approximation is reached al-
ready for K 2L. This allows us to continue Eq. (10)
as t~" = Trw~" = Tr(WL, )" = limli~ (WL )"
lima-~ P ~[ei(L, K)]", where the e~(L, K) are the
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FIG. 2. A~ = ~e~(L, K)~ for L =- 100 and K = 256 in
comparison with the quantum spectrum (full line).

eigenvalues of the matrix R'L-%l

A typical spectrum of W& is shown in Fig. 2 (L =
100,K = 256) and compared to the spectrum of the
quantum mechanical operator UL, . Ur, is a L x L uni-

tary matrix, and therefore its L eigenvalues all lie on the
unit circle. The semiclassical spectrum shares this gross
feature: One clearly sees that the number of eigenvalues

of W& with absolute values 1 is of the order L. This
result is highly gratifying, since there seems to be no
a priori reason for the nonunitary matrix WL, (and its
finite dimensional truncations) to behave in such a way.
It shows that the SCA is in a certain sense "close" to
quantum mechanics. However, the step function charac-
teristic of the quantum spectrum is smeared out at both
sides: There are eigenvalues with absolute values larger
than 1, and there is a long tail of small eigenvalues. Note
that for the long-time behavior we are interested in, only
the eigenvalues in the vicinity of the unit circle are of rele-
vance. We investigated carefully the dependence of these
large eigenvalues on the truncation size K and found that
their values stabilize very rapidly: The values obtained
for matrix sizes K 2L are typically changed by a fur-
ther increase of K by not more than 10 —10 [19].

We find, therefore, that the effort involved in com-

puting tL(" is only O(Ls), i.e., similar to the computa-
tional load of the corresponding quantum calculation-
in contrast to the exponential rise in complexity associ-
ated with explicit summation over periodic orbits. This
enables us to go far beyond the times which would be
treatable by a straightforward periodic orbit calculation,
and to investigate the long-time accuracy of the SCA
without any further assumptions. For this purpose we
return to Fig. 2: It shows that the leading semiclassical
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eigenvalues do not lie exactly on the unit circle, but at
some distance from it. This reflects the fact that the SCA
violates, in general, the unitarity of the time evolution.
As an immediate consequence, the semiclassical evolution
will be determined, after some initial time, by the eigen-
value with the largest absolute value (note that this lead-
ing eigenvalue is not degenerate in absolute value). Let
us denote this value by 1+AL, . Then the long-time be-

havior of t&" is given by [tL [ (1+AL, )" = e ~". Since
the magnitude of the trace of any power of the quantum
mechanical propagator is bounded by L, the SCA turns
out to be meaningful, for a given value of L, at most up
to a number of steps n which is roughly given by the
inverse of AL„whereas for larger times the traces t&"

will increase exponentially (and so will all quantities ex-
pressed in terms of it, e.g. , the semiclassical spectral form
factor [25]). We studied the L dependence of AL, numer-
ically over the ranges 0 & L & 500 and 990 & L & 1000
(see Fig. 3). The data suggest a roughly powerlike law,
the best fit depending on the range of data included, and
varying between AL, L and 61, L

We conclude that, for the baker's map, the SCA to
the traces of the time-evolution operator diverge ex-
ponentially from the exact quantum results for times
tran O(h ) with o. = 1/2. This confirms the gen-
eral expectation of a powerlike behavior [9—13]. It shows,
however, that the linear dependence of tlat on 1/h which
would be necessary for describing individual quasiener-
gies in the limit h -+ 0 is not reached. An important
question is, therefore, whether this fact is specific to the
baker's map. Indeed, there seems to be a connection
between the h ~ dependence of t~, and the discontinu-
ous form of the map: Investigating the optical realization
of the baker's map proposed recently [26), one sees that
the discontinuity of the classical map implies diffraction
effects in the quantum case which are known to give con-
tributions of order h / to semiclassical quantities not

10
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FIG. 3. Distance AL, of the leading eigenvalue of W&
(K = 1024) from the unit circle as a function of L Th.e
straight line is the best powerlike St through all data points
and is given by AL, ——0.29L

covered by periodic orbit expressions [21]. One could ex-
pect, therefore, that for smooth systems the SCA would
not suffer &om this peculiarity, and would have an ex-
tended domain of validity. Comparing our findings to
those claimed by O' Connor et al. [13],we see that the re-
sults of argumentation based on considerations of certain
areas of phase space should be considered with caution.
Having at our disposal a method for directly calculating
the long-time behavior of chaotic systems in the semi-
classical approximation will enable us to test many of
the ideas about the origin of the breakdown of the SCA
in more detail. We are hopeful that the method which
turned out to be so effective for the baker's map can be
of help in analyzing more complicated chaotic systems as
well.

Fruitful discussions with N. Argaman, M. Berry, E.
Bogomolny, B. Eckhardt, M. Saraceno, J. Keating, M.
Krautgartner, and M. Sieber are gratefully acknowl-
edged. One of us (F.M.D.) thanks the MINERvA Foun-
dation for financial support and the Weizmann Institute
of Science for its kind hospitality.

[1) J. H. Van Vleck, Proc. Natl. Acad. Sci. U.S.A. 14, 178
(1928).

[2] M. C. Gutzwiller, J. Math. Phys. 8, 1979 (1967).
[3] M. V. Berry and N. L. Balazs, J. Phys. A 12, 625 (1979).
[4) M. V. Berry, N. L. Balazs, M. Tabor, and A. Voros, Ann.

Phys. (N.Y.) 122, 26 (1979).
[5] G. M. Zaslavsky, Phys. Rep. 80, 157 (1981).
[6] D. L. Shepelyanskii, Dokl. Akad. Nauk SSSR 25B, 586

(1981) [Sov. Phys. Dokl. 26, 80 (1981)].
[7] M. Saraceno, Ann. Phys. (N.Y.) 199, 37 (1990).
[8] P. W. O' Connor and S. Tomsovic, Ann. Phys. (N.Y.)

207, 218 (1991).
[9] S. Tomsovic and E. J. Heller, Phys. Rev. Lett. 67, 664

(1991).
[10] P. W. O' Connor, S. Tomsovic, and E. J. Heller, Physica

D 55, 340 (1992).
[11] M. A. Sepulveda, S. Tomsovic, and E. J. Heller, Phys.

Rev. Lett. B9, 402 (1992).
[12] S. Tomsovic and E. J. Heller, Phys. Rev. E 47, 282

(1993).
[13] P. W. O' Connor, S. Tomsovic, and E. J. Heller, J. Stat.

Phys 68, 131 (199.2).
[14] E. B. Bogomolny, Nonlinearity 5, 805 (1992).

[15) A. Yu. Kitaev (unpublished).
[16] N. L. Balazs and A. Voros, Europhys. Lett. 4, 1089

(1987).
[17] N. L. Balazs and A. Voros, Ann. Phys. (N.Y.) 190, 1

(1989).
[18] A. M. Ozorio de Almeida and M. Saraceno, Ann. Phys.

(N.Y.) 210, 1 (1991).
[19] F.-M. Dittes and E. Doron (unpublished).
[20] M. Saraceno and A. Voros, Saclay Report No. T93/052

(1993) (unpublished).
[21] J. P. Keating (unpublished).
[22) M. C. Gutzwiller, Chaos in Classical and quantum Me

chanics (Springer-Verlag, New York, 1990).
[23] M. Tabor, Physica D B, 195 (1983).
[24] D. Ruelle, in Encyclopedia of Mathematics and its

Applications (Addison-Wesley, Reading, MA, 1978),
Vol. 5.

[25] N. Argaman, F.-M. Dittes, E. Doron, J. P. Keating, A.
Yu. Kitaev, M. Sieber, and U. Smilansky, Phys. Rev.
Lett. 71, 4326 (1993).

[26] J. Hannay, J. P. Keating, and A. Ozorio de Almeida (un-
published).


