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Fractal random walks from a variational formalism for Tsallis entropies
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It is shown that random walks in which the set of visited points is a fractal emerge from a
maximum entropy formalism applied to the generalized entropies introduced by Tsallis [J. Stat.
Phys. 52, 479 (1988)], upon suitable constraints. This connection between fractals and Tsallis
entropies suggests that the generalized statistical mechanics derived from the latter could provide a
natural frame for studying fractally structured systems.

PACS number(s): 05.40.+j, 02.50.Ey, 05.70.—a

Entropy plays a central role in the foundations of equi-
librium and nonequilibrium statistical mechanics. In the
theory of discrete-time random walks, it is well known
that the probability distribution of displacement per step
p(x) for a purely diffusive motion can be obtained from
the requirement that the Boltzmann entropy

sp(x)] = —
kg) /p(x) 1np(x) dx

is extremal under variation of p(x). This variational
problem has to be solved under auxiliary conditions,
namely, probability normalization,

p(x) dx = 1,

and an additional constraint given by the 6niteness of
the mean square displacement per step,

a jump probability whose characteristic function reads

G(k) = exp( —nk~) = 1 —ak» + (6)

with positive 0. and 0 & p ( 2. It can be easily shown
that the corresponding p(x)—called Levy distribution—
behaves for large x as

p(x) z ' ~.

For any p & 0, this power-law asymptotic behavior char-
acterizes stable distributions.

The absence of a characteristic length scale for a long-
tailed distribution as in (7), indicates that the set of
points visited by the walker is a self-similar structure,
namely, a fractal. Its &actal dimension can be deter-
mined to equal p [3]. As an illustration, Fig. 1 shows the
first 104 points visited during a two-dimensional random
walk with jump probability

where z = [x[ and d is the spatial dimension. Such a
maximum entropy formalism [1] produces for the jump
probability

p(x) = A exp( —z2i2o ), (4)

i.e., a Gaussian distribution, normalized by the constant
A.

Pure difFusive motion is directly implied by the
quadratic behavior of the characteristic function (Fourier
transform) of p(x) near the origin:

122
G(k) = 1 ——o. k

2
(5)

with k = ]k]. The same behavior is obtained for alter-
native forms of the constraint (3). For instance, defin-
ing the mean jump length jzp(x)dx = (z)d produces a
Poissonian distribution, p(x) oc exp( —z/(z)), for which
G(k) = 1 —(z)'k' +.. .

This formalism fails, however, to describe random
walks with more complex jump probabilities. Among
them, the so-called Levy Sights [1,2] are determined by

p(x) = B (1 + z)

where p = 1.6 and B is a normalization constant.
In the traditional frame of Boltzmann-Gibbs statis-

tics, the application of the maximum entropy formalism
to these fractal random walks would require forcing the
jump probability to satisfy rather artificial or unconven-
tional constraints, with no connection with any of the
main thermodynamical averages. Typically, besides nor-
malization, these constraints would involve the speci6-
cation of the average value of a complicated logarith-
mic function [4], instead of a simple constraint like the
mean value defined in (3). As stressed by Montroll and
Shlesinger, "the wonderful world of clusters and inter-
mittencies and bursts that is associated with Levy dis-
tributions would be hidden &om us if we depended on a
maximum entropy formalism that employed simple tradi-
tional auxiliary conditions" [1]. Note that the maximum
entropy formalism can be rnodi6ed both by considering
unconventional constraints and/or by varying the dani
tion of entropy.

As in the case of Levy Bights, Boltzmann-Gibbs statis-
tics seems to be inappropriate in dealing with a class of
physical systems which involve long-range interactions.
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fest theorem and Jaynes duality relations [12], von Neu-
mann equation [13), fiuctuation-dissipation theorem [14],
Bogolyubov inequality [15], Langevin and Fokker-Planck
equations [16], and Callen identity [17]. Tsallis entropy
has also been applied to quantum statistics [18]. Up to
this moment, the main success of this generalized statis-
tics in the applications has been the solution that it was
able to provide [19] for the divergent mass in the poly-
tropic model quoted before.

In the spirit of the maximum entropy formalism, Tsal-
lis entropy can be applied to random walks if suitably
extended for a vectorial continuum variable x in a d-
dimensional space. Let p(x) be its associated probability
distribution, which is required to satisfy the normaliza-
tion condition (2). The corresponding extended form of
Tsallis entropy reads

zz 4

P+
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.P4& rz

FIG. 1. The first 10 points visited by a random walker on
the plane, with the jump probability density given in Eq. (8).
The arrow indicates the initial position of the walker. The
fractal dimension of this pattern is p = 1.6.

S,[p,]—:—k qER (9)

In astrophysics, for instance, it provides an infinite mass
for the polytropic model of stellar systems as well as simi-
lar inconsistencies for the three-dimensional gravitational
N-body problem [5]. It is also unable to describe the scal-
ing laws observed in the relevant 6elds of vortex systems
6 . Similar problems appear in the theory of black holes
7) and superstrings [8].

These problems —all of which are probably related
to nonextensivity in the involved systems [9]—could be
solved in the frame of the generalized statistics proposed
by Tsallis [10]. This generalization consists in defining
the entropy of a system whose ith microscopic state has
probability p; as

p(x)z'dx = Bz/z' ' 'zp( )x' dz= z,'d, (12)

where Og is the total solid angle in the d-dimensional
space.

Applying the variational principle to Sv[p(x)] upon the
constraints (2) and (12), the following form for the jump
probability is obtained:

p(x) = kq Pq+ —x
n(q —1) cd

- ~/(~-~)

where a and P are the variational Lagrange parameters.
Note that this result —which doe8 not depend on the spa-
tial dimension —is analogous to the energy probability
distribution obtained in the generalized thermodynamics
[ii].

The jump probability distribution in (13) has the same
asymptotic functional form as in (7). Thus, with a conve-
nient choice of the index q, the set of points visited by the
walker will be a self-similar, fractal structure. Requiring
that p(x) x ~ for large z implies

SIP( )]=
1 —q

The natural extension of the generalized constraint (10)
in terms of x2 is [cf. Eq. (3)]

where k is a conventional positive constant. For q ~
1 and k = k~ the usual Boltzmann definition, S =
—k~ P,. p; ln p;, is recovered.

Under conditions of probability normalization, P,. p; =
1, and a generalized form of energy average,

) e;p,' = Zq, (10)

the maximization of Sq makes it possible to derive a gen-
eralized thermodynamics, which is formally equivalent
to the traditional one up to the level of its Legendre-
transformation structure [11].The nonadditivity of Tsal-
lis entropy stands for its connection with nonextensive
systems [9,11].

It has been shown that the generalized statistical me-
chanics is consistent with suitable forms of the Ehren-

(14)

This value of q 6xes the generalized statistics compatible
with the &actal of dimension p. In order to have a well-
de6ned self-similar structure, this &actal dimension must
be lower than the spatial dimension, p ( d. Furthermore,
the normalization constraint (2) imposes p ) d—1. These
requirements determine that the value of q given in (14)
will satisfy (3+d)/(1+ d) ( q ( (2+ d)/d. In particular,
this implies

1&q(3.
Observe that the limit q ~ 1 is obtained for p ~ oo, as all
the moments of p(x) become finite and the distribution
is no longer stable. In fact, in this limit p(x) reduces to
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a Gaussian distribution.
It is important to stress that the convergence of the

integral in the generalized constraint (12) does not impose
an additional condition on the values of p and q. Indeed,
for x -+ oo the integrand x izzp(x)v behaves precisely
as z" 'p(x),

d+1 q . d —1 d—2—p

so that the normalization of p(x) just ensures the finite-
ness of a2. In this sense, the constraint (12)—which
had been proposed ad hoc in the generalization of ther-
modynamics from Tsallis entropy [10,11] to preserve its
Legendre structure —turns out to be a natural one.

These results extend the maximum entropy formalism
to a class of processes characterized by long-tailed distri-
butions which originate patterns with no scale lengths.
The main ingredient in this path from statistics to self-

similar structures is the use of Tsallis generalized en-
tropies. Even though a connection between generalized
thermodynamics and &actals had been already conjec-
tured [10,20], here such a relation is efFectively revealed.

Considering the increasing interest in &actals since the
pioneering work by Mandelbrot [21], it seems necessary to
construct a statistical-mechanical &arne for &actal struc-
tures. Our results determine a relation between the index
q in Tsallis entropy and the &actal dimension of the self-
similar patterns generated from it, as well as justify to
some extent the type of constraints used in the varia-
tional calculations. This suggests that Tsallis statistics
could provide the proper tool for that purpose.
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