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Products of random matrices for disordered systems
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Products of random transfer matrices are applied to low-dimensional disordered systems to
evaluate numerically extensive quantities such as entropy and overlap probability distribution. The
main advantage is the possibility to avoid numerical difFerentiation. The method works for arbitrary
disorder distributions at any temperature.
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Products of random transfer matrices are a powerful
tool for the study of low-dimensional systems [1]. Up to
now they have been mainly used to evaluate &ee ener-
gies and correlation functions. From a formal point of
view, the other thermodynamical quantities can be ob-
tained by differentiating the bee energy with respect to
suitable parameters. However, in most of the cases, one
has only numerical solutions and, especially at low tern;
peratures, a very high precision is required for a precise
differentiation. In practice, it is very difficult to estimate
quantities such as the entropy or the specific heat even
in a one-dimensional disordered system.

The purpose of our paper is to introduce an alternative
numerical method to evaluate thermodynamical quanti-
ties directly booxn the products of random transfer ma-
trices avoiding numerical differentiation. The method is
motivated by the papers of Masui and co-workers [2,3] on
the study of the number of metastable states in one- and
two-dimensional Ising disordered systems. As a specific
example we shall discuss the overlap probability distri-
bution P(q) for zero and finite temperature for a one-
dimensional Ising chain. The method can be extended
to higher-dimensional systems with short range interac-
tions.

An Ising chain consists of N Ising spins with nearest
neighbor interactions in an external field. The interac-
tions and/or the local field are random quenched vari-
ables. At zero temperatures the only states which are
important are the metastable states in which the spin
o; is aligned with the total magnetic field h; acting on
it. If we denote by o; the spin configuration in the
metastable state a, the overlap between pairs of states is

q p = (1/N) g,. o; 0~ where n and P denote a pair of
metastable states, and the sum is extended to all the N
spins. In general q p depends on the realization of disor-
der and on the pair of states. The number of metastable
states with a given overlap can be obtained from [4,5]

1,N 1,2

g (txa &n) e PH—

where IIx and I are the Hamiltonians of two identi-
cal replicas of the system. The step 8 functions ensure
that only the metastable states are counted. The Gibbs
weight exp( —PH ) has been introduced to select the en-

ergy of the metastable states. For any given value of P
the sum Eq. (1) will be dominated by metastable states
of defined energy. In the same way any given value of ~
selects metastable states of defined overlap. Due to the
8 function in Eq. (1), the parameter P is not necessar-
ily related to the temperature, but it can be seen as a
Lagrange multiplier.

JUAN@(u, P), the number of metastable states of a chaixx

of length N for a given value of P and u, can be written
as a sum over the energies and overlaps

(2)

For large N the sum is dominated by the saddle point
energy E' and overlap q', so that we can write

/Upas(u), P) Af~(q', E') e ~ +

1 1—ln JV~ (q, e) = —ln Af~ ((u, P) + 2 P 6 —M qN ' N (4)

where the bar denotes the average over the realizations
of disorder. Here e:—e(u, P) is the energy per spin and

Equation (1) can be written as a product of random ma-
trices, so that the Oseledec theorem ensures that in the
thermodynaxnic limit the quantity in Eq. (3) is the same
for almost all realizations of disorder [6,1]. Consequently
one has the Legendre transform
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q = q(~, P) the overlap selected by the chosen value of ur

and P. In particular, the average overlap is obtained as

Q(~ = »P) = 9 =—f 0+(0) ~v

and is the value of q where lim&~ (I/N)lnNiv(q, e)
reaches its maximum value.

The key point is that not only (I/N)lnhf~(~, P) but
also q(ru, P) and e(u, P) can be computed directly from a
product of transfer matrices.

We shall denote by S;:—(0;i, az) the pair of spins at
the same site in two replicas of the system. Equation (1)
can then be written as a chain sum over S;, i.e., as a
product of the matrix (S;+ilN;IS;). From Eq. (1) it is

easy to see that N~ obeys the recursion relation

(s'+ilN'ls') = ).(s'IN -ils; i) e

where o; is the sum of the elements of 0;.
From the renormalization Eq. (10) it follows that the

value of q for the chosen value of ~ and P is given by the
weighted average of o; as

N
1 o,q= lim —)N~~N . -n;i=1

A similar equation yields e.
The method can be generalized to finite temperatures.

In this case we have to count all the states, and not just
the metastable ones. Thus we should eliminate the 8
functions in the above equations. Moreover, in this case
P i is the temperature of the system.

In the absence of the 8 functions, which relate the
states in i —1, i, and i+ 1, we can use a simpler al-
gorithm [7]. The equations are formally the same, but
with matrices replaced by vectors. Therefore, in analogy
with the zero temperature case, we introduce the vector
N;(S;+i) which now obeys the recursion relation

1,2

x 8(h;0;)e ~ ' (6) N(S+, ) = ) e ~ ' ~ '+ ~ ' N';, (S),
S;

(12)

with an initial matrix Ns with all elements equal and with
their sum equal to unity. Here E; is the energy of the

A

spin cr; The .matrix N, is obtained by rescaling N;
by the factor n; 1 given by the sum of all its elements.
This ensures that the sum of the elements of N,' i is 1.

The matrix N; gives the number of metastable states
of a chain of t spins for all the possible configurations
of S; and S;+i. Thus the logarithm of the number of
metastable states per spin, averaged over the disorder, is

where the initial vector No(si) has all the elements
equal to 1. At each iteration the vector is normalized
so that the sum of the elements of N'; i(S;) is 1. To
evaluate q and e we introduce the vectors of the deriva-
tives of N;(S;~i) with respect to ur and P, respectively.
For example, taking the derivative with respect to u of
Eq. (12) leads to the vector O;(S,+i) = (8/Bu)N;(S;+i)
obeying the recursion relation

O;(S;+i) = ) 0'; i(S;)+n;0;N;'i(S;)
1 1

lnN'N(~, P)—= lim —) inn;.
N-+~ N .i=1

(7)
1,2

1 2 — pEn

The value of q and e is obtained &om the deriva-
tive of JViv(~, p) with respect to ~ and p, respectively.
These can be expressed in terms of the matrices' deriva-
tive of N;. For example, defining the matrix 0; as
(S;+ilO;IS;) = (8/Bur) (S;+ilN;IS;) the derivative of
Eq. (6) yields the recursion relation

0';(S;+i) = [0;(S;+i)—o; N,'(S;+i)] / (14)

with initial condition Oo(si) = 0. The vectors O; and
O', are related by

(s'+ilo'Is') = ) (s'lo,' Is; i)
S;

+0'02(S;IN,', IS; i)

8(h 0 )e
1 2

Xe
h ~ ~

a=1,2

with the initial condition

(S2IOiiSi) = cria'i (S2INiisi).
Ps

The matrix 0,'- 1 is related to 0; 1 as
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FIG. 1. The average overlap q as a function of temperature
T for Eh = 0 (a) and b,h = 0.3 (b). In both cases J = 1 and
h=2.
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FIG. 2. The spin-glass susceptibility gsG as a function of
temperature T for b, h = 0 (a) and b, h = 0.3 (b). In both
cases J= 1 and h=2.

where as above n; and o; are the sum of the elements
of 1V;(S;~i) and 0;(S,+i), respectively. The average
energy e is evaluated in a similar way.

The specific heat and susceptibility can also be com-
puted with this method by introducing the matrix or the
vector of the second derivative.

We have analyzed only Ising chains, but our arguments
apply to any formally one-dimensional system and can be
easily generalized to two- and three-dimensional systems
by considering strips and bars, respectively. The numer-
ical calculation becomes, however, very heavy since the
dimension of the transfer matrices and vectors grows ex-
ponentially with the transversal dimension of the system.

Let us apply this method to the Ising chain in a random
field described by the Hamiltonian

N N

+ = —) Jo'io'i+i —) hto'i,

where h; is a random local field. Without losing in gen-
erality we can take J = l. It is known [8,9] that if h; are
distributed with probability distribution

with 0 & p & 1 then the zero temperature entropy is
difFerent from zero. This is peculiar to distribution (16).
In fact, if we replace the b functions by two sharp peaks
of width b,h, then S(T) oc T for T « 6h [8]. This
drastic change can be clearly seen in the behavior of
q = q(u = 0, P = 1/T) as a function of T, as shown
in Fig. 1. In Fig. 2 we report the spin-glass susceptibility

FIG. 3. limN-+ac&(1/N)lnNN(q, e) as a function of q for
b, h = 0, T = 0 and e = e;„, the ground state energy. The
maximum is obtained for q = q. In the 6gure J = 1 and
h = 2.

ysG, defined as the derivative of q(u, P) with respect to
io for to = 0, as a function of temperature for two difFer-

ent values of b,h. The value of ysG has been obtained
by using the vector of the second derivative of N; with
respect to u. Finally Fig. 3 shows the typical form of
lim~~ (1/N)lnNiv(q, e). The maximum is attained for

q = q. In the figures J = 1 and h = 2. The convergence
of the method is very fast. Reasonably good numbers are
obtained already with O(10 ) iterations. For T = 0, the
results are in very good agreement with the theoretical
prediction of Ref. [9].

The parabolic shape of lim&~ (1/N) ln N& (q, e)
means that the overlap probability distribution P(q) is
self-averaging and equal to a b function on the average
value q. This is a general result for one-dimensional sys-
tems with short range interactions [7].

We conclude by noting that, since for T ~ 0 the proba-
bility distribution P(q) remains a b function [7], the limit
T ~ 0 is not singular and the results of the zero tem-
perature method perfectly reproduce those of the T ~ 0
limit of the finite temperature method.

In conclusion we have described a method to evalu-
ate all thermodynamical quantities in terms of products
of random transfer matrices avoiding numerical differ-
entiation. The method can be used, in principle, also
for two- and three-dimensional systems. The method is
not restricted to spin systems, but it can be used in any
other problems which involve products of transfer matri-
ces, e.g. , directed polymers.
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