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Random-adding determination of percolation thresholds in interacting systems
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A generalization of the random-adding procedure for the determination of percolation parameters in

interacting systems is demonstrated. This method which simply utilizes the Boltzmann distribution
function is shown to reproduce quite accurately results which were obtained previously by the much less

efficient and much less direct method of the Metropolis algorithm. The success of the present method is

attributed to the fact that, for typical objects considered in such systems, the effect of the square-well at-
tractive interaction compensates for the effect of the (hard-core) repulsive interaction on the spatial dis-

tribution of the objects around a given object.

PACS number(s): 64.60.Ak, 61.20.Ja, 82.70.Kj

The theory of percolation [1] made its major advances
through lattice models which enabled the predictions of
the universal behavior of lattice and nonlattice systems in
the vicinity of the percolation threshold. On the other
hand, system-dependent properties, such as the percola-
tion thresholds themselves, require models which de-

scribe the system more accurately [2—5]. The theory of
connectivity and its physical implications in systems
composed of objects or particles is known as the theory of
continuum percolation [3]. In recent years progress has
been made in considering such systems when the per-
colating phase is made of permeable [6-10] or partially
permeable [7,9] objects. In the latter case most of the
work has been devoted to the simplest possible systems,
i.e., to systems composed of objects with a hard core and
a soft (permeable) shell [7,9]. Relatively fewer advances
have been made in the more general and difficult case of
interacting objects [11—14].

The problem of percolation in equilibrium systems
composed of interacting objects is not just of theoretical
interest since it is of immediate relevance to actual sys-
tems which became of wide interest in recent years. Con-
spicuous examples are the physics of water [15],of molec-
ular liquids [16],of microemulsions [11,17], of deposition
processes [18],and of polymerization [19].

The principal route for testing theoretical percolation
models or for interpreting related experimental observa-
tions is computer simulations [1,9]. Thus far, very few
computer simulations have been reported for the study of
systems with interacting objects and those available were
mainly lattice models [19—21]. These include a number of
models [22,23] on percolation in correlated sequential ad-
sorption (CSA) which is somewhat reminiscent of our
work. However, like other lattice models, CSA does not
relate directly to a physical microscopic interaction but
rather to a more or less arbitrary enhancement of adsorp-
tion rates. This contrasts with the present work, in
which we use the actual physical interobject interaction
in the system. For such more realistic continuum models
only the Metropolis method has been utilized [11] up to

now. However, as we argue later, this method is some-
what unnatural and not too efficient for percolation. We
present then an alternative method for simulating in-
teracting systems which is used here for obtaining their
percolation thresholds. The method is based on the ex-
pectation (which will be discussed below) that in such sys-
tems each particle is subjected essentially to a central
potential-like interaction. The analytic analysis which
confirms this premise of the present method will be given
elsewhere [24]. In this Rapid Communication we con-
centrate, however, on this presently suggested computa-
tional procedure since we believe that it is not only con-
ceptually simpler but that it is more natural and more
efficient for percolation problems in general.

Let us first recall brie6y the essentials of the Metropo-
lis algorithm [25,26]. The algorithm starts with a given
density of objects which remains constant during the
whole run. Starting from some initial configuration, new
ones are generated by random trial changes. Every such
trial change is either accepted or rejected according to a
criterion based on the change in the total energy of the
system produced by the trial move. Statistical averages
of quantities are calculated by sampling such a series of
configurations generated according to the Gibbs distribu-
tion. In percolation problems [11],this algorithm is used
to calculate the average probability P for the existence of
a spanning cluster in the system. One must then vary the
initially fixed density and repeat the whole process until
such a density is found for which P reaches a prechosen
value [11]. We note that the Metropolis process cannot,
as a practical matter, be irnplernented with a large nurn-
ber of objects (in Ref. [11],for example, about N =500
particles and 4X10 steps per particle have been used)
and as a result, large Auctuations are expected.

Because the percolation transition occurs upon increas-
ing object density there is something unnatural and irn-
practical in the Metropolis requirement of a full run of
the simulation for each different object concentration. A
more natural method would be to change continuously
the object density and wait for percolation to occur. This
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random-adding method is commonly used for the case of
zero interactions (permeable objects}, with bonding
defined by partial overlap of the objects [4—10]. The con-
centration is continually increased by randomly throwing
more objects into the system until a spanning cluster is
obtained. Thanks to an efficient algorithm developed by
Hoshen and Kopelman [27], such a simulation [10] can
be conveniently carried out with large samples (typically
N ~ 10 ). Since interactions are absent, any configuration
is just as probable as any other, hence, any random
configuration already represents the equilibrium state.
This is obviously not the case when interactions are
present. Moreover, it has been known [28] for many
years that even in the simplest case of purely repulsive
hard object interactions, random-adding algorithms do
not generate truly equilibrium configurations. However,
it is not clear whether a random-adding algorithm can
reproduce the connectivity properties of interacting sys-
tems, i.e., their percolation thresholds. This is distinct
from the more general question of whether or not
random-adding algorithms reproduce all the equilibrium
properties of the system. We claim in the present paper
that a random-adding algorithm can be developed which
reproduces at least the connectivity properties of the sys-
tem. We present it first for the simplest case of interact-
ing objects, i.e., objects of a hard core—soft shell type (ex-
cluded volume repulsion). One can use then the same
method as with noninteracting objects, provided one adds
a removal criterion: if a newly added object falls on the
hard core of another object, it is removed and another
one is randomly thrown in its place. Indeed, as we show
below, in spite of the fact that such a random-adding pro-
cedure does not generate a true equilibrium configuration
[28], we have obtained a striking agreement between our
results and the results derived for the equilibrium case
which were obtained by the Metropolis procedure [11].
Moreover, in this case our simple algorithm is very quick
while, by comparison, the Metropolis procedure is very
inefficient and uses a much larger amount of computer
time.

In systems with finite interaction strength, some other
criterion is needed. We suggest such a criterion here for
the buildup of the system thus extending the above
random-adding procedure to real systems where interac-
tions prevail. We demonstrate the validity of our method
for a system of spherical particles for which a short range
square-well attraction potential exists. We have chosen
this system since detailed Metropolis simulations have
been presented [11] for it. We thus consider the poten-
tial:

r(o
u (r) = (kT)E, o &—r & o (1+A, )

0, o(1+A) (r
where kT (:—1/P) is the thermal energy, e is a parameter
proportional to the interaction's strength, o. /2 is the
hard-core radius, and uA, is the width of the attractive
well. The binding criterion is provided by adding a soft
shell of diameter d: two spheres at a distance r are bound
if o. &r &d.

Turning to our procedure let us choose a particle in the
system and consider all the other particles in relation to
it. We can take then the selected particle as the source of
a potential u (r} to which all other particles respond. If
these particles were all independent they would arrange
themselves around the selected particle according to the
Boltzmann distribution. In such a case, the density p(r)
of particles at a distance r from the selected particle
would behave as

and

Vo = V —(4m/3)[o(1+A, )]

(3)

where V is the total volume of the system. Next we
define le as the average number of particles whose dis-
tance r from a given typical particle is larger than
o(1+A, ), and Nw as the average number of particles
whose distance from a given typical particle is less than
o(1+A, ). Apart from removing cases of hard-core over-
lap we now further require that the densities of particles
around a given particle verify the relation

(No /Vo ) /(Nw /Vw ) & exp( —e) . (4)

This is the crucial physical step in our algorithm, which
means that the density within the "attraction ring" is
higher than outside the ring by the Boltzmann factor.
The motivation to assume that this will be a good
description of the system is as follows. If only hard-core
interaction between the particles prevails the number of
objects interacting with a given object is limited by their
repulsion. If we add an attractive interaction this e8'ect is
reduced, thus enabling the density in the "attraction
ring" to approach that of the one expected from the
above "central-force" picture. For the two dimensional
system to be considered below this effect (which we have
calculated analytically [24]) changes the right-hand side
(rhs) of Eq. (4) from A =1.6 in the hard-core case (@=0)
to A exp( e), where A is in the r—ange 1 & A & 1.3, when
the presently used attraction potential is included. One
should note that A is a function of the parameters A, and
e [24]. We have chosen, however, to write the rhs of Eq.
(4) as exp( e) because —it is a straightforward expression
with a well understood meaning, and since using
1.3 exp( —e) instead of exp( —e) in the simulations yield-
ed minor variations which will be discussed elsewhere
[24]. The reason for the & sign in Eq. (4) is the buildup
process of the simulation. Since the = sign cannot be ob-
tained in finite samples we should only consider the other
alternative, i.e., that (No /No )(Nw/Vw ) ~ exp( —e).
This latter criterion can be rewritten as a higher bound
on Nw/Vw in the form Nw/Vw & (No/Vo)exp(e). This

p(r) ccexp[ —Pu(r)] .

We will argue below that Eq. (2} is a good approximation
for systems such as the one we study. In that case, we
can utilize it to take the interactions into account in the
following way. Let us define V~ as the volume around a
particle's center, into which the potential well extends,
and V0 as the remaining available volume, i.e.,

Vw=(4n/3)[[o(1+A)] —o ],
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higher bound, however, grows with increasing interaction
strength. Since our algorithm works by random addi-

tions, Nw/Vw tends naturally to be quite close to
No/Vo A. s a result, if the higher bound is high enough,
it will have no influence on the system. Therefore, the
stronger the interaction, the less effect would be obtained.
To avoid such unwanted behavior, we need to use Eq. (4),
which yields an interaction-sensitive lower bound on
Nw/Vw.

We give here the basic steps of the algorithm used for
the application of our method. First, a "particle" is
thrown into the system, and a second one is added in
such a way that it falls within the first one's attractive
well. This is to ensure that X~ is not zero, since other-
wise the next particle will always be rejected. At each
step, a new object is randomly thrown into the system,
and the total number of objects (a counter I) is increased
by 1. The program then makes two sweeps of the sample
and checks several criteria. In the first sweep, the algo-
rithm checks whether the new particle's hard core over-
laps the hard core of any other particle. This step is
made more efficient by dividing the sample space into
subregions and checking only such subregions where in-
tersection is possible [10]. If such an overlap occurs, the
particle is removed, I is decreased by 1 and a new particle
thrown in. If, after the first sweep, the particle is (tem-
porarily) accepted, a second sweep is made in which the
algorithm checks the distance r between the new object
and all other (previously thrown in) objects. For each
such pair, if 0 ( r (o (1+A, ), a counter K is incremented
by 1. The quantities N~ and N0 are defined then by

Nw = [Nw(previous)+K]/I,

No = [No (previous ) +I K —1 ]/I .—

The implementation of criterion (4) now takes the fol-
lowing form: If (No/Vo )/(Nw/Vw) )exp( —e), the
new particle is rejected, I is reduced by 1 and N~ and N0
are returned to their previous values; if not, the new par-
ticle is accepted. Each time a newly added particle is ac-
cepted, the program checks for the onset of percolation.
This is done by a continuum version [9,10] of the
Hoshen-Kopelman [27] algorithm. The I value at which
this onset takes place is the critical number of particles,

In order to check the validity of our procedure we
compared its results with those obtained by the Metropo-
lis procedure in Ref. [11]. We have thus used a system of
spherical particles which interact according to Eq. (1)
with a constant A, =O. 1, and for various interaction
strengths e. In order to facilitate the comparison we have
studied the same quantities used in Ref. [11]as a function
of the ratio of the hard-core diameter to the "whole parti-
cle" (or disk) diameter, i.e., g=cr/d. Hence for three di-
mensional (3D) systems we have computed the "total ex-
cluded volume" of the particles at the percolation thresh-
old, p, 4nd /3, where p, is their density (N, in our unit
volume sample) at the threshold [9—11]. Similarly, for the
two dimensional (2D) systems we have computed the "to-
tal excluded area" of the disks p, m.d . We carried out
our simulations on samples of typically N, = 10 particles.
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FIG. 1. Percolation thresholds as a function of the ratio g for
a system of hard-core spheres (a), and for a system of interacting
spheres (b).

The results for three dimensions, which are shown in

Fig. 1, demonstrate an excellent agreement with the re-
sults obtained by the Metropolis procedure [11]. As
pointed out above it is not a priori obvious [28] that for
the hard core—soft shell case [Fig. 1(a)] the results should
be much the same. Definitely in this case the Metropolis
method is very inefficient in comparison with our
random-adding procedure. It is, however, the excellent
agreement in the case of a much more general interac-
tion, shown in Fig. 1(b), which justifies our procedure.
Since higher particle densities are involved in two dimen-
sional systems [9,11] a more stringent test of the validity
of the above procedure is obtained by performing the cor-
responding simulations. Indeed, the results shown in Fig.
2 reconfirm our procedure and prove our initial conjec-
ture. Since the physical reasons and the particle cluster-
ing pictures which yield the behaviors shown in Figs. 1

and 2 have been clearly explained in Ref. [11],they will
not be repeated here. We should finally remark that
there are very slight discrepancies between our results
and those of Ref. [11]. These discrepancies are probably
no greater than those between diff'erent runs of simula-
tions of identical systems with the same methods. Al-
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FIG. 2. Percolation thresholds as a function of the ratio g for
a system of hard-core disks (a), and for a system of interacting
disks (b).
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though a better agreement can be obtained by using the
numerical prefactors mentioned in connection with Eq.
(4) we have chosen to demonstrate here the empirical va-
lidity of our very simple criterion [as given in Eq. (4}]be-
cause of its straightforward interpretation. Of course, in
order to apply our procedure to a particular system, one
has to check whether this criterion holds. We note, how-
ever, from the agreements shown in Figs. 1 and 2, that
for the model suggested in Ref. [11]for microemulsions,
our approximation is definitely applicable.

In conclusion, we have presented here a very simple
method of simulation for computer-sample buildup in
general, and for percolation problems in particular. The
results of the method, which is more natural to percola-
tion studies, are shown to reproduce the results of the

Metropolis algorithm. This is in spite of the fact that the
method does not necessarily reproduce actual equilibrium

configurations. Nonetheless, it reproduces very well the
percolation thresholds of the system. This strongly sug-

gests that the connectivity properties of the system do not

depend on all its equilibrium properties. We do not know

why our simple method manages to capture the essentials
of the percolation process in interacting systems, but the
fact that it does points at some deep characteristics of the
percolation transition and its relation to other thermo-
dynamical properties of a system.

We thank A. Aharony, S. Alexander, and L. Kadanoff
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