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Enhancing synchronism of chaotic systems
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Recent work has considered the situation where a state variable {orvariables) of a chaotically evolving

system is used as an input to a replica of part of the original system. It was found that the replica subsys-

tem often synchronizes to the chaotic evolution of the original system, and it has been suggested that this
phenomenon may be used for secure communications. In this paper we point out that exact synchron-
ism may also occur for a large class of systems that are not replicas of part of the original system. This
allows greater freedom in choosing synchronizer systems, and we discuss the possibility of using this
freedom to choose synchronizer systems with improved performance. Two explicit examples illustrating
this statement are given, one where the chaotic system consists of three autonomous differential equa-
tions, and the other where the chaotic system is a two-dimensional map.

PACS number{s): 05.45.+b

Recently, Pecora and Carroll [1]have studied the situ-
ation where a state variable (or variables) of a chaotic sys-
tem is used as an input to drive a subsystem that is a re-
plica of part of the original system. They find that the re-
plica subsystem sometimes synchronizes to the chaotic
evolution of the original system. The condition for this
synchronism to occur depends on the original chaotic
system and on the choice of the part of the original sys-
tem that is used as the replica subsystem. A particularly
intriguing aspect of chaos synchronism is its possible ap-
plication to achieving secure comtnunications (see, for ex-
ample, [2] and references therein). We list other related
works in [3].

Consider a chaotic system, dZ/dt =F(Z), where Z is
an m-dimensional vector. Divide the m state variables
into two classes via

Z=

where I is m
&

dimensional and y is m2 dimensional, with

m, +m2 =m (usually m, =1 [1—3]). We refer to x as the
input or drive. %riting the original dynamical system as

response variable. We say the subsystem (3}synchronizes
to the chaotic evolution of (1) and (2), if

lim
I y(t) —y(t)1=0,t~ oo

(4)

for typical y(0)Ay(0).
In the context of communication we can imagine that

the state variables in the drive vector x are transmitted
from site A to site 8. The full state Z of the system at A
is unknown at B, because, although we know x(t), we do
not know y(t). By feeding the known signal x(t) into a
replica response subsystem (3) located at B, we can then
obtain y(t), if the replica synchronizes with the original
system [see (4)], and if we wait long enough for y(t) to
closely approach y(t).

The occurrence of this synchronism is conditioned on
whether the largest subsystem Lyapunov exponent is neg-
ative [1]. Consider infinitesmal deviations of y from y,
c.e.,

y(t)=y(t)+5y(t) .

From (3)

d5y/dt =5y BH(x, y)/Byl
dx/dt =G(x,y),
dy/dt =H(x, y),

where

G(x, y}
F(Z) =

H( )

the driven replica subsystem is written as

(2)
where x(t) and y(t} are solutions of (1) and (2). The larg-
est subsystem Lyapunov exponent, denoted A, is then
given by solving (5) using a typical orbit (x(t),y(t)) for
the original system (1) and (2) and a typical choice for the
orientation of 5y(0),

A= lim —ln
I5y(t)l

I5y(o)l

dy/dt =H(x, y) . (3)

Here we call y the subsystem response, and, in what fol-
lows, we use a superscribed circumAex to denote a

The point of this paper is that it may be advantageous
to use a subsystem that is not a replica of part of the orig-
inal system. In particular, we note that synchronism is
also possible if, instead of the replica system (3), we uti-
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lize a nonreplica system of the form

dx/dt =K(x,x,y),
dy/dt =L(x,x,y),

(7)

(8)

provided that the functions K and L satisfy the condi-
tions

dx /dt =b +x (y &

—c )—:G(x,y I,yz ),
dy) Idt = —x y2 Hl (x~yl ~y2 } ~

dy 2 Idt =y I +ay 2
=Hq—(x,y I,y q ) .

(13)

(14)

(15)

pie can be written as the following set of ordinary
differential equations:

K(x, x,y}=G(x,y},

L(x,x, y}=H(x,y} .

We now view the vector,

x(t)
Z(t)= „yt

(10}

For a =0.398, b =2, and c =4 (also used in the subse-
quent calculations}, the above system has a chaotic at-
tractor.

Suppose that in a given application we are constrained
to transmit only the x component of the above equation
with the values a, b, and c as given above. The task is
then to attempt obtaining synchronism using this x as a
drive. Consider the replica subsystem,

as the "response. "
Synchronism, Z(t)=Z(t), then represents a possible

solution of (7) and (8). Whether the synchronizing solu-
tion is stable depends on the largest Lyapunov exponent
for the synchronizer system (7) and (8), which is obtained
from

dye Idt = x

dy2/dt =y, +ay& .

(16)

(17)

The largest subsystem Lyapunov exponent, assuming
a (4, is

d5x/dt =5x VsK(x, x, y) ~„
A=a/2 . (18)

+5y V K(x,x, y}l

d5y/dt =5x V„L(x,x, y) ~„„
+5y.V&L(x, x,y) ~&

with 5y in (6) replaced by

5x(t)
5Z(t}=

(12)

The idea is that there are an infinite number of func-
tions K and L satisfying (9) and (10) for given G and H.
Thus one is not necessarily constrained to the use of a re-
plica (3) when choosing a system to achieve synchronism.
This leads to considerably more flexibility in applications.
[We imagine that the original chaotic system, (1) and (2),
with the choice of the drive x is fixed by the given appli-
cation. ]

We speculate that this added flexibility- may facilitate
potential improvement in synchronism. Some such im-
provements might include the following: (1} achieving
synchronisrn when a replica subsystem does not syn-
chronize (i.e., A) 0 for the replica subsystem); (2) ena-
bling faster convergence to the synchronized state; (3) el-
iminating or reducing the size of spurious subsystem
basins of attraction in which the subsystem does not syn-
chronize; and (4) improving the performance of signal
recovery techniques for situations where the chaotic time
series is used to mask a small information bearing signal
[2].

In what follows we present two examples to illustrate
points (1) and (2) for enhancing chaos synchronism men-
tioned above. The first example is a differential equation
system (the Rossler equations) that we investigate numer-
ically. The second example concerns a simple chaotic
map that can be solved exactly.

Example 1. The Rassler system we treat in this exam-

dx /dt =E(x,x,y „y2),
dy, /dt =L,(x,x,y„y2),
dy 2/dt =L2(x,x,y „y,),

(19)

(20)

(21)

with K, L, , and Lz satisfying (9) and (10)? We explore
this question numerically by taking, for simplicity,

10-

A

v',
0-

-10 I I I I
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FIG. 1. Trajectories showing the replica subsystem response
[(16),(17)] diverging from the solution of the original Rossler
system [(13)—(15)].

For a &0, we have A&0, and thus synchronism is not
achieved for the parameter values chosen above. Figure
1 shows the times series y, (t) from the original system
plotted together with y, (t} of the response. As we can
see, y, (t) diverges from the synchronizing solution as
time increases. Here we have chosen, in the numerical
calculation, the initial condition for the replica subsystem
to be slightly different from that of the original system.

Now we ask, with the same transmitted signal x as a
drive, can we achieve synchronism by using a nonreplica
response system,
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E(x,x,y, ,y&) =G(x,y, ,yz)+a(x —x ),
L, ( x,x,y, ,y 2) =H, (x,y, ,y2)+P(x —x ),

PI.~ x,x,y i,y2 }=H~(x, y t,y~ )+y(x —x ),

(22)

which meet the conditions (9) and (10). 'We r
oice o nonreplica systems, while suScient for h

o is paper, is somewhat arbitrary. 0th
choices su

er
c as those including terms d d'epen ing on y&

y2, an nonlinearly on (x —x), can be made in
response to the particular need of the problems at hand. ]
The new response system is then

dx /dt =5+x (y, —c )+a(x —x )

A

v v',
0-

-2-

-4
0.0 10 20 30 40 50

dy, /dt = —x —
y2 +p(x —x ),

dy2/dt =y, +ay2+y(x —x) .

(23)

(24)

Greater Qexibilit in achi
' ' '

y
'

'eving improved performance for
t is system is rendered by the freedom in choosin the

Consider a line through the origin in the arame

a/a, =p/p, =y/y, . (25)

Here we choose a = —3 P =1 d,=, and y, = —5. In Fig. 2,
we plot the numerically calculated lar e Largest yapunov ex-

p nen A for the response system (22) (23) d (, an 24)asa

The value of A e
, wtt a and y varying according to (25)

generally decreases as P increases, and be-
comes negative for p & 0.27

' d'in icating the onset of
synchronism. Figure 3 shows ds y& an y& calculated usin
the same initial conditions as that in Fi
(A= —0.25). Th obus we obtain synchronism using a non-
rep ica response system for a ha case w ere a re lica
response system does not synchronize.

P

As mentioned earlier, another possible advantage of us-
ing nonreplica response systems is to im r

ence tog e o the synchronized solution. To ill
show, in Fi . 4 a cas

o i ustrate, we
ig. , a case of slow convergence for P=0.28

which is 'ust abj bove the synchronism threshold. I h'

case, A= —0.006, and the tw, an t e two solutions become essen-
ia y indistinguishable only for t &200 In contrast, as

FIG. 3. Trajectories shoj
'

showing the rapid convergence of the
nonreplica response system to the s
P=0.7. A=-

o e synchronizing solution for
= —0.25. Initial conditions used her

as those in Fig. 1.
ere are t e same

has been seen in Fi .'g. 3, for a dtfferent choice of the

tained.
response system, much faster converge bnce can e at-

Exam le 2. In t '
p . In t is example, we consider the followin

two-dimensional area-preserving map:

x„+,=(x„+y„)mod1—:G(x„,y„),
y„+,=[y„+Es(x„+y„)]=H(x„,y„),

(26)

(27)

where E is a ap rameter of the system and s(x) is the
sawtooth function de6ned as

J= BG /Bx BG /By 1 1=
BH/Bx BH/By

=
rC 1+re (28)

The eigen values ofof this matrix are [(2+X)

s(x) =—(x inodl ) ——,
' .

The Jacobian tnbian tnatrix of the system (26) and (27) is con-

0 ~ 20

0.10- A

0 ~ 00-
0-

-0 ~ 10—

-0.20—
-4 I I

0.0 10 20 30 40 50

-0.30,
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 2. Nu merically evaluated lar est L a ng'
n o or t e nonreplica response system (22)—(24).

FIG. 4G. 4. Slow convergence to the s nco e synchronizing solution is
un ere w en the largest response L a unyp o po

u sma in magnitude. @=0.28 and A= —0.006.
gain the same initial conditions as tho

used here.
ose in igs. 1 and 3 are
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+(4K+K~)'~z]/2. If (4K+K ) &0, then the eigenval-
ues are both complex and of magnitude 1 (no chaos). If
(4K+K ))0, then the eigenvalues are both real, with
one of magnitude less than 1 and one of magnitude
greater than 1 (chaos). Thus the condition for chaos is
(4K +K ) )0, which applies if either

K(x,x,y ) =G(x,y )+a(x„—x„),
L(x,x,y)=H(x, y)+P(x„—x„) .

(36)

(37)

For this purpose, as in the previous example, we again
choose E and L to deviate from G and H by terms linear
in (x„—x„),

or

(29) With this choice the Jacobian matrix of the response sys-
tem is again constant,

(30)

Now let us consider attempting to obtain synchronism
using x as the drive and the replica subsystem,

a 1

P 1+K

The eigenvalues A, , and A,z of J satisfy

(38)

y„+ &
=H(x„,y„), (31)

where H(x, y ) is given by (27). Since BH/By =1+K, the
replica subsystem Lyapunov exponent is

(32)

A,
—( 1+K+a }A,+[a(1+K) P]=0—. (39)

Writing (39) as (R —R, )(R—Rz)=k —(2, +A,~)A, +A, ,A, z,
we see that (1+K+a)=A&+kz and a(1+K)—P=A&Az,
which can be solved for a and P,

which is negative only in the range

—2&X&0. (33)

a = (R, +Rz) —(1+K),
P= [(A,)+Rq) —(1+K)](1+E)—k)Rq .

(40)

(41)

Comparing (29) and (30) with (33), we see that these con-
ditions are mutually exclusive. That is, where the system
(26) and (27) is chaotic, the subsystem (31) does not syn-
chronize.

We now consider whether, with the same drive x„,
synchronism can be obtained by using a nonreplica
response system of the form

Thus any choice of the response system eigenvalues A,
&

and Rz can be realized by setting the values of a and p ac-
cording to (40) and (41). In particular, we can consider a
case where the original system is chaotic [i.e., either (29)
or (30) applies], and choose values ~A, , z~ &1 yielding
synchronism. In contrast, the replica subsystem (31) nev-
er synchronizes when the original system is chaotic.

x„+&
=K(x„,x„,y„},

3'n+ i =L (xn ~xn»n } .

(34)

(35)
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