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Instability of a crack in a heated strip
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Yuse and Sano [Nature (London) 362, 329 (1993);362, 295 (1993)]have shown that a crack traveling in

a thin glass plate under thermal stresses undergoes numerous instabilities. The primary instability is cal-
culated using a theory of Cotterell and Rice [Int. J. Fracture 16, 155 (1980)] and is shown to reflect the
velocity-dependent fracture energy of glass.
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FIG. 1. Sketch of the experiment of Yuse and Sano, Ref. [1].
Successive figures in the vertical direction represent steady-state
patterns achieved in successive experiments where the constant
velocity U increases. At low sliding speeds a straight crack is
stable, but it begins to oscillate at a critical speed. At yet higher
velocities, the cracks become unstable to complicated branching
patterns.

In an experiment reminiscent of directional
solidification, Yuse and Sano [1,2], have shown that a
crack traveling in a thin glass plate with thermal stresses
undergoes a reproducible sequence of instabilities. The
experiment, shown in Fig. 1, is conducted by slowly pul-
ling a glass plate from a hot region to a cold one, so that
in efFect a thermal gradient travels across a plate. The
plate is seeded with a crack, which the stresses in the
thermal gradient cause to move at the pulling speed.
When the plate exceeds a critical velocity, which depends
upon temperature but is on the order of 1 cm/sec, the
crack stops traveling in a straight line and begins to oscil-
late. The goal of this paper is to calculate the conditions
under which this first bifurcation occurs The .results can
be used to find the fracture energy of glass as a function
of crack velocity.

The glass strip in which the experiment is conducted is
0.01 cm thick. Since the thermal diffusion coeScient in
glass is D =4.7X10 cm /sec the thermal diffusion
length d&=D/U will be greater than the plate width so
long as the velocity v at which the plate moves is less
than 4.7 mm/sec. The experiment does proceed to veloc-
ities at which this relation is violated, but the ofFending
regime will be left out of the analysis. It will be assumed
that the temperature field is uniform throughout the 0.01
cm thickness of the plate, making the probletn two di-
mensional. Since all such velocities are much slower than
the speed of sound in glass, calculations will all be in the
quasistatic limit.

SuSciently near the. tip of a straight crack loaded
symmetrically about the crack axis, the stress field takes

the universal form [3]
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at a distance r from the crack tip, approaching along the
line of the crack. Et is a constant known as the stress in-
tensity factor, setting the scale of singularity; X is an ad-
ditional constant. In addition, the energy per unit area
which ffows to the crack tip as it extends is [4]

6 =Et(1 v)/E, — (2)

where v is the Poisson ratio and E is the Young modulus.
In order to find out when the straight crack becomes un-
stable, one should carry out a perturbative calculation for
a crack in a strip where the path of the crack deviates
slightly from a straight line. This calculation can be car-
ried out, but the results are complicated, and a simpler
procedure will be adopted here. The stability of a crack
in a sufficiently wide strip should be the same as the sta-
bility of a crack in an infinite plate. The only length to
which one can compare the width of the strip 2b, to
determine when the infinite plate approximation might be
appropriate, is the width of the region of rapid tempera-
ture change. In Yuse and Sano's experiment the thermal
diffusion length do is less than a millimeter, while the
width of the strip 2b is 2.4 cm. For this reason, it is
reasonable to pretend that the crack travels in an infinite
plate for the purpose of determining its stability. The
drawback in this procedure is that it does not allow one
to calculate the wavelength of oscillations once the bifur-
cation occurs. The advantage is that one can use a
theory of Cotterell and Rice that makes the results con-
ceptually simple.

Cotterell and Rice [5] have shown that for a crack
traveling in an infinite plate, stability is determined com-
pletely by the constant stress X [Eq. (1)] which remains in
the stress field near the tip of the crack after the leading
square-root singularity has been subtracted out. If the
constant X is positive, the crack will be unstable, and be-
gin to deviate from straight motion, while if it is negative
the crack will be stable. I will now proceed to the details
of how to calculate Kl and X. The calculation will main-
ly be carried out in Fourier space, finding the large k
behavior of the stresses. The qualitative structure of the

49 R51



R52 M. MARDER 49

result can be understood entirely by reference to Fig. 2.
Under plane strain conditions, the strain tensor of a

two-dimensional plate in a temperature field is related to
the stress tensor by [6] 0 p=0 (6)

Placing Eq. (3) into Eq. (5) and using the equations of
force balance

1e„„=—(o„„—vo )+aT Tt,XX E XX yy (3a)
gives

V (o„„+o„}=Ea—TV~T( . (7)
1e„= (a—„va—„„)+a TT (3b) Writing the stresses in terms of the Airy stress function

P, such that
2(1+v)
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where aT is the linear coefBcient of thermal expansion,
and
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one has finally that
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is the temperature, measured relative to the temperature
of the cold bath. The reason that the parameter I has
been introduced is that it will be necessary to consider
the stresses surrounding a crack whose tip is at an arbi-
trary location along the x axis relative to a given temper-
ature field. It is most convenient to take the tip of the
crack always to be at the origin, and displace the temper-
ature field by —I.

A given set of strains can only result from displace-
ments if it obeys the compatibility condition

Fourier transforming in the x direction, Eq. (9) becomes
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and the boundary conditions

0 y=oyy=0 aty =b,
Oxy 0 & ~y Qy at y =0

(12a)

(12b)

Solving Eq. (10}using Eq. (11) and Eq. (12) one finds for
the stresses o„„ando (where the superscript indicates
that they are evaluated at y =0)

cry„=—F(k)uy+D((k),

o „„=H(k)cryy+S&(k),

with

(13a)
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FIG. 2. The upper solid curve shows the energy available per

unit length for crack propagation in the experiment of Yuse and
Sano. The horizontal axis shows the position of the crack tip
relative to the cold end of the temperature gradient, and is mea-
sured in units of the half-width of the plate b. The scale of the
vertical axis is not indicated, but the only important fact is that
the vertical scale is proportional to the square of the tempera-
ture difference LT along the strip. The crack will propagate
with its tip at a spatial location given by the intersection of the
solid curve with the dashed line labeled I (v). The lower dotted
line monitors the stress Seld X responsible for the stability of
the crack. When the crack tip reaches the spatial location

where this quantity is positive, it becomes unstable; the shaded

region indicates the range of stable crack position.

and

S,(k)=Ea T,(k}
sinh bk +b k 2bk sinhbk-

sinh bk —b k
(17)

tray(k)= fdx e 0(x)f(x+I)1

F+(k)
with

(18)

At this point, one invokes the presence of the crack with
the conditions that at y =0, cTyy vanishes for x &0, and
uy vanishes for x &0. Writing F(k)=F /F+, where
F (k) has neither zeros nor poles for Im(k)(0, and
F+(k) has none for Im(k) &0, one finds from the
Wiener-Hopf method [7,8]
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One can choose the large k behavior of F+(k) to be

lim F+~1/&5 i—k (20)

with 5 infinitesimal. The large k behavior of cTyy is set by
the fact that the integrand in Eq. (18) is discontinuous at
x =0, so that
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The coefficient KI appearing in Eq. (1) is then found from

KI= lim &2(5 ik)—o =/2f(l) .
k —+ oo

(22)
2 3

Velocity (mm/s)

Let KI be the constant found numerically [9] by setting
b =1, and EarhT=1 in Eq. (15) and Eq. (19). Dimen-
sions return to the problem as

KI=EarhT&bKI .

The energy release per unit crack extension is then

G =(1 v2)arE—b(bT) K I=I (v) .

(23)

(24)

The final equality introduces the fracture energy I'(v),
which is the amount of energy needed per unit area to
form new fracture surfaces. The fracture energy I'( v) is a
property of the material, and the dynamics of crack
motion must adjust themselves so that Eq. (24) holds.

The calculation of X can easily be carried out from Eq.
(13b); the first term on the right-hand side produces the
dominant square-root singularity seen in Eq. (1) but has
no constant term associated with it; the constant X can
be found by Fourier transforming the second term on the
right-hand side. This gives

X(l)=f S (k)e (25)

One finds X(l) for many crack tip locations l by carrying
out a single fast Fourier transform in Eq. (25), having
used Eq. (4).

The results of these calculations are summarized in
Fig. 2. The solid line shows K I(l), calculated from Eq.
(22). The dotted line shows X(l), calculated from Eq.
(25). The condition I (v) =G is indicated in the figure by
a dashed line. In particular, if at any given velocity the
temperature gradient ET is increased, then 6 increases as
the square of hT, so the location of the crack tip will be
shoved forward. However, examining the dotted line,
one sees that when pushed forward too far, the crack tip
passes the location where X=o, and the crack becomes
unstable. In fact, using Eq. (24), one can take the locus of
experimental points where the instability is erst observed
and from it find I'(v). For any given velocity v, one cal-
culates the temperature field from Eq. (4), the location l,
where X(l} vanishes from Eq. (25), the stress singularity
Kl(l, ) at this location from Eq. (22), and finally turning

FIG. 3. Fracture energy as a function of velocity, deduced
from Fig. 3 of Ref. [1]. At velocities approaching 5 mm/sec,
three-dimensional effects are becoming important, and invali-
date the theory in this paper, but I.believe that the drop in frac-
ture energy with velocity is real. Values used for evaluation of
Eq. (24) are E=7.23X10'0 J/m', b =1.2 cm, az =0.77X10
K ', D =4.7X 10 cm /sec, and v=0.23. Thus
I (v) =0.049(KINET) I/m K. Calculation 6nds that EC I varies
between 0.15 and 0.23 for velocities of the experiment, and a
typical temperature drop is AT=100 K. By way of compar-
ison, the surface energy of soda-lime glass found by GriSth,
Ref. [10], is 0.54 J/m2, and the value of fracture energy I' for
borosilicate glass (the type used by Yuse and Sano) is around 10
J/m' (Ref. [11]).

to Eq. (24), I (v).
The results of this calculation for the data of Yuse and

Sano are contained in Fig. 3. As the velocity approaches
5 mm/sec, it becomes unreasonable to treat the problem
as two dimensional, so the plot is not continued to that
point. The values of fracture energy found here are about
five times as large as those obtained by other methods, 10
J/m [11]. However, Fig. 3 shows a very sharp drop in
fracture energy with crack velocity, and if the points may
be extrapolated, the standard result would correspond to
the fracture energy at about 5 mm/sec. This drop should
be hoped for, if not expected, since glass is a brittle ma-
terial. Brittleness does not mean that a material is free of
dissipation; there are substantial temperature rises near
the tip of a crack in glass. Instead, it means that rapid
acceleration is possible despite it. The drop in surface en-
ergy means that cracks exceeding at least 1 mm/sec will
inevitably accelerate to much higher velocities under al-
most all loading conditions. Thermal loading is able to
trap the crack in this highly unstable con6guration, and
reveal behavior of the fracture energy that would be in-
visible froxn other points of view.
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