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Domain growth laws for the phase ordering of chiral liquid crystals
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In liquid crystalline mixed systems domain growth dynamics of the cholesteric and blue phase I
was studied in cases of conserved and nonconserved order parameter 6elds. The experimentally
determined exponents agree with the predictions of multiscaling growth kinetics.
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The ordering kinetics of systems with a nonscalar or-
der parameter field recently called for considerable inter-
est [1—5]. After a quench from the isotropic liquid the
structure factor during the process of phase ordering can
be described generally [1] in terms of dynamic scaling,
where the order parameter is an exponential function of
the domain size and the wave vector, and the scaling law
depends on the number of the components of the order
parameter and the dimensionality of space. The other
kinds of theoretical predictions, which. can be tested ex-
perimentally, are domain growth laws [2,6—8]. Generally
the domain size L is described by an exponential func-
tion of time: L t". One has to distinguish the growth
laws in the case of conserved &om that of nonconserved
order parameter fields. Let us imagine a domain of a
phase X in a coexistence region, which is surrounded by
a phase Y. For simplicity let us assume that after the
transition the order parameter is changed &om S = 0 in
Y to some equilibrium value So in X. Each domain of
the phase X has a boundary region of thickness (, where
the order parameter varies &om some value in the middle
of the domain (not obligatory So) to zero. (i) If ( « L,
the director field is characterized by a large amplitude of
variations of the order parameter in space and the phase
transition takes place in a nonconserved in space order
parameter field. (ii) The case ( )) L, when the amplitude
of the spatial variation of the order parameter is small,
corresponds to phase transitions in a conserved order pa-
rameter field. The experimental example of the growth
of domains in the nonconserved order parameter is the
nucleation of an ordered phase &om the isotropic liquid.
Such a process can be described by a microscopic diÃu-
sion theory [7, 9] which predicts n = 1/2. The growth
process in the case of conserved order parameter can be
illustrated by the coarsening at the late stage of the spin-
odal decomposition [6, 8] with n = 1/3. Both the above
mentioned laws correspond to the case of a scalar order
parameter. If a physical system is described by a multi-
component order parameter the growth law for the non-
conserved field remains unchanged (n = 1/2) [2]. In the
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case of conserved multicomponent order parameter the
growth process is characterized by time dependence of
two lengths [2]: a rapid changing length as to the domain
size is described by the exponential law with n = 1/4.
Spatial periodicity of the system d(t) is a slow growing
length with a time dependence: d(t) —dp (& «l) I,
where do is an initial value of the lattice constant before
the quench. Liquid crystals display a rich variety of dif-
ferent types of order parameter fields and are an ideal
object for testing theoretical predictions resulting &om
theories of domain growth kinetics. In the first exper-
imental works about the phase ordering in liquid crys-
tals the formation of nematic phases [3,4] and of smectic
phases (in free standing films) [5] has been investigated.

In this paper we present a study of the ordering dy-
namics of the cholesteric and blue phase I under several
experimental conditions. Molecules of chiral materials
have no center of symmetry, which results in the forma-
tion of a macroscopic spiral structure with spatial peri-
ods of about the wavelength of visible light or more. The
structure of the cholesteric phase can be described by a
one-dimensional plane spiral where the director is per-
pendicular to the spiral axis. The structure of the blue
phases can be imagined as a three-dimensional periodical
array of the double twist cylinders [10]. The order pa-
rameter of the cholesteric and blue phases is a tensorial
quantity —the anisotropic part of the tensor of the di-
electric permittivity [10]. In several theories a simplified
nematiclike three component vector order parameter was
used [ll]. In [12] it was shown that some properties of
the blue phases and cholesterics can be described with a
scalar order parameter which is proportional to the local
optical anisotropy.

Our first investigations [14] have revealed the nontriv-
ial character of the ordering process of the cholesteric
phase during the phase transition &om the blue phase
I (BPI) in systems with a short temperature interval
of the cholesteric phase in the vicinity of the smectic-
A phase. A complication consists in the appearance of
the intermediate metastable blue phase 8 (BPS) and the
dramatic increase of the relaxation time of the cholesteric
phase in the supercooled BPI temperature interval under
the inBuence of smectic Quctuations. A qualitative pic-
ture of the efFect of smectic Buctuations on the blue and
cholesteric phase structure and their ordering dynamics
can be described as follows. Double twist, characterizing
the local structure of the blue phase [10], cannot topo-
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logically fill the whole space without discontinuous lines
or points. Therefore the structure of the blue phases
(BP's) can be described as a periodical array of defects
positioned in space in accordance with cubic symmetry
(I4q32 for the BPI). If the correlation radius of smectic
Huctuations becomes of the order of the disclination core
the dynamics of such a system is drastically changed and
the system needs more time to reach an equilibrium value
of the lattice constant after a quench. For example, the
time constants of the formation of the cholesteric phase
after a quench into a temperature interval close below the
BPI stability interval can be several days. In this paper
we study (i) the domain growth laws of the BPI phase
ordering after a quench from the isotropic liquid with
different supercooling depths and (ii) of the cholesteric
phase after a quench from the blue phase.

We have used the three following chiral mixtures (tran-
sition temperatures are given in 'C).

(I) 30 mo1% cholesteryl benzoate with the nematogenic
compound 8OBE [isotropic (iso) ~100.2-+ BPI+iso
~99.7+BPI +99.55+cholesteric (chol)+73~smectic C
(Sm-C)] [13].

(II) Chiral-racemic mixture of CE6 (Merck) with
60 mol % of the chiral component (iso 44.8+BPI
44.65-+chol 40.7mSm-A).

(III) Mixture of CE8 (Merck) with 2 wt% of a chiral
dopant ZLI 4571 (Merck) (iso 136.1~BPIII 136.0~BPII
135.8-+BPI 135.5~chol 130.1-+Sm-A) [14].

Summarizing the features of the materials under dis-
cussion we have to emphasize that the first two mixtures
exhibit the isotropic-BPI-cholesteric phase sequence on
cooling. In the second and third mixture the metastable
BPS was observed [14].

Phase ordering dynamics was examined by means of
optical microscopy and Bragg reaection. The procedure
of measurements and sample preparation was described
earlier in [14].

The growth dynamics of monodomains of the BPI in
an isotropic-BPI coexistence region has been studied in
mixture I. In this material the BPI occurs first on. cool-
ing directly &om the isotropic liquid in a two phase re-
gion. The broadness of the phase coexistence region was
about 0.5 K. The samples were cooled very slowly start-
ing from the isotropic liquid. The cooling was stopped
after the first BPI monodomains were observed (Fig. 1)

FIG. 1. Three-dimensional BPI monodomain shape for
mixture I.
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FIG. 2. Time dependence of the BPI monodomain size for
mixture I.

and then the domain size along the (110) direction was
measured as a function of time. The results of this mea-
surement are shown in Fig. 2. In the same experiment we
have measured the growth rate of (211) planes of the BPI
monodomains. It is important to note that the growth
rate does not depend on the Miller indices of the direc-
tion. This fact displays the anomaly of the blue phase
structure, which in contrast to the solid state is a lat-
tice of the peculiarities in the orientation with a uniform
distribution of the density of molecules. The mass trans-
fer, necessary for the growth of the domains of the blue
phases, has to be isotropic. The solid line in Fig. 2 is
the best least-square fit with an exponential law which
gives n 0.44 6 0.07. In this case the growth process
takes place in the system with a large gradient of the
order parameter across the isotropic-BPI boundary. The
experimental exponent corresponds within the given ac-
curacy to the predictions of the theory for nonconserved
order parameter n = 1/2 [2, 7]. As is shown by [2] this
exponent is not changed in the case of multiscaling be-
havior.

In mixture II the BPI is formed in the whole sample
after the quench &om the isotropic liquid very quickly
(several seconds). In this case we have studied the BPI
grain growth process (coarsening), which takes essentially
longer times. The phase coexistence temperature interval
in this mixture is negligibly small, the isotropic phase—
BPI transition temperature takes place at 44.8'C, the
interval of stability of the BPI was 0.2'C. The initial
temperature was chosen 0.1'C above the clearing point.
The sample was quenched to 0.1'C below the isotropic-
BPI transition with the cooling rate 1 'C/min. The varia-
tion of BPI reBectivity curves during two hours is shown
in Fig. 3. The main refiection corresponds to a (110)
system of planes. The broadband at the wavelengths
shorter than the (110)-Bragg refiection can be ascribed
to the scattering from other orientations in analogy with
[14]. The intensity of the main band increases and the
line broadness decreases. The maximum intensity of the
selective reBection from polydomain BPI samples with
a thickness 50 pm was smaller than 10'%%uo as compared
with well oriented thick samples of the cholesteric phase
in this material. Therefore we were able to apply the
kinematic theory of light diRraction for the description
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FIG. 3. Time dependence of the Bragg re8ection spectra
of the BPI polydomain samples of mixture I. (+), 2 min af-
ter the quench from the isotropic liquid; (o), 107 min after
the quench; (x), isotropic liquid. Supercooling depth 0.1'C
below the isotropic liquid —BPI phase transition; sample thick-
ness d = 50 p,m.

of the line profiles. In the kinematic theory the line half-
width AA is proportional to the reciprocal domain size
(L ) [12]. A ln-ln plot of the time dependence of b, A

is shown in Fig. 4. We can recognize here two stages of
the growth process. The initial stage is very slow and
can be described by an exponent of n -0.04. The late
stage is more rapid and is characterized by the exponent
n = 0.18 + 0.08. During the initial stage of this experi-
ment the maximum of Bragg reflection was shifted by a
very small value and the time constant for this process
was qualitatively of the same order as for the domain
growth kinetics. Figure 4 illustrates an important fea-
ture of the above cited theories, in which most of the
expressions describing kinetic processes are asymptotic
results. In our case we were not able to fit the time de-
pendence of the half-width with one exponential function
in the whole time interval. The late stage of the growth
process can approximately be described by an exponent
near 1/4, which corresponds to multiscaling behavior.

As mentioned above, after a quench to a temperature
close below the stability interval of the BPI a mixture of
BPS and cholesteric domains is formed which does not
relax to the stable cholesteric phase during several days.
To investigate the phase ordering of the cholesteric phase
after a quench from the BPI we used mixture III, in which
this process is more rapid. Oriented samples of the BPI
(see [14]) have been quenched by 0.8'C f'rom a temper-
ature 0.1'C below the clearing point to the interval of
the metastable BPI (0.5'C below the temperature of the
BPI stability interval). The cooling rate was 1'C/min.
We used thin samples without spacer (thickness about
3—5 pm) to get a low intensity of the Bragg re8ection in
the cholesteric phase. The Bragg wavelength is combined
with the spatial period of the blue phases with the rela-
tion A~ gg~ ——ndh, g~, where h, k, l are the Miller indices of
a system of planes and n is the re&active index. The time
dependence of the Bragg wavelength A~ qqp is shown in
Fig. 5. The Bragg wavelength first increases, then jumps
to the lower wavelengths 70 min after the quench, which
indicates the phase transition to the metastable interme-
diate BPS. The solid curve is the best fit function with
the law A(t) —Ao ——37(i I&) ) ', where Ao ——570 nm is

the value of the Bragg wavelength of the BPI before the
sup ercooling.

Figure 6 shows the time dependence. of the half-width
AA and maximum intensity of the Bragg peak for the
cholesteric phase ordering process. The intensity of the
cholesteric peak increases and the half-width decreases.
From the fitting of the EA(t) we can find an exponent of
n —0.17 + 0.08 for the late stage of the domain growth
process in the cholesteric phase.

The cholesteric Bragg reflection occurs at t 10 min
after the quench. After this time our system consists of
BPI and cholesteric domains. It is interesting to note
that both curves in Fig. 6 reveal no peculiarity at the
time when the BPS occurs (70 min after quench, see
Fig. 5). This is evidence that the phase transition BPI-
BPS takes place inside the BPI domains independently
&om the cholesteric domains. The monodomains of the
BPI start to break mechanically in the supercooled region
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FIG. 4. Time dependence of the half-width of the Bragg
peak of the BPI after a quench from the isotropic liquid (ln-ln
plot). Solid lines correspond to Bt according to exponential
law for the initial and late stages of the growth process. Sam-
ple as in Fig. 3.

FIG. 5. Time dependence of the Bragg re6ection wave-
length of the supercooled BPI after quenching from the tem-
perature interval of stability. Sample of ~ixture III (without
spacer). Solid curve: least-square St with d(t) function of the
BPI data.
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as it was shown in [14]. This process can be observed mi-

croscopically and by a broadening of the Bragg reflection
bands. The time constant of the decrease of the BPI do-
main size was about 10 min, whereas the change in A~
is sufBciently slower. The boundary conditions on the
substrates have obviously no strong effect on the domain
dynamics in the supercooled region, because the same re-
lation between the characteristic relaxation times for the
two lengths was found in the polydomain samples with-
out any treatment of the glass substrates. The ordering
of the cholesteric phase in the supercooled BPI region
can be subdivided into several stages. In the first stage
we can say nothing about the ordering in the cholesteric
phase before we get a distinct selective reflection. During
this stage the BPI domains break and their Bragg wave-

length is shifted to the longer wavelengths. In the later
stage the cholesteric phase and the intermediate BPS are
formed. The observation of two different time constants
for the change of the domain size of the BPI and for the
variation of A~ corresponds to the situation described in

[2] for the multiscaling behavior. We have fitted the time
dependence of A3 by d(t) and found n 0.27 which cor-
relates with predictions for the multiscaling growth law

in a conserved order parameter field. This plot is shown
in Fig. 5 by a solid line.

From results of [12] it follows that a change in the
average amplitude of the order parameter during the
cholesteric-BPI phase transition is smaller than 0.01.
Therefore phase ordering of the cholesteric phase &om
the BPI can be regarded as an example of a transition in
a conserved order parameter field. In the blue phases the
amplitude of the order parameter is a function of spatial
coordinate, whereas in the cholesteric phase this value is
constant in space. Hence the transition BPI-cholesteric
consists in smoothing out the local inhomogeneities of
the amplitude of the order parameter, taking place in
an order parameter field with a constant average ampli-
tude. From this point of view this case is similar to the
late stage of the spinodal decomposition. The exponent
n = 0.17 of the function EA(t) in Fig. 6 corresponds to
the predictions of [2] for the ordering in the conserved
multicomponent order parameter field. We have not ob-
served any shift of the position of the maximum of the
cholesteric reHection which can take place during the ini-
tial stage. We have not tried to determine the number
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FIG. 6. Time dependence of the maximum intensity and
the half-width of the Bragg peak of the cholesteric phase
quenched from the BPI in mixure III. (o), maximum inten-
sity; (+), half-width. The solid line fits the experimental data
with the exponential law.

of independent components of the order parameter fields:
more detailed characterization of the dynamics of the or-
der parameter field shall be the purpose of our future
work.

We have tested predictions of theories describing do-
main growth laws for the phase ordering in conserved and
nonconserved multicomponent order parameter in the
cholesteric and blue phases. Experiments on the growth
of monodomains of the BPI from the isotropic phase cor-
relate well with theoretical predictions for nonconserved
order parameter fields, which does not depend on the
number of components of the order parameter. Differ-
ent time constants were found for the domain breaking
and lattice constant dynamics of the BPI during the ini-
tial stage of the cholesteric phase ordering. The phase
ordering of the cholesteric phase from the BPI is a new
example of a kinetic process in conserved order parame-
ter field. The experimentally found domain growth laws
in the cholesteric and blue phases correspond to multi-
scaling behavior.
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