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Transition to spatiotemporal chaos via spatially subharmonic oscillations
of a periodic front
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An unusual sequence of bifurcations is documented in the Bow of a viscous Quid inside a partially
filled rotating horizontal cylinder. A periodic cellular pattern destabilizes to form a spatially sub-
harmonic pattern that oscillates periodically in time. As the rotation rate is increased, the pattern
evolves to spatiotemporal chaos. This state is characterized both by its correlation length and time,
and by the Buctuating spatial phase of the pattern. The transition process is similar to that shown

by a generalized Ginzburg-Landau model proposed by Daviaud et al. [Physica D 55, 287 (1992)].

PACS number(s): 47.20.Lz, 47.52.+j, 47.54.+r

Secondary and higher bifurcations have been studied
in several nonlinear systems that form patterns with sta-
tionary periodic ordering in one spatial dimension. These
include Rayleigh-Benard convection in an annulus [1,2],
directional solidification [3,4], and directional viscous fin-
gering [5,6]. Symmetry considerations indicate that these
patterns xnay undergo a limited set of generic secondary
bifurcations [7—9). These include stationary bifurcations
that break spatial symmetry, and oscillatory bifurcations
that either break or retain spatial symmetry. Subsequent
transitions to spatiotemporal chaos (STC) are character-
istic of many of these systems. A number of experimental
examples of STC have been recently reviewed by one of
us [10). Since the processes leading to STC are poorly
understood, it is worthwhile to investigate them in detail.

This paper reports the observation of a type of bifurca-
tion leading to spatiotemporal chaos that has apparently
not been well documented: an instability of a periodic
pattern that doubles the wavelength and leads to tem-
poral oscillation. This phenomenon is revealed in the
dynamics of a one-dimensional cellular front in the How

of a viscous Buid inside a rotating horizontal cylinder,
sometimes termed rimming How. The instability is one
of several sHowed by symmetry, as discussed by Coullet
and Iooss [7]. (These generic instabilities may be classi-
fied according to the way in which perturbations of the
stationary cellular pattern transform under time trans-
lation, space translation, and refiection. ) The homoge-
neous oscillatory front undergoes a further transition to
spatiotemporal chaos as the bifurcation parameter is in-
creased. We analyze the transition using both correlation
functions and complex demodulation, and compare the
behavior to that observed in other systems.

A number of characteristic phenomena are observed in
rimming How. Melo and Douady [11] observed travel-
ing solitary waves on a Bat &ont that transformed con-
tinuously to a spatiotemporally chaotic state and subse-
quently to a periodic pattern as the angular velocity is in-
creased. A cusped periodic &ont was previously reported
by Johnson [12], who considered the difficult problem of
the linear stability of the translationally symmetric &ont
to perturbations along the axis of the cylinder. Other
studies of rimming nows have identified an instability in

which rings of Buid form into cells along the length of the
cylinder, both in Newtonian Huids [13]and in viscoelastic
Huids [14].

The experiment is described briefiy in Fig. 1. Silicone
oil of kinematic viscosity v = 10 cS (1 cS=10 z cmz/s)
flows inside a partially filled horizontal glass cylinder
(R = 5 cm, I = 50 cm) which rotates about its axis
at angular velocity A. A thin layer of Huid coats the in-

ner surface of the cylinder; excess Buid is dragged up the
rising wall by viscosity and forms a thickened region of
Huid that is stationary in the laboratory frame of refer-
ence. The azimuthal position 4(z, t) of the lower edge of
the thick region defines a horizontal &ont at axial posi-
tion z and time t, along the length of the cylinder. The
cylinder is rotated by a computer controlled microstep-
ping motor (4000 steps/revolution). Curvature of the
front causes transmitted light to be re&acted strongly;
this allows convenient optical determination of 4(x, t) in
real time using a charge-coupled device (CCD) camera.
The apparatus is placed inside a thermally insulated box
and maintained at 25.5+0.3 C to ensure uniform Buid
properties.

Transitions observed in the behavior of the &ont are
summarized in Fig. 2 at a fixed filling &action [(Huid
volume)/(cylinder volume)] V = 0.0407. (The effects of
varying this parameter are mentioned later in this paper. )
A single &ont is observed for angular velocities between
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FIG. 1. Experimental apparatus. A horizontal glass cylin-
der is rotated about its axis at angular velocity O. A small
amount of oil coats the inner wall. Excess Quid forms a stable
front at azimuthal position 4(x, t) along the rising wall of the
cylinder.
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FIG. 2. Diagram of pattern transitions for V = 0.0407.
The front position 4'(x, t) is defined in the range 8.98
s ( n ( 21.4 s . (FF: fiat front; CP: cellular pattern;
SO: stationary oscillations; STC: spatiotemporal chaos. )
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FIG. 8. Space-time plot of 4'(2:, t, ) showing spatially
period doubled oscillations. Times t; are displaced
upward in 0.2TO increments. [Bifurcation parameter
t = (n —n, )/n, = 0.0185.]

00 ——8.98 s and 0 = 21.4 s . Below Oo Quid cas-
cades continuously down the rising wall of the cylinder;
above this range the front is pulled over the top of the
cylinder. Just above Qo the front is fiat along the length
of the cylinder (labeled FF). It transforms supercritically
to a cellular pattern (CP) at Qq ——9.47 s, becoming
strongly cusped as 0 increases. As 0 is increased qua-
sistatically to 02 ——18.60 s, the cusped peaks of the
cellular pattern begin to oscillate vertically with a period
To = 0.53 s; neighboring peaks are 180' out of phase, so
the spatial period has doubled. This state is denoted SO,
for (spatially) subharmonic oscillations. The transition
to oscillations is hysteretic with an overlap of 40 = 4.5s, as indicated by the overlap between CP and SO in
Fig. 2. Above Os ——18.94 s the sJIctinl phase of the
base pattern and the oscillation amplitude begin to Quc-
tuate in a continuous transition to spatiotemporal chaos.
We have investigated this transition to spatiotemporal
chaos as a function of the bifurcation parameter defined
b»=(n-n, )~n, .

The subharmonic oscillations of the cellular pattern
(SO state) above p = 0 are seen in Fig. 3. The &ont
position 4(z) is plotted as a function of axial position, z,
scaled by the pattern wavelength A = 0.98 cm at onset
of the oscillation. Successive &onts are displaced upward
with time interval 0.2To. The vertical scale of the &ont
profile is the same as the horizontal scale. The sharp
bends and fiatness of the broad regions between cusps
result from low vertical measurement resolution. The
most pronounced feature in this state is the strong oscil-
lation of the peaks in time; the broad Hat portion of each
cell remains stationary. The oscillations do not disrupt
the spatial structure in the SO state.
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4. Gray scale plots of 4(x, t) at two values of p.
lized auctuations in the cellular structure propagate
the system at constant speed, accompanied by re-

scillation amplitude, at p = 0.0220. (b) Bursts of
n and annihilation activity dominate the system in

ted chaotic state at p = 0.0487.
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As p is increased above y, = 0.0183 (0 = Oq) spatial
fluctuations emerge which disrupt the uniformity of the
oscillating space-time pattern. A typical example of this
state is shown in Fig. 4(a) for p = 0.0220. Here the &ont
position O(x, t) is displayed in a gray scale, with darker
regions corresponding to higher front positions (larger III).
The striations in the dark bands are due to the periodic
&ont height oscillations that began in the SO state. In
addition, we note phase disturbances of the cellular pat-
tern that travel across the cylinder at a constant speed
v = 3.1 cm/s. These are typically accompanied by a local
reduction in the oscillation amplitude. The strength and
&equency of these phase disturbances increase with p.
At higher p„the pattern is often stretched or compressed
sufficiently that a cell is created or annihilated. This
event is accompanied by a localized burst of strong, rapid
oscillations, further creation or annihilation events, and
coherent displacements of the cellular pattern over sev-
eral wavelengths [Fig. 4(b)]. This behavior is reminiscent
of the intermittency observed in a variety of spatiotem-
porally evolving systems, in which chaotic events disrupt
an otherwise ordered system [2,6,15]. However, here the
chaotic fiuctuations are clear, even in the absence of cell
creation or annihilation events. The &equency of the
bursts increases with increasing p, until they dominate
the behavior.

The complex patterns may be characterized in part by
their spatial and temporal correlation lengths ((p) and
~(p), which are shown in nondimensional form in Fig. 5.
These characteristic scales are defined by the decay of the
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FIG. 5. Decrease of the nondimensiona1 correlation length

(a) and time (b) with increasing p.

autocorrelation function C(x, t) in space and time [16].
The initial decline in 7/To is associated with the emer-
gence of the traveling disturbances shown in Fig. 4(a).
This process has less effect on (/Ao, and the spatial cor-
relation length does not begin to decrease strongly until
the onset of bursting at about p = 0.03. When the spa-
tiotemporal chaos is fully developed, 7/To and g/Ao are
both comparable to unity. In some model systems [17],
these two parameters decline following the same decay
law as the bifurcation parameter is increased above the
onset of STC. However, that is clearly not the case here.

A more complete picture of the range of phenom-
ena shown by this system may be gained by noting the
system's dependence on the filling &action V. Below
V = 0.03 cascading Quid is dragged directly over the top
of the cylinder as 0 is increased. As a result, no station-
ary front can be defined. A flat front on which traveling
waves may form is observed [11,18] for V in the range
0.03 & V & 0.05. When sufBciently dense, these travel-
ing waves may form a stable cellular pattern, but it does
not undergo the oscillatory bifurcation described in this
paper. The stationary cellular pattern which undergoes
the subharmonic oscillatory transition to chaos described
here is observed for V above 0.057. The critical angular
velocities 02 and 03, and the wavelength Ao of the base
pattern, all increase znonotonically with V. We have not
explored the behavior of the &ont for V ) 0.12.

Since a full hydrodynamic description appears diK-
cult, it is worth exploring the possibility of utilizing an
amplitude equation for quantitative analysis. A pos-
sibly suitable generalized Ginzburg-Landau model has
been studied numerically by Daviaud et aL [19]. It de-
scribes the long wavelength phase and amplitude Quc-
tuations of an oscillating field that is coupled to a cel-
lular pattern. These authors considered its applicabil-
ity to the spatially periodic oscillatory state that occurs
in nearly one-dimensional Rayleigh-Benard (RB) convec-
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FIG. 6. Phase gradient of the cellular pattern obtained by
demodulation of the structure in Fig. 4(a), for p = 0.0220.
Dark regions correspond to pattern stretching and light re-
gions to compression in this chaotic state.

tjon. There are many qualitative similarities between the
dynamical regimes exhibited by the two systems, though
the oscillation in the present case is spatially subhar-
monic. The analysis of Daviaud et al. points out the
utility of measuring the phase gradient of the cellular
pattern. Linear stability analysis of the model equations
demonstrated that the state of homogeneous oscillations
znay become unstable with respect to perturbations in
the spatial phase of the cellular pattern; this destabiliza-
tion is the result of a coupling between the oscillation
amplitude and the phase gradient of the cellular pattern
[»]

With these considerations in mind, we present in Fig. 6
a plot of the spatial phase gradient I' of the base pattern
of Fig. 4(a). The phase is obtained by a demodulation

of the complex Fourier transform 4(k, u) about the wave

number and frequency of the stationary cellular pattern
(k = 2x/Ao, ~ = 0). Dark regions correspond to stretch-
ing of the patter (small I') and light areas are regions of
strong compression. These bands of large phase gradient
appear to propagate with constant velocity. We also find

that the subharznonic oscillation amplitude is reduced in
the stretched regions (and vice versa). These experimen-
tal observations compare favorably with the simulation
and experiments described in Ref. [19], in which nodes
of zero oscillation amplitude are found to travel at con-
stant speed above the onset of phase instability of the
base pattern. Therefore it may be &uitful to explore the
connection in greater detail, by actually measuring all
of the relevant fluctuating fields: the phase of the base
pattern (as shown in Fig. 5), and the complex oscillation
amplitude. This work is in progress.

In suznmary, we observe a secondary instability of a cel-
lular pattern to spatially 8ubharmonic oscillations. This
instability apparently breaks a different set of space-time
symmetries &om the set that is broken in other exper-
iments [15]. The resulting oscillatory state undergoes a
well defined transition to spatiotemporal chaos, marked
by the emergence of Quctuations in the gradient of the
phase of the cellular pattern. The loss of teznporal coher-
ence of the oscillations is coincident with the eznergence
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of traveling bands of locally depressed or enhanced phase
gradient. As seen elsewhere, spatial ordering is eventu-
ally lost as strong phase gradients lead to bursts of cell
annihilation and nucleation. Studies of the dependence of
these transitions on the filling fraction, and the detailed

measurement and analysis of the Buctuating amplitude
and phase fields, will be reported separately.
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