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Global phase diagrams for dipolar fluids
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Fluids of molecules or particles interacting through dipole forces describe polar liquids and
colloidal suspensions such as ferroQuids and electrorheological fluids. Phase diagrams for systems
with strong dipolar coupling are not precisely known. Possible liquid state phase transitions include
phase separation and spontaneous polarization. We present a set of generic phase diagrams for the
Huid states of dipolar spheres and spheroids, focusing on the interplay of polarization and phase
separation.

PACS number(s): 61.25.Em, 64.60.Cn, 75.50.Mm i 64.70.Fx

Dipolar forces inHuence a wide spectrum of Huids, &om
Huids of polar molecules [1], where the dipolar interac-
tion is electrostatic, to ferrofiuids [2], where it is mag-
netostatic. The strength of dipolar coupling also differs
widely in difFerent Huids. In many dipolar Huids, three
dominant interactions determine the thermodynamics:
short-ranged repulsion, long-ranged dipole-dipole inter-
action, and the dispersive van der Waals attraction [3].
When the dipolar coupling is weak, it is treated only as
a perturbation to the dispersive attraction [4—7], in the
form of its orientational average, with a van der Waals-
like 1/rs attraction as its leading term. But strongly
coupled dipolar Huids such as ferroQuids exhibit unusual
phenomena from particle chaining [4,9—11] to field in-
duced phase separation [12,13]. Most exciting is the pos-
sibility of Huids with ferromagnetic order [14—16], which
have never been observed experimentally.

Phase diagrams for dipolar fluids remain only partially
understood. The widely studied dipolar hard sphere
model may display phase separation as suggested by its
solution via the mean spherical approximation [5,17].
More likely it displays a magnetized liquid state as sug-
gested by recent computer simulations [10,18]. No theory
to date has examined the interplay of these two possibil-
ities. The story is similar for dipolar soft spheres [13,19]
and for variants of the Stockmayer Huid [11,20] which add
1/rs attraction to the soft sphere 1/xi~ repulsion.

Real polar molecules (e.g. , HqO) and ferrofiuids with
strong dipolar couplings [3] do exhibit phase separation
into dilute gas and dense liquid phases at appropriate
temperatures and densities. Never has spontaneous po-
larization been confirmed in the liquid state.

In this paper we introduce generic phase diagrams for
dipolar fluids that connect spontaneous polarization with
isotropic phase separation. Since we focus on Huid states,
we ignore any competition Rom solid phases which might
preempt some of the transitions described below. And we
consider spherical (or nearly spherical) particles, so we
ignore nematic liquid crystalline states. Our &ee energy
contains four terms:

Il [p m] p 9p/pe 2m.

where m is the magnetization per particle (0 & m & 1),

p is the particle density. All scales are set in relation
to particle dipole moment p, = 1 and particle diameter
a = 1. The first two terms represent a van der Waals Huid
with critical point for phase separation into an isotropic
gas and an isotropic liquid placed at p, and To. The
third term represents entropy loss upon magnetization,

e(m) = —ln(1 —m ) +
2 20

53
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The final term is the magnetic mean field energy. Note
this term couples magnetization to density. We may add
on an additional term JIm/T to—represent an applied
external field.

The magnetic mean field energy requires further com-
ment. In its derivation we assume magnetization dis-
tributed uniformly outside a cavity containing one dipo-
lar sphere, the mean field at the center of the cavity is
the integral of the dipole function

(3)
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FIG. 1. Geometry for calculating mean Seld. Outer bound-
ary is a highly prolate spheroid. Inner boundary depends on
particle shape. For spherical particles, Beld at center arises
from the most distant regions of the spheroid.

over the entire system. Due to the anisotropy of the
dipole interaction, this integral vanishes identically over
concentric spherical shells centered at the origin. Since
the dipole interaction is long ranged, however, the inte-
gral depends on the shape of the outer boundary of inte-
gration. Taking this shape as a highly prolate spheroid
(see Fig. 1) we find that the most remote regions of the
system combine to form the nonzero mean field.

We choose this shape for our calculations since it avoids
the demagnetizing field of more compact shapes and rep-
resents the true thermodynamic limit. The actual shape
of a droplet of magnetized fluid represents an important
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outstanding problem. Presumably surface tension favors
a more compact shape. To avoid demagnetizing fields
the magnetization may rotate slowly across the sample.
Resolution of this open question will assist in finding ex-
periments to reveal a possible magnetized liquid state.

The spherical inner shell reQects the particle shape.
For spheroidal particles with axis of rotation a parallel
to the dipole moment and axes 6 perpendicular, the co-
efficient of pm2 in the free energy [Eq. (1)] becomes

2x 4(1- -X+ )3T (4)

for small y:—(a —5 )/(a2 + b2). Thus prolate (needle,
a & b) shapes inhibit magnetization while oblate (pan-
cake, 5 & a) shapes enhance it.

The coefficient of pmz in the magnetic mean field en-

ergy may vary in a structured liquid. The onset of parti-
cle chaining, for example, creates a favorable contribution
to the magnetic energy &om local interactions. Calcu-
lating the free energy accurately is an extremely difficult
task. We therefore focus, for the remainder of this paper,
on generic questions independent of the detailed form of
the free energy. We identify three generic phase diagrams
for dipolar sphere fluids [see Figs. 2(a)—2(c)]. These dif-
fer according to the position T of the van der Waals
critical point.

When T, is very high [Fig. 2(a)], we find phase coexis-
tence between a dilute isotropic gas and a dense isotropic
liquid, as predicted by the magnetization-independent
van der Waals part in our free energy. Several authors
[5—7,20—22] studied this phase coexistence caused by the
effective 1/rs attraction of the orientationally averaged
dipolar interaction. In addition, a continuous magnetic
phase transition extends &om high temperatures and
densities and intersects the phase coexistence boundary.
Below this critical end point a dilute isotropic gas and a
dense magnetic liquid coexist.

When T is very low [Fig. 2(c)], we Bnd a continuous
magnetic phase transition at high temperatures and den-
sities crossing over to a first order transition with an as-
sociated phase coexistence region. This crossover marks
a tricritical point. Phase diagrams of this type arise &om
mean Beld theories [15,16] of ferrofiuids which neglect at-
tractive forces other than the mean field interaction (i.e.,
they set To = 0). Our result shows that even with an
isotropic attraction added to mean field attraction, phase
coexistence between two isotropic Quids is preempted by
the magnetic Quid phase as long as the isotropic attrac-
tion is suHiciently weak, in agreement with Sano and Doi
[16].

For intermediate values of To [Fig. 2(b)], the phase
diagram combines the features of the above two phase di-
agraxns giving rise to a triple point at which three phases
coexist: a dilute isotropic gas, a dense isotropic liquid,
and a dense magnetic liquid. Above the triple point tem-
perature, two isotropic Quids coexist at low and moderate
densities, becoming identical above the critical temper-
ature T . At higher densities, the isotropic liquid and
magnetic liquid are separated by a first order transition
which becomes second order above the tricritical temper-
ature. Below the triple point temperature, the isotropic
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FIG. 2. Generic phase diagrams for dipolar Suids. IG, IL,
and ML denote isotropic gas and isotropic and magnetic liquid
phases. p = 0.106 in all figures. T = 0.36, 0.26, and 0.23 in
(a), (b), and (c), respectively. Dotted line denotes continuous
transition. Solid lines denote coexistence boundaries. Tie
lines are also solid.

gas coexists with the magnetic liquid.
An applied field H destroys the continuous magnetic

transition. For either high or low values of To, the phase
diagram consists of a gas-liquid phase coexistence. The
field dependent critical point location describes the essen-
tials of the field response of the phase diagram. When T,
is very high [Fig. 2(a)), the critical point originates from
the isotropic gas-liquid critical point at zero field. When
T, is very low [Fig. 2(c)], the critical point originates
&om the tricritical point at zero field. For intermediate
values of To [Fig. 2(b)], the zero field phase diagram
contains both an isotropic gas-liquid critical point and
a tricritical point. Therefore the evolution of the phase
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diagram for intermediate values of T, sufiiciently illus-

trates how these two types of critical points change with
field strength H.

For intermediate values of To [see Figs. 2(b) and 3],
the weak field phase diagram contains two critical points,
one &om the isotropic gas-liquid critical point, and the
other &om the tricritical point. As we increase the field

strength, one of them disappears into the coexistence re-
gion of the other, marking a critical end point. We see
that the two types of critical points behave differently
with applied field. For the critical point stemming from
the isotropic gas-liquid critical point, its temperature in-
creases monotonically with field strength H, while its
density first increases in a weak field and then turns back
to approach the zero field value po in a stronger field. For
the critical point stemming from the tricritical point, its
density decreases monotonically with H, while its tem-
perature first lowers in a weak field and then rises in a
stronger field.

In summary, we find generic phase diagrams for Hu-

ids of dipolar particles. In the absence of intervening
liquid-solid transitions one expects continuous magne-
tization transitions at high temperatures and densities
connecting to first order transitions at low temperatures.
Phase separation without magnetization is possible but
not required. As parameters describing the Huid (such
as van der Waals interaction or particle shape) are var-
ied the phase diagrams of Figs. 2(a)—2(c) should occur
in sequence. Indeed, analogous sequences are observed
in phase diagrams for liquid He- He mixtures [23]. A
random field created by immersion in aerogel drives the
phase diagrams through this sequence [24]. Another ex-
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FIG. 3. Evolution of Fig. 2(b) with applied Beld H = 0,
0.0002, 0.001) 0.01, 0.02, 0.03, 0.05, 0.07, 0.1) 0.15, 0.2.
Dots locate critical points. Coexistence regions are shown
for H = 0, 0.02, 0.2 only.
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ample is a theory for living polymers in which difFerent
solvents correspond to different diagrams in this sequence
[25]. If real ferrofiuids or other polar Huids actually pos-
sess a spontaneously polarized liquid phase, we expect
the phase diagram should follow one of the set shown
here.
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