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Fluctuating hydrodynamics of the classical electron gas

P.-M. Binder
Wolfson College, Oxford OXg GAUD, United Kingdom

and Cente7 for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 875/5
(Received 18 November 1993)

Fluctuations of the diffusion tensor in a lattice Lorentz gas model are calculated numerically &om
a sample of mesoscopic-size systems, and used as input in a mode-coupling expression that predicts
long-time tail amplitudes. The results are in good agreement with previously published direct
measurements of the tail amplitude over a wide range of scatterer concentrations. We argue that
the previous, long-standing disagreement between theory and simulations comes from concentration-
independent configurational fluctuations in the diffusion tensor, which we have measured separately
and which are not taken into account by existing theories.

PACS number(s): 51.10.+y, 05.60.+w, 66.30.—h

The Lorentz model [1]was proposed originally to study
the electrical conductivity of solids, and as a simple
model for transport theory. It consists of one or more
mutually noninteracting classical particles which collide
with fixed, randomly placed scatterers. It has been an
important test case in the development of kinetic theory:
the derivation of macroscopic equations, generalized ki-
netic equations, the calculation of transport coeKcients,
and the study of long-time tails of self-correlation func-
tions [2—9]. It is also the first and one of the most im-
portant models for difFusion in a static random medium.
The asymptotic behavior of its velocity autocorrelation
function [VACF or P(t)], related to the diffusion coef-
ficient by the Green-Kubo formula, has puzzled kinetic
theorists for over two decades. Only very recently has
agreement been obtained between theory [3] and simula-
tions [10—12] for the exponent of the algebraic long-time
tails (t z in two dimensions) of the VACF for general
scatterer concentrations.

In the present paper we consider a fluctuating hydrody-
namics (FH) semiphenomenological mode-coupling the-
ory developed by Ernst et al. [13]. The results of this
theory, discussed below, relate fluctuations of the difFu-
sion tensor K p to long-time tail amplitudes. We find
good agreement between previously measured [10] long-
time tail amplitudes and FH predictions which use as
input our measurements of the difFusion tensor fluctu-
ations. By performing simulations of a lattice model
with either strictly constant or fluctuating concentration,
we can isolate concentration-induced and configuration-
induced contributions to the long-time tails. We con-
clude that for the lower scatterer concentrations,

configu-

rationall effects (i.e., concentration-independent fiuctua-
tions) account for previous discrepancies between theory
and simulation (see Refs. [3—8] and the discussion two
paragraphs below) .

The FH theory of Ernst et al. begins with the fun-
damental assumption that the detailed microscopic de-
scription of the random medium (number and positions
of scatterers) can be replaced by a more macroscopic de-
scription, in terms of a spatially varying difFusion tensor
and a quantity related to &ee volume. Based on this
a coarse-grained fluctuating difFusion equation was de-

2V(DQ) 2 (2)

Here a, P are the Cartesian coordinates, D is the diffu-
sion coefficient, V is the volume of the subsystems over
which K p is measured, and Q is the volume fraction
available to difFusing particles. The brackets denote an
average over mesoscopic subsystems of size V of a larger
macroscopic system. For the purposes of simulation, it
was essential to decouple the mesoscopic subsystems in
order to ensure that particles stayed within a given one,
so that truly local diffusion coeKcients could be mea-
sured [14]. The main justification for doing this is that
(2) no longer contains spatial information about the sys-
tem, such as dependence on Fourier modes.

We will use AK p to denote the numerator of (2),
which is the variance of the difFusion tensor. For the two-
dimensional (2D) Lorentz gas, the authors of Ref. [13]
specifically substituted for AK p the efFect of concentra-
tion fiuctuations obtained from statistical considerations:

(dD't '
AK p = 2~

~
Var(c),

q dc &

where Var(c) = c(1 —c)/V is the variance in c. Here c
denotes the average scatterer concentration of the fluc-
tuating ensemble. When this expression, only valid as
c -+ 0, is substituted into (2), the result agrees with
the predictions of the earlier kinetic mode-coupling the-
ory of Ernst and Weyland [3]. At higher concentrations,
the approximation of the difFusion tensor fiuctuations by
concentration-induced fiuctuations fails badly. In a re-
cent report of very accurate simulations of the continuum

veloped, and a general expression was calculated relat-
ing long-time tail amplitudes a in the VACF firstly to
the Fourier modes of the spatially varying quantities just
described, and finally to the variance of K p about its
average value as follows:

P(t) —a/t' = A~/8mt— ,

where
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Lorentz gas, Lowe and Masters [12] found values of the
tail amplitude that were up to six times larger than the
prediction based on this approximation.

We now proceed to describe the model being studied,
and the numerical technique employed to perform accu-
rate measurements of the diffusion tensor of mesoscopic
systems with volume V. Such phenomenological data
had not been measured before for the 2D Lorentz gas,
and therefore the more general results of FH [Eqs. (1)
and (2)] have remained untested.

We consider a model in which independent particles
move ballistically with unit speed along the principal di-
rections of the 2D triangular lattice, and collide isotrop-
ically with point scatterers, which occupy the lattice
nodes random and independently [15, 16] with probabil-
ity c. Long-time tail amplitudes and coefficients for this
model have been reported in the literature [10], and are
known with uncertainty of about 10% (see Table I) . In the
present model Q = 1 as all scatterer sites are accessible
to the moving particles. Because of lattice symmetries
(K p)=Db p.

The measurement of the diffusion tensor, as required
in Eqs. (1) and (2) was performed with the moment
propagation method which is known to yield excellent
statistics. The method consists in evolving distributions
of particles, rather than individual particles, according
to the microscopic rules of the model. The method aver-

ages over all trajectories consistent with a given scatterer
configuration. It is described in detail in Refs. [10,11]. In
contrast with Ref. [10],in which only the K component
was considered, here we measure the full diffusion tensor.
We have done this by measuring all possible coefBcients
K', = gt 0 (v~(t)v, (0)) —1/4b~„where p, e are the
principal directions of the lattice. The above are Green-
Kubo expressions, in which the additional constant term,
known as the "propagation" term, is due to the discrete-
ness of time in the model; it is discussed by Binder and
Ernst [16) and references therein. Summing the projec-
tions of each coefficient on the n, P Cartesian coordinates
yields the diffusion tensor K p. We stress that this mea-
surement is independent of that of long-time tails, as we
integrate the velocity correlations (v~(t)v, (0)). In fact,
the long-time tails only produce very small corrections
to the diffusion tensor itself, and Eqs. (1) and (2) apply
even if K', is measured for times shorter than the onset

of long-time tails; this was not done because of the loss
of accuracy in the measurement of K p.

In order to measure fluctuations of the diffusion ten-
sor, systems of size V = L, L = 72, were simulated over
T = 400 time steps, which corresponds to 80—360 mean
free times for the concentrations considered [17]. L was
chosen to be large enough for K p to be meaningful, and
small enough for it to fluctuate strongly. The number
of independent scatterer configurations ranged from 40
for the denser systems to 1200 for c = 0.2, where the
slower convergence of the average fluctuation required
more sampling. Scatterer concentrations were allowed to
fluctuate, by virtue of placing scatterers with indepen-
dent probability c at each site. A few systems of sizes
L = 36 and L = 144, used as checks, yielded results
consistent with those obtained for L = 72.

A summary of results is given in Table I. Column 1
shows the values of c for which long-time tail amplitudes
are available in the literature for this model (Ref. [10]);
the measured amplitude values are reproduced in column
2. Column 3 shows the FH prediction for amplitudes
from Eqs. (1) and (2), with D and AK p coming &om
the simulations just described. Column 4 shows the con-
tributions to column 3 &om concentration fluctuations
in the mesoscopic systems, following (3). D, Var(c), and
dD/dc were obtained directly from simulations. The the-
oretical values for this quantity, given in parentheses, in
column 4, are given by (3) with D(c) and dD/dc com-

ing from the expression D(c) = (5/12c) —(1/6) from
Ref. [18], which takes into account backscattering tra-
jectories, and Var(c) = c(1 —c)/V as before. We see
that for c = 0.8, 0.9, the total fluctuations in the diKu-
sion tensor are well approximated by the concentration-
induced ones alone, but at lower concentrations this ap-
proximation yields values that are up to 35% low. We
tested concentration-independent eKects separately for
the lower densities, by measuring the variance of the
diffusion tensor for 1200 systems of size L = 80 with
the scatterer concentration fixed at exactly c. The re-
sults are given in column 5, which added to the theo-
retical value &om column 4, yield the improved values
of column 6, which we consider the true predictions of
the FH theory for the three lowest densities. Moreover,
this separate test confirms the eEects of concentration-
independent fluctuations in the model. These values,

TABLE I. First column: scatterer concentration. Second column: direct measurement of
long-time tail amplitudes, from Ref. [10]. Third column: fiuctuating hydrodynamics predictions,
with diffusion coefBcient and diffusion tensor variances measured numerically. Fourth column:
numerical (and analytical) estimates of fiuctuating concentration-induced long time tails. Fifth
column (lower concentrations): contribution to long-time tails from fixed-density ensemble (config-
urationsl efFects). Sixth column: sum of the contributions from column 4 (theory) snd column 5

(configurstional). Last column: numerically measured diffusion coeificient, given for completeness.

0.2
0.4
0.6
0.8
0.9

+nuxn

0.463
0.178
0.091
0.038
0.018

&FH

0.453
0.214
0.094
0.039
0.016

a«„, (Theory)

0.327 (0.325)
0.172 (0.147)
0.091 (0.080)
0.038 (0.037)
0.017 (0.019)

+conf

0.130
0.045
0.016

+tot

0.455
0.192
0.096

Dnum

1.924
0.868
0.520
0.351
0.294
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along with the results of column 3 for the two higher den-

sities, should be compared with the amplitudes of column
2. The agreement to about 10%%up over such a wide range
of densities is remarkable.

The error bars in the numerical measurements of
columns 3 and 5 were estimated as follows. Each sam-

ple (typically 1200 points) was divided into 10 subsets, a
small but meaningful number. Average Huctuations were
calculated for each subset, and then the standard devia-
tion of the 10 average fiuctuations wss calculated. The
result was always between 10'%%up and 15%%up of the value of
the overall average fluctuation, which we therefore con-
sider a good estimate of the uncertainty in the values

reported.
In summary we have shown that a Buctuation-based

theory predicts the amplitude of long-time tails of the
Lorentz gas to within 10% of the values reported in the
literature. These results are consistent with the error
bars in the fiuctuations of the diffusion tensor (typically
10—

15%%up) which the theory requires as input. Our re-
sults lend support to the derivation of Eqs. (1) and (2).
The fact that predicted amplitudes fall equally above
and below simulations suggests that the discrepancies
are statistical rather than systematic. From Table I one

sees that at low concentrations the contribution from
concentration-independent Buctuations in the diffusion
tensor accounts for about one third of the value of the
long-time tails. We do not presently understand why
the discrepancy between measurements and predictions
based on concentration-induced theories is much smaller
in lattice Lorentz models than in the continuum Lorentz
models. We suspect it may have to do with the much
wider spectrum of &ee paths between collisions and also
with the existence of trapping areas in the continuum
model. We expect the findings of this paper to be rele-
vant to other lattice models of diffusion in random media.
We also hope that recent experimental work [19j on gas
mixtures which has confirmed some of the predictions of
the high-density kinetic theory of Lorentz gases may soon
be extended to consider long-time tails.
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