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Dynamics of dislocations in hexagonal patterns
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The dynamics and interaction of dislocations of roll systems forming hexagonal patterns is studied nu-

merically within a model of three resonantly coupled Newell-Whitehead-Segel equations. It is shown

that an individual dislocation is driven away as a result of phase synchronization among roll patterns.
Two dislocations with opposite topological charges belonging to different roll systems are attracted to
each other and form a "penta-hepta" defect on the background of the perfect hexagonal pattern, which
is stable and motionless.

PACS number{s}: 47.20.Ky, 47.27.Te, 64.90.+b

Hexagonal patterns are an important subject of investi-
gation in the theory of cellular structures. They are easi-
ly observed in Rayleigh-Benard convection in non-
Bussinesq fluids [1-4], in Benard-Marangoni convection
[5], autocatalytic reactions [6], etc. (see also the review
[7]). However, perfect hexagonal patterns are rather
di5cult to observe in large aspect-ratio systems. Typical-
ly, difFerent line or point defects emerge on the back-
ground of a hexagonal pattern. Line defects usually take
the form of grain boundaries between hexagons with
di8'erent orientation, or grain boundaries separating hex-
agons and rolls; the latter case was investigated in detail
by Malomed, Nepomnyashchy, and Tribelsky [8].
Among point defects most typical are so-called "penta-
hepta" defects, or pairs of cells with five and seven ridges.
These defects, once having been created, are very stable
(see, e.g., [3]). The purpose of the present paper is to
study in numerical experiment the creation and dynamics
of point defects in hexagonal patterns.

It is known that the perfect hexagon pattern is a result
of the resonant interaction of three roll systems
[A;exp[ik; r], i =1,.2, 3] with wave vectors k, 2 3 satisfy-
ing the three-wave resonant condition k&+kz+k3=0 (in
the following we will assume that the wave numbers of all
three waves correspond to the most unstable wave num-
ber lk&l = lk2I =lk3I set to unity in dimensionless vari-
ables). For convection in a horizontal layer of fiuid
three-wave interaction appears only if the "up-down"
symmetry A ~—A of the system is broken. For exam-
ple, in Rayleigh-Benard convection this symmetry break-
ing is caused by temperature dependence of viscosity', in
Benard-Marangoni convection, by temperature depen-
dence of the surface tension, etc. As a result of the non-
linear interaction systems of three rolls oriented at 120
to each other grow simultaneously, their amplitudes be-
come equal, and the sum of their phases is zero. This
process can be described by the following set of three am-
plitude equations for the complex amplitudes of three roll
systems:
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a, A, =l A, +A,'A; (IA;I'+—y A, I'+ylAkl'»;

+8 ', A, . (3)

These diff'er from (2) by the linear terms 8;A; in the
right-hand sides. Here 8;=t)x t'a/2t)r—, X;=ax;/go,

l l

Y; =ay;/go are pairs of rescaled dimensionless Cartesian
coordinates orthogonal and parallel to the rolls axes, re-
spectively, and go is the dimensional length scale of the
system. It is important to note that in the description of
hexagons we have to assume the same scaling for both x;
and y; coordinates. Since the defects in hexagons
presumably have the same characteristic size in the x and
y directions, the parallel diffusion (terms proportional to
t) r in D,)is usually much weake. r than transversal

difFusion. We keep those terms here in order to have a
unifIed set of equations for both roll and hexagon pattern

a,A, =~A, +m,*Ak (IA—; I'+y IA, I'+y IAk I')A;
(1)

[i,j,k] = I1,2, 3], [2,3, 1],I3, 1,2].
Here e is a small supercriticality parameter, tx=O(e )

is the coefficient of quadratic nonlinearity, describing
non-Boussinesq efFects, and y=O(1) is the ratio of the
coefficient of cubic interaction of rolls of difFerent orien-
tation to the coefficient of cubic self-interaction. If a%0
we can rescale all variables such that the new supercriti-
cality parameter p =a/a =O(1), new amplitudes

A, =A, /a=O(1), and new a= 1,

~, A; =p A;+ A,'Ak (I A—; I'+yl A, I"+yl Akl') A;

Linear stability analysis shows [9] (see also [3,10]) that if
a—=0 a stable hexagon pattern appears as a result of sub-
critical bifurcation when —1/4(1+2y) & p & (y+2)/
(y —1) . When the defects are present, the amplitudes of
individual roll systems become functions of space as well
as time. The structure of possible envelope equations was
discussed by Haken [11]and Malomed, Nepomnyashchy,
and Tribelsky [8], who introduced transversal difFusion
terms in (1). Following them, we restrict ourselves with
the most natural assumption that, besides quadratic non-
linearity, the envelopes of individual roll systems are
governed by the Newell-Whitehead-Segel equations [14]
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FIG. 3. Trajectories of the cores of dislocations in the hexagonal pat-
tern for several different phase shifts between roll systems Pp.
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corridor starting from the core of dislocation, where it
reaches the value of 1 [Fig. 1(b)]. The axis of this corri-
dor coincides with the line F(x,y, 0)=1. After that the
dislocation starts moving quickly along this corridor [see
Fig. 1(b)], and soon leaves the region of integration, and
the perfect hexagon pattern with I'= —1 everywhere
eventually establishes itself.

In the second series of numerical experiments we began
with two dislocations belonging to two different roll
structures:

R, =R, tanh[0. 2[(X,—X ) +( Y, —Y, ) ]'

Pt=arctan[( Y, —Y, )/(X, —X, )]+go,
R2=R2tanh[0. 2[(X2—X2) +( Y2 —Y2) ]'

y~= —arctan[( Y2 —Yz )/(X2 —X2)],

R3 =R 3, $3=0.0.

Here [X„Y,] and IX2, Yz] are the coordinates of cores
of dislocations, R, 2 3 =0.01, and f0= n /4 Note th.e sign"—"in $2 which indicates different topological charges
(opposite directions of phase rotation) of the two disloca-
tions. Again, at t =0 the synchronization parameter
changes smoothly within the range ( —1, 1) [with the
given initial phase distribution the isolines of F are circu-
lar, see Fig. 2(a)]. Now instead of a straight corridor we
get a curved corridor connecting both defects [Fig. 2(b)].
After some transient period, dislocations begin to move
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FIG. 4. "Penta-hepta" pair formed by merging of two dislocations:
(a) isolines of the "temperature" field T=g, &A;exp(ix;); (b) equi-

phase lines of P~ (solid) and Pt (dashed); (ci cross sections of the magni-

tudes R; along the line L„ in (a); (d) the same as in (c) along the line Ly
in (a).

toward each other along the corridor [the trajectories are
also shown in Fig. 2(b)] and eventually they stick together
and form a penta-hepta defect. The trajectories of the
dislocations motion and the position of the penta-hepta
pair depend strongly on the initial phase distribution. In
Fig. 3 the trajectories of dislocations for several different
values of $0 are shown. It is worth mentioning that the
structure of the penta-hepta defect (Fig. 4) resulting from
the merging of two dislocations is remarkably similar to
one found in the laboratory experiment [3].

Qualitatively the behavior described above can be easi-
ly understood within the so-called phase approximation
First, we can assume that after initial transients all three
magnitudes R; become equal. If the spatial distribution
of amplitudes is smooth, we can further assume that R;
are determined by the local phase dynamics. This ap-
proximation is valid outside cores of dislocations. The
real parts of Eqs. (3) then give the equation for R:

R =pR+cos@R —(1+2y)R
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FIG. 5. Time dependence of am-

plitudes R I ~ 3 and synchronization
parameter F in two different space
locations: (a) x =40, y =30 (out-
side the corridor), (b) x =40, y =20
(near the axis of the corridor). Sym-
bols 1,2 show the results of numeri-
cal simulations of F (solid circles)
and all three R; (open circles) for the
fu11 set of amplitude equations (3)
with p = 1, y = 1.5 and initial con-
dition (6) with R I g 3 =0.65, lines

3,4 show the corresponding solutions
of the system (7),(11), and lines 5,6
show the results of the phase approx-
imation (8),(12). The inset in (b)
shows the long-term evolution of
three amplitudes.
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(1+2y )R —cos@R —p =0. (8)

The imaginary parts of (3) describe the phase variations

with 4=/, +Pz+P3. If the phase dynamics is slow, one
can neglect the time derivative of R in (7) and arrive at
the algebraic equation for R: (9)

B,pl = —R sin@+ t}„pl,

8,$2= —R sin@+8„$2,

B,P = —R sin@+8„$3,
Equations (9) with R taken from (8) also form a variation-
al model with the Lyapunov free energy functional

9'&= fdx dy( —
I 1/[4(1+2y)]] [cos@[cos@+(cos4+B )'i ]+B1n[cos@+(cos 4+B )'i ]]

+-,' [(a„((,)'+(a„(t,)'+(a„y,)']), (10)

where B=4@(1+2y). It is easy to see now that as long
as the phase variations are smooth and one can neglect
space derivatives in (10), the density of the Lyapunov
functional is a monotonous function of the parameter F.
Within the same assumptions the equation for 4 is sim-

ply
4= —3R sin@, (11)

or after substitution of R from (8),

4= —I3/[2(1+2y)] j [cos4+(cos 4+B)'i ]sin4, (12)

so 4 goes to 0 (F~—1) everywhere except on the lines
where @=a.(F=1), and thus corridors of large F are
formed. The only points where these lines can originate
and/or end (except infinity) are the dislocations. There-
fore the dislocations start to move (due to a Peach-
Kohler-type force, see [15]) as to decrease optimally the
free energy of the system, i.e., along the lines of max-
imum F =1 and either go to infinity or meet each other
and stick, thus creating a "penta-hepta" pair.

To test the validity of the phase approximation we
simulated the temporal dynamics of the synchronization
parameter F and magnitudes of the rolls R„Rz,R3 in

some fixed space locations using the full set of amplitude
equations (3), simplified system of equations (7),(11), and
phase approximation model (8},(12). We used a one-
dislocation initial condition (6) and parameters p=l,
y=1.5. In Fig. 5 we present the results of the simula-
tions at two different locations: outside the corridor (a),
and within the corridor (b). As one can see, for the off-
corridor location system (7},(11) provides a very good
description, but the pure phase approximation [Eqs.
(8),(12)] leads to certain errors which are due to nonadia-
baticity at the initial stage of the phase synchronization.

I

For the in-corridor location both simplified descriptions
are rather inaccurate. The reason for this is quite simple.
Indeed, since in accordance with (12) the corridors get
more and more narrow, eventually the assumption of
smoothness of phase dynamics is violated in their vicini-
ties and the diffusion terms in (9} (and also in the equa-
tions for R, ) become important. In the long run some
stationary profile of corridors is established due to phase
diffusion (these stationary corridors are analogous to the
kink solutions of the sine-Gordon equation). That is why
the above arguments hold only qualitatively. Neverthe-
less, they explain correctly the main features of behavior
of individual roll dislocations and the penta-hepta pair
formation.

The details on the dislocation motion as well as many
other interesting aspects of the spatiotemporal dynamics
of the hexagonal patterns are still left beyond the frame-
work of the present paper. They include, for example,
the interaction (and annihilation) of dislocations of the
same roll system, interaction of penta-hepta pairs, Eck-
haus instability of hexagons, dynamics of the line defects
in hexagonal patterns, nonvariational effects, etc. We
plan to address these issues in future publications.
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