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Critical dynamics of contact line depinning
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The depinning of a contact line is studied as a dynamical critical phenomenon by a functional
renormalization group technique. In D = 2 —e interface dimensions, the roughness exponent is

( = e/3 to all orders in perturbation theory. Thus, ( = 1/3 for the contact line, equal to the Imry-Ma
estimate of Huse for the equilibrium roughness. The dynamical exponent is z = 1-2e/9+O(e ) ( 1,
resulting in unusual dynamical properties. In particular, a characteristic distortion length of the
contact line depinning &om a strong defect is predicted to initially increase faster than linearly in
time. Some experiments are suggested to probe such dynamics.

PACS number(s): 68.45.—v, 05.40.+j, 64.60.Ht, 68.10.—m

Wetting phenomena and contact lines (CLs) appear in
many manufacturing processes that involve the spread-
ing of a liquid on a solid surface [1]. Some degree of
control over the spreading of the liquid and the corre-
sponding creep of the CL is needed to optimize the de-
sired characteristics of such processes. In particular, it
is important to know the effect of surface roughness and
contaminants at microscopic to mesoscopic scales on CL
dynamics. Here, we study such effects at length scales
from 10 down to 10 cm. The upper length scale is
set by the droplet size or the capillary length (due to
gravitation), while the lower length scale is determined
by the characteristic size of the microscopic defects.

Surface impurities lead to CL hysteresis, i.e., a fi-

nite force is needed to start the Quid spreading. Re-
cently, the scaling exponents of a driven elastic inter-
face subject to quenched impurities near a similar depin-
ning threshold have been calculated through a functional
renormalization-group (RG) treatment close to four in-
terface dimensions [2,3]. Here we apply this method to
calculate various scaling exponents for the slowly advanc-
ing contact line. The distinction between the two cases
is that the CL is the termination of the liquid-vapor in-
terface. We shall assume that the partially wetting Quid
spreads sufBciently slowly on a heterogenous surface that
the liquid-vapor interface evolves adiabatically, i.e., it re-
sponds to changes in the CL shape instantenously. In
this case, Quctuations of the CL around its time-averaged
value reQect the competition between impurities on the
solid surface and the liquid-vapor surface tension.

Consider a wetting front on a heterogenous surface in
the z-y plane with the average orientation of the contact
line in the x direction as shown in Fig. l. In equilibrium
on a homogenous interface, the macroscopic contact angle
0 is determined by the Young condition,

The average of f is zero, while its correlations satisfy

(f(z y)&(z' y')) = &(gaia)

where rz = (z —z')2 + (y —y')2, a is the characteristic
size of defects, and b, is a function that decays rapidly for
large values of its argument. [If the source of disorder is
the roughness of the solid surface, f(z, y) is proportional
to the local slope [1], thus we restrict our discussion to
surfaces without long-range slope correlations. For a self-
affinely rough surface, b, may have a slow algebraic decay.
Such situations will not be explored here. ] Fluctuations
of the CL from its average position, h~L, (t) = vt, are
denoted by h(z, t), and thus satisfy
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(The overline denotes a time average. ) The capillary en-

ergy associated with small deformations of a CL was cal-
culated by Joanny and de Gennes [4] (in the e ~ 0 limit)

pg~ —peal. —pcosO = 0. 4(x,t)

In the above, p~~, pgL„and p are the interfacial tensions
for the solid-vapor, solid-liquid, and liquid-vapor inter-
faces, respectively. The heterogeneities (i.e., defects) on
the surface can be modeled as Quctuations in the difFer-
ence of local interfacial energy densities,

f(» y) = psv (z, y) —psL, (z, y) —(psv —psL, ) (2)

bCL(X,t)

FIG. 1. Geometry of the system.
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profile at a given time, and a and L are the lower and
upper cutoff length scales mentioned earlier. The unusual

q dependence of the energy functional, and the resulting
nonlocal dynamics, reQects the fact that perturbations
of wave vector q on the CL induce deformations into the
liquid-vapor interface up to a distance lql

A random contribution to the liquid-surface energy
comes from the defects [1],

h, ~&+a(*)
U, „s = dx dy f(x, y). (6)

If the heterogeneity is strong enough, there is contact
angle hysteresis [1,4]. This arises from many metastable
con6gurations of the CL pro61e, which are given by local
minima of the free energy. The surface tensions ppL„7~~
in Eq. (1) must then be interpreted as spatial averages
over the CI position. Thus, the macroscopic contact an-
gle will depend on the particular CL profile. If a macro-
scopic force of F per unit length is exerted on the CL,
it will move with a finite velocity v only for F ) F,
This occurs when the metastable state with the largest
8, usually referred to as the advancing angle 8 [1,4],
becomes unstable. For small capillary numbers, 0 0 .

As the CL slowly advances, energy is dissipated
through various mechanisms [1]. If the dissipation in the
vicinity of the CL dominates for small v, the drag force at
a point z on the CL is simply related to the local velocity
v + Bqh(z, t) through a microscopic mobility p. In this
case, the equation of motion for the CL is obtained by
equating the drag force to the applied force, —bU/hh(z),

versal constant. Superposed on the steady advance of
the CL are rapid "jumps" as portions of the line depin
from strong pi~~ing centers. Such jumps are similar to
avalanches in other slowly forced systems, and have a
power-law distribution in size, cutofF at a characteristic
correlation length (. On approaching the threshold, (
diverges as

(E —F,)

defining a correlation length exponent v. At length scales
sinaller than f, the interface is self-aKne, i.e., with cor-
relations satisfying the dynamic scaling form

([h(z, t) —h(z', t')) ) = (x —z') ~gl, l, (12)&(*- ')') '

where t,
' and z are the roughness and dynamic exponents,

respectively. The scaling function g goes to a constant as
its argument approaches 0, ( is the wandering exponent
of an instantenous CL pro61e, and z relates the average
lifetime of an avalanche to its size by r(()

In many aspects, Eq. (7) is similar to the model ana-
lyzed by Narayan and Fisher (NF) using the formalism
of Martin, Siggia, and Rose [7] (MSR), through an ex-
pansion around a mean field solution [3]. To use this
method, it is necessary to generalize to a D-dimensional
interface for a systematic computation of the exponents
through an e expansion. Introducing an auxiliary field

h(x, t), the MSR generating functional is

Bh(x, t) )
Bt

~O2 , h(z', t)dx'
x z

+f(z, vt+ h(z, t)) + F (7). (13)

Z= dh dh exp i d xdth x, t Th,

P[h, f] = p '[t9gh(x, t) + v] —f(x, vt+ h(x, t)) —F

+pO d x'KD x —x' x', t .

In the above formula, v is determined self-consistenly by
enforcing Eq. (4). Note that Eq. (7) is only valid for
v ) 0, and F ~ F, from above when v ~ 0. The
dynamical contact angle 0 is given by the force balance
equation,

F —E, = p(cos 0 —cos 0).
A recent experiment on depinning from a single defect
[5] is in agreement with the deterministic (f = 0) form
of this dynamics: Upon depinning from the defect, the
time evolution of the CL pro6le is given by

v = A(E —E)~, (10)

where P is the velocity exponent, and A is a nonuni-

where the width of the logarithmic pro6le increases lin-
early with a characteristic velocity t" = pO p after depin-
Dlng.

By analogy to similar previously studied systems
[2,3,6], for F slightly above threshold, we expect the av-
erage velocity of the contact line to scale as

In the above, K&(x) (- lxl ' +" for « lxl ( I,) ls the
generalized interaction kernel in D dimensions. Mean
field (MF) theory is obtained by replacing the capillary
forces on a portion of the CL with Hookean springs. This
gives

+ v
l
= —khMp(t) + f(vt + hMg(t)) + F,i &dhMz

)
(14)

independently for each x, and identical to the mean 6eld
model analyzed by NF [3,6]. Here again, v(E) is deter-
mined by the self-consistency condition (hM~) = 0.

The MF solution depends on the type of irregularity:
For smoothly varying f(x, y), PM~ = 3/2, whereas for
"mesa" defects, i.e., cusped f(x, y), P~& = 1 [6,8]. Some
recent experiments on reasonably clean surfaces by Strom
et al. [9] are in agreement with Eq. (10) for P = 3/2 in the
low capillary number regime. Stokes et al. [10] measure
an exponent P 2—2.5 on a hysteretic surface, using
a new technique of harmonic generation. Even though
it is generally believed that the scaling relation in Eq.
(10) holds [11], it is clear that the prefactor is nonuni-
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versal, and various experiments to date have obtained
widely varying v I"-behaviors [12]. To our knowledge,
there are no experiments so far that have systematically
investigated strongly heterogenous surfaces with conclu-
sive accuracy.

Following the treatment of NF [3,6], we use the mean
field solution for cusped potentials, anticipating jumps
with velocity of O(1), in which case PMp = 1. Af-
ter rescaling and averaging over impurity con6gurations,
we arrive at a generating functional whose low-&equency
form is

function (Bh(x')/Bf(z)). These relations determine all
exponents in terms of ( and z. The diagrams appearing
in the renormalization of C(u) are exactly the same as in
Ref. [3], with the exception of the form of the bare prop-
agator, which is (—iu + ~q~) instead of (—iu + q2)
Thus, the renormalization of C in D = 2 —e interface
dimensions, computed to one-loop order, gives the recur-
sion relation,

BC(u) = [e + 28 + 2(z —1)]C(u) + (u dC(u)

Z= dH dH exp —S,

S= d xdt F —FMg v Hx t

dc' d q+ H( —q, —ur)( —i(u+ ~q~)H(q, (u)2x (2z.)D

d xdtdt'H x, t H x, t'

[C(u) —C(0)]
1 d dc(u)

2' d'll

NF showed that all higher order diagrams contnbute to
the renormalization of C as total derivatives with respect
to u, thus, integrating Eq. (19) at the fixed-point solution
BC*/Bl = 0, together with Eqs. (17) and (18), gives ( =
e/3 to all orders in e, provided that f C' g 0. For the
case of a CL (D = 1), we thus obtain

xC(vt —vt'+ H(x, t) —H(x, t')). (15) (=1/3, v=3/2. (20)

In the above expressions, H and H are coarse-grained
forms of h and h, in the sense that response and corre-
lation functions of h, h are the same as those of H, H
at low &equencies. F is adjusted to satisfy the condition
(H) = 0. The function C(vr) is initially the mean-field
correlation function (hM~(t)hM~(t+ r)).

Ignoring the H-dependent terms in the argument of
C, the action becomes Gaussian, and is invariant under
a scale transformation z —+ bx, t + bt, H + b H,
H —+b ~ +~/' H, F-+b D/ F, andv~b v. Other
terms in the action, of higher order in H and H, that
result from the expansion of C [and other terms not ex-
plicitly shown in Eq. (15)], decay away at large length and
time scales if D ) D, = 2. [D, clearly depends on the
dispersion law u(q) of the interface. For regular elastic
interfaces, u Ix q2, which gives D, = 4.] For D )D„ the
interface is smooth ((p ( 0) at long length scales. The
depinning exponents are independent of D, for D )D„
and take the Gaussian values zp ——vp ——Pp = 1.

At D = D„ the action S has an in6nite number of
marginal terms that can be rearranged as a Taylor series
of the marginal function C [vt —vt' + H(x, t) —H(x, t')],
when v + 0. The RG is carried out by integrating over a
momentum shell and all &equencies, followed by a scale
transformation x m bx, t ~ b t, H ~ b~H, and H m
b H, where b = e'. For D ( D, there are a number
of exact exponent relations [3]:

p = (z —()v,
v = 1/(z+8),
v = 1/(1 —g).

(16)
(»)
(18)

The first result comes from the scaling of nonlinear re-
sponse functions, requiring H to scale as vt. The second
relation follows from the renormalization of F —EM~(v)
through the first term in Eq. (15). Finally, the last re-
lation results from an exact statistical symmetry of the
system that fixes the form of the static (u = 0) response

This value of the roughness exponent coincides with the
Imry-Ma estimate of Huse given in Ref. [1] for the equilib-
rium roughness with random-6eld disorder. This is a con-
sequence of the fact that C(u) remains short ranged upon
renormalization, implying the absence of anomalous con-
tributions to (. Note that the disorder-averaged action S
involves temporal correlations C, instead of spatial cor-
relations A. Therefore, the scaling of fluctuations, and
critical exponents, are independent of the type of disor-
der [13] (random-field or random-bond), as long as b, (r)
is short ranged in space. This is not true for interfaces in
equilibrium, where random-6eld and random-bond disor-
der give diferent roughness exponents.

To calculate the dynamical exponent z, we need the
fixed-point function C', which is obtained only to O(e)
&om the above analysis. Furthermore, the calculation
requires some knowledge of the high-&equency form of
response and correlation functions, i.e., a low-&equency
analysis of Eq. (15) is insufficient to describe scaling prop-
erties of the system. Nevertheless, NF calculate the ex-
ponent 8 to O(e) as 8+ ( = (e —()/3+ O(e ). The
computation for the CL gives the same result, yielding

z = 1 —2e/9+ O(e ),
P = 1 —2e/9+ 0(e ).

(21)
(22)

Note that p ( z even though the di6'erence is O(e2).
Nattermann et al. [2] obtain the same results to O(e) by
directly averaging the MSR generating function in Eq.
(13). The treatment of NF has the advantage of expand-
ing around a solution with I" g 0, resulting in a better
behaved theory. In particular, systems that are described
by vector fields instead of scalar fields, like the threshold
critical dynamics of flux lines in three dimensions, require
the use of their approach, since the expansion has to be
made around a solution with I", g 0 [14].

The above scaling exponents describe a CL advancing
at low capillary number on a dirty surface, and also apply
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to surfaces with microscopic roughness, i.e., with short
range slope-slope correlations. The roughness exponent
of ( = 1/3, equal to its equilibrium value, can be directly
measured by microscopic imaging of a slowly advancing
CL. A number of macroscopic experimental tests are also
possible: the velocity of the CL is given by v (F F,—)~
with P ( 1 (see Fig. 2). The root mean square width
of the CL profile should increase like W (~ v

as the threshold is approached. These relations can be
checked through tensiometric measurements [12], where
the capillary force on a solid immersed into a liquid is
measured directly.

A dynamical exponent of z & 1 suggests that the relax-
ation of the CL is very different on a dirty surface. Upon
depinning from a strong defect, the width of the loga-
rithmic CL profile initially grows faster than linearly in
time, in other words, with a characteristic velocity that
increases with time: c(t) t( '&/'. This is, of course,
not physical at arbitrarily large length and time scales.
We have assumed that the liquid-vapor interface retains
its equilibrium shape determined by the CL profile at
all times. This picture will break down as characteristic
velocities become comparable to capillary wave velocity
c, ~

= gp/p of the liquid-vapor interface. The scaling
regime in between should still be accessible to experi-
ments in which the depinning &om a single strong defect
is observed on a dirty or rough surface.

Finally, NF carried their analysis further to speculate
exponents below the threshold when the driving force is
increased monotonically towards F, [3]. In particular,
they postulated an avalanche distribution

F, F

FIG. 2. Predicted velocity-force behavior for a depinning
contact line; P = 7/9 to first order in e = 2 —D

1.
Prob(width of avalanche ) 8) —p(g/( ),

with ( (F, —F)" , and t-he mean polarizability

x = - (F.- F) '.d( h)
dI't (24)

If v = v, and the scaling hypothesis holds for the CL, it
then follows that ~ = D —1/v, and p = 1+(v . These
exponents are then given exactly by p = v = 3/2, and
~ = 1/3 in D = 1.
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