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Experimental control of chaos by means of weak parametric perturbations
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The dynamical regime of a single mode laser with modulated losses in the chaotic parameter
range has been stabilized over one of the periodic orbits contained within the strange attractor by
controlling the phase of a small periodic perturbation of the forcing term. Numerical solutions of a
theoretical model show a good agreement with the experiment and provide the size of the stability
windows in the parameter space.

PACS number(s): 05.45.+b, 42.50.Lc, 42.55.Lt

Controlling chaos represents one of the most interest-
ing and challenging programs in the field of nonlinear dy-
namics. The basic idea is to stabilize the dynamics over
one of the different periods visited during the chaotic xno-

tion by applying only small perturbations to the system.
This makes it advantageous to deal with chaotic attrac-
tors, since they contain an infinite number of different
unstable orbits [1,2) and hence provide a large choice at
a low cost, i.e., by a small perturbation. On the other
hand, in many situations one may wish to avoid or re-
duce undesired chaotic instabilities by the help of small
perturbations, without introducing radical changes in the
experimental configuration.

In the past few years different methods have been pro-
posed based (i) on the determination of the stable and
unstable directions in the Poincare section [3—6], (ii) on
a self-controlling feedback procedure [7), and (iii) on the
introduction of small perturbations [8—12]. As for case
(iii), theoretical works have dealt with the suppression
of chaos in the dynamics of a DufEng-Holmes oscillator
[8,9]. In Ref. [8] the perturbation consists of a parametric
modulation of the cubic term, while Ref. [9] introduces
an additive anharmonic forcing term. The presence of a
weak periodic external forcing has been demonstrated to
reduce chaotic instabilities also in the case of a periodi-
cally driven pendulum [10]. From an experimental point
of view, it has been shown that small periodic perturba-
tions allow control of chaos in a microwave-pumped spin
wave instability [11],as well as in a bistable magnetoelas-
tic system [12]. Although the validity in the general case
has been rigorously proved only for method (i), methods
(ii) and (iii) look more suitable for experimental situa-
tions, because they do not require a real-time computer
analysis of the state of the system and they seexn xnore
robust to noise.

In this paper we show how a small paraxnetric pertur-
bation stabilizes the chaotic behavior of a CO2 laser with
modulated losses. Provided there is a suitable phase dif-
ference between the fundamental signal which xnodulates
the losses and the perturbation, robust stabilization of
difFerent periodic orbits can be achieved with perturba-
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tion amplitudes of a few percent. Numerical simulations
of an improved four-level model [13,14] for the COz laser
confirm the experimental results with a good degree of
accuracy.

The experimental apparatus consists of a single mode
CO2 laser with an intracavity electro-optic modulator
(EOM) allowing modulation of the cavity losses. The
optical cavity is 1.35 m long and the total transmission
coefBcient T is 0.10 for a single pass. The intensity decay
rate k(t) can be expressed as follows [14]:

k(t) = (2T+ (1 —2T) sin [mV(t)/Vg]),

where Vg = 4240 V and V(t) is the voltage applied to
the modulator,

V(t) = Vp+ VjA sin(2mFt), (2)

with Vo = 600 V, I' = 100 kHz, and A = 70 is an ampli-
fication factor. It is well known that, by increasing the
amplitude modulation Vj, the system undergoes a sub-
harmonic sequence of bifurcations leading to chaos [15].
We have studied the bifurcation diagram by recording
the values of Vq for which successive bifurcations occur.
We have found that F/2 appears for Vj ——0.5 V, F/4 for
Vj ——1.05 V, F/8 for Vj ——1.20 V, and a wide chaotic
window is present between Vj ——1.22 V and Vj ——1.75 V
bounded by the F/3 period window.

The stabilization of periodic orbits within the chaotic
region has been obtained by slight xnodulations of the
control parameter Vq. Such perturbations consist of si-
nusoidal signals at f = fq ——50 kHz and f = f2 ——25 kHz
with amplitude e and an adjustable phase offset n = mn'

with respect to the fundamental signal V(t), that is,

Vj(t) = Vj[1+e' sin(2vrf;t+o. )], i = 1, 2. (3)

An electronic loop allows a linear sweep of the phase
term o. of vr radians. The modulation circuit is sketched
in Fig. 1. A Tektronix arbitrary function generator
(AFG) is set to a sinusoidal output signal of frequency
100 kHz and amplitude Vj. The reference output of
the AFG drives a frequency divider (FD) which trig-
gers a sawtooth signal. The sawtooth signal, added to
a triangular signal of 0.1 Hz, acts as the trigger of the
function generator (FG) which feeds back the amplitude-
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FIG. 1. Schematic diagram of the electronic circuitry which
allows linear sweeping of the parameter m.

0.0-

modulation input of the AFG. In this way, a variable de-

lay is generated between the fundamental signal from the
AFG (frequency I") and the modulating signal from the
FG (frequency f;), because each trigger event of the FG
occurs for a di8'erent voltage level of the sawtooth, due to
the triangular wave. In the case of 25 kHz perturbation,
the divider is replaced by a divider by four.

The experimental results are shown in Figs. 2—5 for 50
and 25 kHz. In Fig. 2 we report a stroboscopic recording
(sampling period 1/F, scanning time 5 sec) of the laser
intensity I versus the parameter m, for Vj ——1.3 V and
e = 0.025. The laser behavior in the range 0.6 & m & 1.6
is completely symmetric with respect to that reported in
Fig. 2. It is clear that, by choosing a suitable phase,
it is possible to stabilize periodic orbits embedded in the
chaotic attractor. Once the appropriate phase is selected,
the stability is of the order of several minutes, until un-
controlled drifts spoil the resonance condition between
the cavity mode and the gain line. In Fig. 3 we show
Poincare sections for m = —0.2 and m = 0.6 (same pa-
rameter values as Fig. 2) constructed by plotting I„+qvs

I„,where I„=I(t = n/I"). Figure 4 shows the results
obtained at 25 kHz for Vj ——1.4 V and s = 0.03. Sym-
metric behavior is obtained for 1.0 & m & 2.0. The two
Poincare sections in the periodic (m = 0.0) and in the
chaotic (m = 0.4) regimes, with the same parameter val-
ues as Fig. 4, are reported in Fig. 5. In both cases of 50
and 25 kHz perturbations, stabilization can be obtained
within the chaotic window with perturbation amplitudes
8' & 0.08.

As we aim at a quantitative fit between a theoretical
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FIG. 3. Return maps of the normalized output intensity
I with the parameters of Fig. 2 for two phase oFsets: (a)
m = -0.2, (b) m = 0.6.

model and the experiment, the two-level model used in
the first reports on chaos in a COz laser [15] are not
sufficient, since the chaotic dynamics, as well as its con-
trol, occur on a time range longer than the collisional
coupling of the resonant transition with the other energy
levels within the same vibrational state. A more detailed
model accounting for the coupling between the two laser
levels and their rotational manifolds is required, as dis-
cussed in Refs. [13,14j where a four-level model (4LM)
provides quantitative agreement with the experimental
data in chaotic dynamics. The 4LM consists of five dif-
ferential equations for the intensity I, the populations
Nz and Nq of the upper and lower lasing states, and the
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FIG. 2. Experimental results with 2.570 perturbation at
E/2. Stroboscopic recording of the laser intensity (arbitrary
units) versus the relative phase ofFset m of the perturbation
with respect to the main modulation signal.
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FIG. 4. Experimental stroboscopic data of the laser inten-
sity with 3.0% perturbation at E/4.
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Figure 6(a) shows the stroboscopic recording of the laser
intensity versus the parameter m, with a perturbation
of 50 kHz &equency, Vj ——1.30 V and e = 0.04, while
Fig. 6(b) represents the corresponding stroboscopic map
obtained at fixed m = —0.2. The experimental features
observed in the case of 25 kHz perturbation (Figs. 4 and
5) can be numerically reproduced with the same degree
of accuracy using Vj ——1.35 V and e = 0.04.

The stabilization robustness can also be tested with
respect to small changes of the perturbation frequency f
around the resonant value fq

——50 kHz, keeping all the
other parameters fixed. Let us introduce the phase differ-
ence 4(t) between the fundamental signal (frequency F)
and the perturbation signal (frequency f = F/2 + b,f).
This can be expressed as

C(t)= ~Ft —~(t),
~(t)= (2~6,f t+m~).
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The term 2n b,f t acts as a slowly varying modulation of
the phase ofFset o.(t) which, in the resonant case, reduces
to mz'. Thus the introduction of the detuning hf is
equivalent to a time dependent phase ofFset, so that the
temporal evolution of the system consists of a regular
alternation between stable orbits and chaotic behaviors.

In order to characterize the control procedure with re-
spect to the parameter s, let us define sqo (sM) as the
value for which we obtain stabilization within a relative

FIG. 5. Return maps of the output intensity I with the
parameters of Fig. 4 for two phase ofFsets: (a) m = 0.0, (b)
m = 0.4. 1 .0 I 1 I I

(a)

global populations M2 and Mq of the two manifolds of
rotational levels which are coupled by collisions with N2
and Nq respectively:

I= —k(t)I + G(N2 —Ng)I)

N2 —(ZPR + P2—)—N2 —G(N2 —Ng)I + PRM2 + P2P,

Ng —(ZPR + Pg)——Ng + G(N2 —Ng)I + PRM&, (4)

M2 —— (PR + P2)M—2 + ZPRN2 + ZP2P,

Mg —— (PR + Pg)—Mg + ZPRNg,

where p~ ——7.0 x 10 sec is the relaxation rate between
the lasing states and the associated rotational xnanifolds
(the enhancement factor Z = 10 represents the number of
sublevels considered in each manifold), and p2

——1.0 x 10
sec and pq

——8.0 x 10 sec are the relaxation rates of
the vibrational states. Moreover, G = 6.2 x 10 sec
is the field-matter coupling constant, while the adimen-
sional paraxneter P = 6.35 x 10' represents the puxnp.
The numerical values of the parameters are rescaled by
following Ref. [14]. Using this set of parameter values we
reproduce the bifurcation measurements with a good de-
gree of accuracy, obtaining the sequence of bifurcations
for values of Vq which are at most 5% different from the
experixnental ones.

We have performed simulations xnodulating the control
voltage Vz according to Eq. (3). The agreement of the
model with the experiment can be inferred &om Fig. 6.
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FIG. 6. Numerical simulations with 50 kHz perturbation,
Vj ——1.3 V and e = 0.04; (a) stroboscopic recording of the
intensity versus the relative phase ofFset m, (b) return map of
the intensity at Bxed m = —0.2.
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phase interval Aa/2z' = 0.10 (0.50). The theoretical
behavior of sm (solid line) and sM (dashed line) as a
function of Vq is reported in Fig. 7, together with the
experimentally measured values of sqe. Above Vq ——1.40
V, there is no agreement between the experimental and
theoretical 8'yp. This implies that for large modulation
strengths Vq, the model described by Eqs. (1)—(4) is no
longer sufficient to predict the size of the stability win-

dow. More complex phenomena, possibly related to the
detailed structure of the rotational levels, may play a role
in fixing this parameter, even though simulations of the
time series do not show appreciable difFerences from the
experiment.

In summary, robust stabilization of the unstable orbits
embedded in a chaotic attractor has been experimentally
demonstrated for a single mode COz laser with modu-
lated losses. The stabilization is obtained by means of
sinusoidal parametric perturbations having relative am-
plitudes of few percent and frequencies which are in ra-
tios 1:2 and 1:4 with respect to the fundamental forcing
frequency. In the case of chaos induced by an external si-
nusoidal forcing, stabilization by resonant perturbations
at subharmonic frequencies of the main modulation was
already discussed by several investigators [8—12]. A cru-
cial problem of this type of stabilization is its robustness,
that is, the size of the parameter window over which sta-
bilization is achieved. The most reliable laboratory im-
plementation is obtained by fixing the perturbation f're-

quencies at the appropriate ratios of the main frequency
and then scanning the phase offset n = mz, as reported
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here. Since different values of the parameter m imply
different initial conditions for the whole fiow described
in Eqs. (4), our analysis corresponds to the investigation
of the size of the basins of attraction of the stabilized
orbits.
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FIG. 7. Structural stability of the control method. Scaling
of the perturbation amplitude e which provides a relative sta-
bility window of 10% (solid line) snd 50% (dashed line) of the
whole phase domain 0-2x versus the modulation voltage Vj, .
Triangles denote the experimental measurements of the 10%
window, with associated error bars.
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