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We propose and exactly solve a model of interface growth. The model is applicable to Kardar-
Parisi-Zhang type interfaces growing into an environment whose density decreases exponentially
with height. We find that the average height of the interface grows as In(t) for all spatial dimensions
d. The interface width has a much richer dependence on d, showing a nontrivial crossover behavior

around d = 2.

PACS number(s): 05.40.+j, 68.45.—v

There has been much interest in recent years in the
nonequilibrium dynamics of interfaces [1]. Despite great
effort, there is a lack of rigorous analytic treatments of
the various proposed models. Most of our understand-
ing of the kinetics of interfaces comes from the wide
range of large-scale computer simulations that have been
performed. Making the connection between the simula-
tion results and the current theoretical models has often
proved difficult. Perhaps the most popular theoretical
model is due to Kardar, Parisi, and Zhang (KPZ) (2],
who proposed a simple nonlinear Langevin equation for
the dynamics of the interface. A dynamic renormaliza-
tion group (RG) study of this equation indicates the pos-
sibility of strong-coupling (SC) behavior for (substrate)
dimension d > 2 (which seems from computer simula-
tion to be the relevant fixed point [3])—unfortunately
the evaluation of exponents at this SC fixed point is yet
to be achieved due to the intrinsic difficulty in working in
the nonperturbative regime. In this Rapid Communica-
tion we shall present a model which bears some relation
to the original KPZ model, and has the feature of being
exactly solvable. It is to be admitted that the solvability
of the model is its main motivation, although we shall
briefly describe a possible physical application. We shall
find that the interface width W (t) exhibits a nontrivial
crossover around d = 2. Before stating the results we
shall first introduce and discuss the model.

We consider the following equation of motion for the
interface height h(x,t):

A
8:h = vV23h + E(Vh)z +

2v

37 exp(—Ah/2v), (1)

where 7(x,t) is a stochastic source whose distribution
will be defined below. This equation is precisely the KPZ
equation except for the multiplicative factor in the noise
term. The first thing to note is that this equation is no
longer in terms of the relative height (i.e., the deviation
from the average height of the interface) since h appears
explicitly in the equation without being acted upon by
some differential operator. We interpret h as an abso-
lute height measured in some fixed reference frame. We
can then think of the new multiplicative noise in terms
of a density gradient in the environment (the vapor, for
instance, in a solid-on-solid interface system) into which
the interface is growing—the density of the environment
decaying exponentially with increasing height. On physi-
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cal grounds we may foresee that the average height of the
interface will grow as In(t) since this then conserves the
rate of deposition. We may also expect the interface fluc-
tuations to decay for large times due to the weakening of
the noise as h increases. We shall see that both of these
ideas are correct—therefore the physical contact with the
original KPZ equation and related models is lost (since
there one expects fluctuations to increase with time).

Before describing the solution of Eq. (1) we first state
the results for the asymptotic behavior of the interface
width:

pl-d/4
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where a(d) and 3(d) are constants.

The above results indicate that this model has a crit-
ical dimension of d = 2 which separates two different
“fixed point” structures (in the RG sense). It is tempting
to draw some general correspondence between this and
the postulated fixed point structure for the KPZ model;
however, we shall desist from this due to the qualita-
tively different physics of the two models. To what ex-
tent the above results may be described in RG language
(for instance, whether the results for d > 2 correspond
to a strong-coupling fixed point) can only be answered
by performing an RG analysis on Eq. (1) which seems
nontrivial due to the lack of a simple “bare” theory.

The model defined above was in fact chosen for study
because it may be linearized directly with the Hopf-Cole
transformation w = exp(Ah/2v), yielding a linear diffu-
sion equation for w:

dw = vViw + 1. (3)
The same transformation may be applied to the KPZ
equation and one obtains a linear diffusion equation in
w, but with multiplicative noise—this equation may be
interpreted as describing the evolution of the generat-
ing function for directed walks in a random medium [4].
There is no such analogy to directed walks in the present
model.

The solution of Eq. (3) is easily obtained in terms of
the heat kernel g(x,t) = (4mut)~ %2 exp(—z2/4vt) and
we then have the exact solution of Eq. (1) as
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h(x,t) = (2v/A) ln {1 + /ddy /Ot dt'g(x —y,t — t’)n(y,t')} ,

where, for simplicity, we have chosen the initial condition
to be that of a flat interface with h(x,0) = 0, although
more general initial conditions may be handled within
this approach. We mention that one may obtain an ex-
act solution to Eq. (1) with the inclusion of an arbitrary
function of time f(t) appearing as a prefactor in the mul-
tiplicative noise term, by using the same transformation
defined above. [The case of f(t) = e is interesting since
then the average height of the interface grows linearly in
time with velocity v = 2v¢c/A. The fluctuations in this
case will be considered in a longer paper [5].]

From the above solution for A we see that the param-
eter A only appears in the prefactor. Therefore there is
no weak-coupling perturbation theory (in powers of \)
available with which to study this model in contrast to
the original KPZ equation where the bare theory (A = 0)
is the soluble Edwards-Wilkinson (EW) model [6]. It is
clear from Eq. (4) that the calculation of quantities such
as the average height and the average interface width will
require averages to be performed over logarithms of the
noise 7. As in a previous work [7] we choose to make use
of the following representation of the logarithm function:

Inz= / d—u(e_“ -
0

—uz
- e %),

(5)

This representation is useful since the argument of the
logarithm in Eq. (4) is a space-time integral and the use
of Eq. (5) enables us to average over the ezponential of
the space-time integral which is a very natural calcula-
tional step. So, combining Eq. (4) and Eq. (5) we have

M) =@/ [ Te-vwl @
where
Y(u) = exp(—U/d"y/O dt'g(x—y,t—t’)n(y,t'))-
(M

Before proceeding with the calculation of averaged
quantities we must specify the noise distribution. From
Eq. (1) one can see that for negative values of the field
h, the noise becomes exponentially large—on physical
grounds this is to be avoided. We therefore choose a
noise distribution which provides only positive values of
7 so that the field h is always positive. In this paper we
shall choose the distribution to be uncorrelated and of
Poisson type (with 7 € [0, o0]):

Plol ~ exp (~(/D) [aty [~ dny.n). (@)

Henceforth all averages over P will be denoted by an-
gled brackets. Other distributions will be considered in
a following paper [5].

Since this Rapid Communication is primarily con-
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cerned with results we shall not describe the details of
the calculation in much depth (a more detailed account
will be presented in [5]). In order to evaluate the average
height one averages Eq. (6) using the above distribution.
This averaging necessitates the introduction of spatial
and temporal “lattice” cutoffs, which are then absorbed
by rescaling all lengths and times with respect to these
cutoffs. For the function ((u)) one finds

(¥(u)) = exp[—uDtp(uD/T)],
where 7 = (411'1/t)‘1/2 and
¢(z) = [zT(d/2+2)] "
x [ dug RO + 22+ 2 e 2), (10

(9)

where F(a,b;c; z) is the hypergeometric function [8].

To calculate the asymptotic form of the average height
one needs only the first term in the small-u expansion of
¢, which to the order required is simply given by unity.
One then sees from Eq. (6) and Eq. (9) that the average
height (h) ~ In(t) for all spatial dimensions d. This result
may also be used to evaluate the evolution of the local
interface roughness E(t) = ((Vh)2). From Eq. (1) we
expect E(t) ~ 8;(h). This implies E(t) ~ 1/t for all d.

The evaluation of the width is more involved since it
requires the next order in the small-u expansion of ¢—
this next to leading term will be found to be strongly
dependent on d. We define the width by W (t) = [(h2?) —
(h)?]*/2. By double application of the logarithm repre-
sentation (5) one finds the following form:

Cdu [*d
W2(t) = (20/))? / Tu / D et ((u+v))
— (¥ () (¥ (v))]- (11)
The leading terms in the small-u expansion of ¢ are found

to be (z = uD/T)

1— a2+ 0(22,2%/4), 0<d<2

1+ (z/4)(In(z) — 1) + O(z?), d=2
- 1+d/2
S e (ﬁf) 224+ 0(z), d>2.

(12)

¢(2) =

Substituting the above forms for ¢ into Eq. (9) and
using Eq. (11) then yields the asymptotic results given
earlier in Eq. (2) [10] (the d-dependent prefactors for the
width are complicated and will be given in [5]). This com-
pletes our sketch of the analytic solution for the asymp-
totic behavior of the model defined in Eq. (1).

There are many possible extensions to this work.
Firstly, one can try to use this method to calculate the
general correlation function C(r,t) = ([h(r,t)—h(0,1)]?).
Knowledge of this function would be essential if one is to
prove the existence of scaling in this model. Also, one
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may repeat the above calculation for different choices of
the distribution P[]—one expects a fair degree of in-
sensitivity of the exponents to the exact choice of P, al-
though similar examples are known where the exponents
are dependent upon the gross characteristics of the distri-
bution [7,9]. The evaluation of the short-time behavior
of the system may also be of interest. We should also
point out that the physical importance of the nonlinear
term (Vh)? in Eq. (1) is not clear. It is essential in
order to achieve an exact solution, but would appear to
be subdominant to the diffusion term when the interface
fluctuations are small. It would be of interest to clarify
this through some approximate analysis of an equation
similar to Eq. (1), but with arbitrary coefficients in the
noise term (so that A may be taken to approach zero.) It
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may be that the nonlinearity is important only for d > 2
where the interface fluctuations for the EW-type model
(i.e., with no nonlinear term) are already negligible.

One hopes that the exact results obtained from this
model will be of some use in the broader picture of in-
terface growth (and associated areas such as fluid turbu-
lence, reaction-diffusion models, etc.). This model may
perhaps be used as a testing ground for the more sophis-
ticated techniques used to study these systems, such as
mode-coupling theories and the dynamic renormalization
group.
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