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Sign-singular measure and its association with turbulent scalings
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Turbulent quantities such as vorticity, which oscillate in sign on very fine scales, have recently
been characterized by sign-singular measures [E.Ott, Y. Du, K. R. Sreenivasan, A. Juneja, and A. K.
Suri, Phys. Rev. Lett. B9, 2654 (1992)] and quantified by the so-called cancellation exponent. Here,
the connection between the cancellation exponent and other known exponents for velocity structure
functions and multifractal spectrum of the energy dissipation field is discussed. Comparison with
high-Reynolds-number experimental data in one dimension and direct measurements of vorticity
in a plane in moderate-Reynolds-number Bows reveals excellent internal consistency. Estimates for
second-order cancellation exponent are presented.

PACS number(s): 05.45.+b, 47.27.—i, 52.35.—g

Consider local mean value of the vorticity

1
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in D-dimensional space, and its global average
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where the number of the r-sized cubes N = 1/r (as-
suming V = 1), in complete analogy with the generalized

Recently, a quantity called the cancellation exponent
has been introduced to describe the tendency for vor-
ticity field in high-Reynolds-number fluid turbulence (or
magnetic field at high magnetic Reynolds numbers) to
oscillate in sign on very fine scales [1]. This leads to the
concept of sign singular -measures, which are introduced
in analogy to multifractal probability measures. Con-
sider a measure p, of a finite interval X. Let A C X
such that ls, (A) g 0. The measure p, is said to be sign
singular if, for any such interval A, there is an interval
B,B C A, such that p, (A)ls, (B) & 0.

To characterize sign-singular measures quantitatively,
the cancellation exponent has been introduced [1,2]. In
particular, for high-Reynolds-number fiuid turbulence,

. I f~ cudxI

I fv 47 dxI

where the vorticity u = V x v, v being the velocity 6eld.
The domain V is divided into a grid of cubes t; of edge
length r. The cancellation index is defined as

lny, (r)
K = 11II1r~o ln 1/r

dimension formalism [3].
For simplicity, we start with the one-dimensional

model, D = 1, for which the vorticity u = 8 v, v being
the "velocity. " Then, Iw;I is simply Iv(x+ r) —v(x)I/r,
and therefore, according to Eq. (4),

( („))
(Iv(z+ r) —v(x)l)

The numerator of (5) represents a structure function of
a random process (cf. comment [16] in [1]).

For fully developed turbulence, we expect (Iv(@+r)—
v(x) I) r; for Kolmogorov turbulence, n = 1/3. There-
fore

(6)

which corresponds to the scaling of the vorticity field.
For Kolmogorov turbulence, PI ——2/3. From Eqs. (2),
(4), and (6), one has

(7)

This result can be easily understood. For Kolmogorov
turbulence, the vorticity scales as ur(r) = u(l)(l/r)2I,
where l is the size of the energy containing eddies. There-
fore the contribution to the integral (3) by large eddies,
with scale r' ) r, is (l/r') Isr, while that of small ed-
dies, r' & r, is (l/r') I r' Thus the main .contribution
comes &om "resonant" vortices r' r, so that the inte-
gral (l/r) I r, and ur, 1//rzI (reca.lling that D = 1).
Now, Eq. (4) simply averages this expression, resulting
in Eq. (6).

These expressions can be generalized for the three-
dimensional case. Indeed, now the contribution of large
eddies is (l/r') I r, while that from small eddies is

(l/r') I r' . Then, the contribution comes again from
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resonant vortices, resulting in Eq. (6). Note that the
contribution of small eddies can be larger in pathological
cases, such as when vorticity lines are parallel to the box
sides. Suppose, for the "worst" case, that the vorticity
lines are lying in the y-z plane. Then, the integration
over y and z in Eq. (3) is trivial. It is easy to see that
the contribution of small eddies is (t/r') i r'rz, with
the same conclusion.

Definition (2) applies in the singular limit as the
Reynolds number Re-+ oo. For any large but finite Re,
the small scale variation is limited at r, (Kolmogorov
scale). The definitions (1) and (2) have a meaning in the
scaling range I )) r ) r„which corresponds to the iner-
tial range. This gives us another means for verifying Eq.
(7) and estimating N [4].

When r & r„we have
I f& udxl f& Iculdr which,

in combination with Eq. (6), gives y, (Irul)/~(l) =

1 1u dx = — (v . ds)„,r' . r'C;
(8)

where the contour integral is taken on the surface of the
r cube, and ()„means three components and the con-
tour lies on a plane normal to the coordinate x (e.g. , the
z component corresponds to the z =const plane, etc.).
The overbar corresponds to the averaging along the co-
ordinate, say, for the z component, v = (1/r) f +"v dz.

To get a better understanding of Eq. (8), let us write
down its z component, and average

(l/r, )~'. Thus, for Kolmogorov turbulence, (la@i)/u(l) =
Re i [5]; further, r, Re i, so that g,
yielding tc = 2/3 as before.

The three-dimensional analog of the structure function
form (5) can also be constructed. Indeed,

1 1 1
(~wv. —&.vw)d» = -(iv. (y+ r) —v. (y) + vw(z) —vw(z+ r)I)

C ~ C
2= -(Iv;(x+ ri) —v;(x)l),r

where, in addition to the z averaging, the overbar corre-
sponds to the average parallel to the velocity component
(i.e., z average for v, and y average for v„). In the last
inequality yet another mean value has been introduced,
averaging over all directions lying in the z = const plane.
The vector ri points in one such direction. The final
expression is analogous to the structure function because
of the presumed isotropy of the process.

We now specify random fields that can be treated
with a cancellation index. A process with Av r has
the energy spectrum E(k) k i i( k sos for Kol-
mogorov turbulence). We may indicate by Kolmogorov-
type turbulence any isotropic random process with con-
verging energy (f E(k)dk & oo) and diverging vorticity

[fE(k)k dk ~ oo as Re~ oo]. It is then clear that n
should satisfy

) ~2
1

(&(r)') =

cf. (6). Clearly, in analogy with Eqs. (5) and (9),

( („) )
(I ( + ) — (*)I')

r2

or (12)

tion index e is directly related to the spectrum exponent,
according to Eq. (7).

We saw that the index @ corresponds to the first-order
structure function [see Eq. (5) or (9)]. The second-order
structure function is similarly related to

0(a &1,

and, for the vorticity field itself, that

(10a) (~(r) ) - I

—
I (lv'(»+re) - v'(»)I ).

t'2i '
2

0&Py&1. (10b)

It is the property (10b) of Pi that makes the cancel-
lation index of the vorticity field an interesting quantity
to measure. Indeed, if n ) 1, i.e., Pi ——1 —n & 0,
then the main contribution to the integral in Eq. (3)
would come &om large eddies, and ~ = 0, independent
of pi [cf. Eq. (7)]. If, on the other hand, n & 0, then
smaO eddies contribute, acting like a noise, at least for
the one-dimensional section of the random process, typ-
ical for the laboratory signal [6]. In such a case, e = 1,
again independent of Pi.

Finally, if the vector-potential structure functions sat-
isfy condition (10a), i.e., magnetic field B behaves like
IBI 1/rp', where Pi satisfies Eq. (10b), the cancella-

f~ i~id» fz edx
( -)=f' „„(')= (13)

Here e means the energy dissipation rate, as usual. We
also use y(r) = P,. p (t,)

z and a local mean value

1
Icosi; = [~Id».

C;
(14)

Now,

The question now is the relation between the exponent
P2 and other known quantities. Obviously, if there is no
intermittency, then (u(r)z) (u(r))2, and P2 ——2e. In
general, this will not be true.

The probability measure has been defined [7—9]
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(I~(r) I'& =

IcuId»
I

y(r) (
& v )

or

1. —D = 1. + —D2/3 — D$/32 3 3

(-) 4
D2 = —Dq/3 ——D2/3.

(20)

and

lI)( ) D (
I~Id»

I

&l & v )
(i5a) Finally, eliminating D2/s with the help of Eq. (20) and

Di/3 with Eq. (17), we may write Eq. (18) as

(e(r)q) „—(D tiq)(q i) (i5b)

P, = i-D,"+2~,
or, for D-dimensional fields, as

(2la)

The dimensions Dz and Dq are based on difFerent mea-
sures (13).

According to [10] the structure functions are related to
p measure:

(I (*+ ) — (*)I")- '"" " "*". (16)

The measure here corresponds to a linear section of the
process, and so, in order to match with this formula we

put D = 1 hereafter. We can then compare Eq. (16)
with Eqs. (5) and (9). Taking into account Eqs. (6) and

(7) we get

2 ( 2 (3)~ = -Di/s
I

= -(D,/, - 2)
I

.
3 ( 3 (i7)

Here Dq ) corresponds to three-dimensional measure-

ments (Dq = Dq + 2, see [10,11]).
The scaling exponents in Eq. (16) have been measured

by several independent investigators [12], all of which are
in reasonable agreement with each other. In particular
[10], Di/3 —0.96, so that, according to Eq. (17), one
has z = 0.64. If we invoke Taylor's hypothesis and relate
the cancellation exponent of b,v/ht in high-Reynolds-
number turbulence to that of the vorticity [see Eq. (5)],
this estimate is identical to the measurement in [1].

For p = 2, we coxnpare with the second-order structure
function, Eq. (12). It follows &om Eq. (11) that

1
p2 ——1+ D,/, . -

3

From the knowledge that D2/s ——0.92 [11),P2 ——1.31.
Consider (~(r)2) at the Kolmogorov scale r = r, It.

follows from Eq. (15a) that

p2 ——D —D2 ' + 2~. (21b)

For nonintermittent turbulence, D2 = 1, and p2 indeed
equals 2)c, as already mentioned. Since the formula (2].)
contains quantities involving only the u field, it is con-
ceivable that p2 can be obtained without involving the
dimensions Dq for the energy dissipation. Indeed, sup-
pose that there is only one scaling regime in the inertial
range l & r & r, This .implies that

(~(r)') = ~(l)'
I

—
I

I,r&
(22)

Since (~(r, ) ) —
(I&uI ), using the previous results that

I jv~d»I = (u(l) and (I&u)) = fv IcuIdx = y, (r, )(u(l), we
get from Eq. (15) (at r = r, )

(q —1)Dq( ) = (2q —1)D2 —qD2 (24)

This formula (in terms of magnetic fields) has been ob-
tained in Ref. [13]. Comparing Eq. (23) with Eq. (22),
we recover Eq. (21) [and now, backwards, f'rom Eqs.
(21), (17) and (18) would follow Eq. (20)]. On the other
hand, the formula (21) can be related to the spectrvm
of carccellation exponents introduced in [14], where )c2 is
defined Rom Eq. (2) with g( ) P, I jz cud»I2. Com-
bining this with the definition (11) it easy to see that
Ps ——D+ ic2 Indeed, .substitution of this expression into
the formula (55) of Ref. [14] with q = 2 gives Eq. (21).

In order to obtain an estimation of P2, according to Eq.
(21) and independent of Eq. (18), we use the relationship
between D~ and D„,namely,(~) (~')

We also have, according to Eqs. (16) and (17),

(i9a) see [15]. This formula is obtained by expressing all the
quantities involved at Kolmogorov cutoff' scale r = r, .
Putting q = 1/2, we have

(19b)
D(~) D(~')

Z/2 (25)

Noting that in addition to Eq. (19a), (~(r, ) )
(Ice(r, )I2), and fv IcuIdx = (IwI), it is possible to com-
pare Eqs. (19) and (15) to give

Now, from experimental data, D(i/2) ——0.94 [9], and sub-

stitution of )c = 0.64 into (21) results in P2 ——1.34,
in good agreexnent with the estimate obtained &oxn Eq.
(18). Therefore, from Eq. (21a), the second-order can-
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cellation exponent e2 ——0.34.
Expression (21) also holds for magnetic fields, but for-

mulas (17), (18), and (20) do riot. The point is that the
vector-potential structure functions are not related to the
energy dissipation fiuctuation, unlike (16).

While there is thus good internal consistency in high-
Reynolds-number measurements, it should be empha-
sized that the measurements were made at a single point
in space, which were interpreted as one-dimensional cuts
by involving Taylor's &ozen Bow hypothesis. It is con-
ceivable that one-dimensional cuts can miss rare events
and e6'ectively one-dimensional objects such as vortex
filaments. It would therefore be far better to measure
vorticity directly, at least one component of it. Vorticity
measurements in a plane have been made in the wake of
a circular cylinder using particle image velocimetry. The
cancellation exponent for one-dimensional cuts of these
vorticity measurements have already been obtained in
Ref. [1];the scaling was quite unambiguous, and the first-
order cancellation exponent had a value of 0.45. We now
obtain the cancellation exponent for a component of vor-
ticity in a plane, make consistency checks and obtain an
estimate for the second-order cancellation exponent. We
summarize the results here while relegating experimental
details to a later publication.

As already remarked, the fiow was the turbulent wake
behind a circular cylinder. The Reynolds numbers based
on the cylinder diameter and the oncoming uniform ve-
locity were 1100 and 4500. Measurements were made in
a water tunnel at a distance of 50 diameters downstream

of the cylinder. The vorticity component ~~ in the z-
z plane, where z is the direction of the mean Bow and
z along the length of the cylinder, was estimated from
the velocity field obtained from particle image velocime-
try. From scaling experiments, it was determined that
the cancellation exponent was 0.84, and that the expo-
nent Pz was 1.74. The scaling was unambiguous in both
cases. Substitution of these values into Eq. (21b) re-

sults, for the two-dimensional case, in D —D2 ——0.06,
which shows small effects of intermittency. Equation (25)
then yields a D~&2 of 0.94, in excellent agreement with
the measurements of Ref. [9]. Further, from the relation
Pz ——D+ e2, we obtain fez ——0.26. Recall that fez for the
difFerent conditions of high Reynolds numbers was 0.34.

In conclusion, we have shown that the sign-singular
measure is relevant to turbulent vorticity and magnetic
fields. It is also directly associated with the gener-
alized dimension of dissipation and (vorticity) . This
observation makes it possible, among other things, to
compare theoretical expressions with experimental data,
and make predictions about high-order cancellation ex-
ponents. The agreement is very good. We have explicitly
considered the second-order cancellation exponent, and
provided estimates &om measurements along a line and
in a plane.
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