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We consider time series with Suite domain (band-limited) power-law spectra. Our analysis is
based on exact representation of the structure (mean square increment) function for such processes
and shows that the considered time series exhibit an approximate self-affinity in a wide range of time
scales. The self-affinity is embodied in the leading asymptotic term which represents the familiar
"pure" &actal behavior. Next we explicitly show that the impact of the lowest and the highest scales
of the process cannot in general be neglected and conclude &om this that for adequate description
of the natural processes considerations beyond the simple fractal analysis are required. We also
propose a method for determining the spectral parameters of experimentally recorded self-afBne time
series which is based on nonlinear, least-squares St and the exact form of the structure function.
Tests employing numerically generated series as a benchmark demonstrate this method's excellent
accuracy and robustness.

PACS number(s): 05.40.+j, 02.50.Ey, 02.60.Ed

Random processes with power-law frequency spectra,
S(f) = Af, provide apt descriptions for a variety of
complex structures and physical phenomena. An incom-
plete list of applications includes terrestrial and man-
made rough surfaces [1], fracture surfaces [2], the ocean
bottom [3], the surface of the Moon [4], the structure of
the atmospheric turbulence [5,6], ocean waves' spectra
under various sea and atmospheric conditions [7,8], frac-
tional Brownian motion and fractional (colored) noises

[9], etc. Power-law type behavior has also been identi-
fied in biological systems [10] and as short trends, even
in stock-market fluctuations [11].It is therefore of prime
interest to develop more precise and reliable methods for
retrieving the parameters of the spectra fmm experimen-
tally recorded time series [12].

Modern approaches utilize for this purpose self-similar

[9,13] or in general, self-aKne [14] properties of the
power-law processes. For a given random time series
z(t) these properties can be illustrated by considering
its structure function (SF) defined by [6] b, (ti, ts)
([z(ti) —z(t2)] ); the angle brackets designate ensem-
ble average. More specifically, it has been shown [13]
that for a Gaussian random process, having a power-law
spectrum with no characteristic scales: D(a, ~) oc r
where v = ~ti —t2j. [Often, the notation H = (o. —1)/2
is alternatively used; H is called Hurst's exponent [15]].
Thus, for every real p & 0, z(pt) and p( )I z(t) have
identical structure functions and therefore are statisti-
cally indistinguishable. Further, the graphs of the z(t)
realizations are fractals with fractal (Hausdorff) dimen-
sion D which is solely related to the spectral exponent
[16,13]

Several algorit&ms for estimating the &actal dimension
have recently been tested using as a benchmark numeri-
cally generated power-law time series with prescribed n
[17—20]. Compared to the spectral methods these algo-

rithms render superior estimates of n [through Eq. (1)];
see in particular Ref. [17], where this comparison is ex-
plicitly carried out. And yet, certain systematic devia-
tions from the linear relationship between the power-law
index and the fractal dimension (1) are reported in all nu-
merical experiments. More precisely, for a & 2 (or equiv-
alently D ( 1.5), Eq. (1) underestimates the calculated
fractal dimension; conversely, for a ( 2 (D & 1.5) Eq. (1)
overestimates the calculated fractal dimension. These
discrepancies are more pronounced when D ~ 1 and
D ~ 2, important special cases referred to as marginal
and extreme fractals, respectively [13].

To understand why these discrepancies occur we re-
mark that (1) has been derived for a power-law process
with no characteristic scales, i.e. , for processes that are
pure fractals [13]. Any real process, however, has both a
smallest and largest physical scale which imposes in the
frequency domain a high and a low &equency cutoff, re-
spectively. Implicit cutoffs, implied by the finite length
and the discretization step, do exist for the numerically
generated time series as well. It has been conjectured
[18] on the basis of extensive numerical simulations that
the discrepancies can be explained if the impact of the
frequency cutoffs is accounted for; see also [21]. This
task appears not to have been carried out and it will be
our first concern in this paper. The second will be the
introduction of an algorithm for retrieving all (not only
a) parameters of a finite domain power-law spectra. The
last, but perhaps conceptually most important aim, is to
demonstrate, on the particular example of self-affine pro-
cesses of the type considered here, that methods based
on scaling properties, as informative as they can be, are
fundamentally limited and provide only an approximate
description of the natural phenomena.

For the above purposes we consider random processes
having power-law spectra with sharp spectral cutouts fi
and f2, i.e., S(f) = 0 for f ( fi, f & fz Our analysis.
is straightforward and begins with the remark that the
SF of such processes can be represented in the following
exact form:
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(2)

where 6;, i = 1,2, are functions expressed in terms of
the type (1,2) hypergeometric function

/1 —n 3 —n 1
6;(n, 7) = 20, 1 —i' ~;,—; (z—f;7.)2 2 2
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and 0 = Af; /(n —1). The variance of z(t) is
0 = z t = 0~ —e2. An expression for the SF cor-
responding to spectra with a low-frequency cutoff only
is given in Ref. [22]. Formula (2) easily follows from the
spectral representation [6] of b, (n, ~) by expanding the
cosine term in this representation and integrating term-
by-term. It is valid for arbitrary time lag 7, provided
n g 2n+ 1, n = Q, 1,2, . . . . In what follows, however, we
shall restrict our analysis to the interval n E (1,3), for
which z(t) is (approximately as we shall see in a moment)
self-affine. (The analysis of the power-law spectra with
values of the spectral exponent n & 3 and n = 2n + 1
will be presented in a forthcoming paper. )

Self-affinity is not apparent from Eq. (2) and in fact as
defined z(t) does not exhibit exact self-afBnity. To see how
an approximate self-affinity comes forward, we note that
in the natural models most often fq » fi, in which case
for 7 » (2z'fz), hz is more adequately represented by
its full asymptotic expansion. Accordingly,

b, (n, ~) = y r '+ b, i(n, 7.) —2a,'
cos(2z f2' + kz'/2)

(2m f ~)"

In (3), (a) q = I'(a+k)/I'(a) is the Pochhammer's symbol,
I' is the gamma function, and
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FIG. 1. Log-log graph of the structure function of a ran-
dom process with finite domain power-law spectrum (solid
curve). The parameters of the spectrum, the variance u and

y [see Eq. (4)] are given in the legend. The dashed-dotted
line represents the best linear fit to log~ b, (n, r) within the
self-affinity interval. The positions of the crossover times are
marked by vertical lines. The corresponding pure fractal pro-
cess is illustrated by the dashed line.

~or I'((5 —n)/2) ~ 1

(n —1) I'(n/2) 7rf2
(6)

b, (n, ~) 2o + 20i ) (—1)"(n —1)1,
k=z

cos(27r fi~ + kz/2)
X

(2z.fir)"
A trigonometric series involving inverse powers of f2, see

(3), is neglected in (5).
The end points of the time interval in which z(t)

displays approximate self-affinity (crossover times) can
roughly be estimated by equating the leading order terms
representing b, (n, ~) for short and intermediate, and in-
termediate and long tixnes [21]. From Eqs. (2) and (3)
for the first crossover time we infer

(4) and from (3) and (5) we have

is a quantity similar in expression to topothesy intro-
duced in Ref. [13] to describe the topography of rough
surfaces. The physical dimension of y is [dim z]2~(s ~) x
[time](i )~(s ); note that y does not depend on fi and

2 ~

The SF in the pure fractal case is represented only
by the first term in (3) for all time intervals. The os-
cillations produced by the third term, involving f2, are
noticeable only for processes with relatively large o2,
i.e., for processes close to the extreme fractal case, see
also Fig. 1 below and the related comments. With in-
creasing w the magnitude of these oscillations decreases.
For small values of its argument qE2 1 and there-
fore it is the first term that is dominant in (3) for
(2z'f2) « v « (2vrfi) rendering the approximate
self-af6nity. For longer times the efFect of the second
term in (3) increases and if x » (2mfi) i the SF enters
its second asymptotic regime in which it approaches 2o
in an oscillatory manner:

I'(n/2)
~/z I'((3 —n) /2)

~/( -~)
1

zfi

The time interval (7i 72) is called scaling or self-affinity
interval.

Graphs of log2 E(n, 7 ) versus log2 v are shown in Fig. 1
(solid curve) for n = 1.1 and in Fig. 2 for n = 2.8; the
other spectral parameters used to draw the graphs are
given in the legends. In addition, the SF's for the cor-
responding pure &actal case are illustrated by dashed
lines. (It is worth noting at this moment that the pro-
cesses considered here are not true fractals [23], for their
HausdorÃ-Besicovitch dimension is D = 1. One can show
this by repeating the steps of Orey's proof [16] and reck-
oning with the behavior of (2) as ~ -+ Q. Thus, at very
fine resolutions the graphs of x(t) realizations are rec-
tifiable [24] curves. ) The dashed-dotted lines represent
the best linear fit to log2 b, (n, v ) within their respective
intervals of self-aKnity. If one adheres to the pure &ac-
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tal concept, the slope of these lines should be 2H. From
Fig. 1, H = 0.141, thus the estimated fractal dimension
is D„q ——2 —H = 1.859, well below that following &om
Eq. (1): D = 1.95. Conversely, &om Fig. 2, D„q ——1.21
which is higher than the expected value of D = 1.1.

Equation (3) shows that these systematic deviations
are due to the infiuence which the spectral cutoffs have
on the behavior of the SF in the scaling interval. Indeed,
the third term in (3), respectively the upper cutoff, affects
the values of b, (o., r) only for times relatively close to 7i
as the magnitude of this correction is significant only
when o. & 2 and increases for a ~ 1. Conversely, the
lower cutoff affects b, (a, w) for w close to r2 and o. ) 2.
The imbalance between the second and the third terms
in (3) alters the tilt of the SF (when compared to the
pure fractal case) and causes the systematic deviations
observed in the numerical experiments. With decreasing
the ratio /i = fi/f2 the deviations decrease with a rate
which can be quantified by considering the slope of the
SF at the middle point for the interval (log2 7i, log272).
From Eq. (3), accounting for the leading orders in b only,
this slope is given by the ratio

where

(~ 1) 2pl/( —i)b(s — )/2

pi/{~ —i)b{s-~)/& pi/{s —~)b(~—i)/2 ' (8l

We recall that in the majority of the applications b (& 1.
Hence, if a. + 1, only the last term in the denomina-
tor is not negligible which leads to a slope greater than
that corresponding to the fractal case: sf —— n —1.
With increasing o. , s(a) approaches sy until o, reaches
2, where according to (8), s(2) = sy(2) = 1. Further in-
crease of a increases the importance of the second terms
in both the nuxnerator and denominator, and in efFect
s & sy for 2 & o, & 3. In terms of the relative deviation
(D„i D)/D, where D„t.——2 ——s(a)/2 and D is given by
Eq. (1), this behavior of s translates into negative values
for o. & 2, zero for o. = 2, and positive values of relative

10

l092 t
FIG. 2. The same as Fig. 1 but for different spectral pa-

rameters.

deviations for a ) 2. Equation (8) correctly predicts rel-

ative deviations whose magnitudes for o. & 3 are greater
than those for o. & 1. The latter has previously been
found in the numerical simulations; see Fig. 5 in [20].

It is interesting to specify the range of b values in which
for a given o; the randoxn process is close to the corre-
sponding pure fractal process. Let either o. = 1+ e or
n = 3 —s with s fixed; 0 & e & 1. From (8), the correc-
tions to sy are less than, say 1%, provided h & 10
Thus, for small e the convergence of the finite domain
power-law process towards its idealized fractal analog is
extremely slow, a fact also confirmed by the numerical
simulations [20].

The fact that the harmonics outside the power-law re-

gion of the spectrum, or their lack, can affect and alter
the overall (&actal) behavior leads to an important con-
clusion: namely, when a real process or structure that
appears self-affine is encountered, attempts to either jus-
tify the use of the sixnple fractal models or xnore often
attempts to improve them by including terms beyond
the leading order have to be carried out.

The analysis hitherto of a band-limited, power-law pro-
cess implies a straightforward method for retrieving the
spectral parameters of experimentally recorded time se-
ries: that is, calculate the SF associated with the time
series for various time lags and fit these data with the
expressions (2), (3), and (5) in their respective intervals
of validity using a nonlinear, least-square algorithm. In
addition to the advantage of being based on exact; re-
sults, such an approach renders all spectral parameters
and removes the necessity for selecting the interval of
self-affinity which often is an ambiguous step. We remark
also that iF2 is an entire function (numerically converg-
ing faster than the exponential function &om the same
argument); the asymptotic series in (3) and (5) are easily
summed using the optimal truncation rule [25]; intervals
of validity of (2) and (3) &om one side, and (3) and (5)
from the other overlap in which cases these expressions
yield identical values. The latter considerably facilitates
the implementation of the fitting procedure and makes it
efficient.

The method has been tested versus numerically gen-
erated time series [18,26] with preselected spectral pa-
rameters. For this purpose we use uniformly distributed,
approximately b'-function correlated phases in the inter-
val [0, 2n]. The total length of the time series is 2is;
the discretization interval for all runs is b,t = 1 which
leads to an upper cutoff of f2 ——0.5. The lower cutoffs
are explicitly imposed for any particular realization. The
structure function for a given realization is calculated us-

ing a method similar to that presented by Higuchi [17]
appropriately modified so as to yield the mean square in-
crexnent of the time series instead of its average "length. "
An accuracy of at least 10 has been required and
achieved kom the nonlinear least-square Gt. Typical re-
sults are presented in Table I, where the retrieved pa-
rameters for three sets of time series characterized by
difFerent n are given. An excellent agreement with the
spectral parameters used for the tixne series generation
(see the caption of the table) has been obtained in these
as well as other runs which we have carried out but are
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not presented here.
It is a good strategy to use the outcome from either

the spectral or fractal methods as starting values for the
nonlinear fit. However, all numerical experiments con-
ducted by us indicate that the procedure converges to
the true spectral values even when the initial values are
chosen distantly apart. For example, the starting values
for the runs presented in Table I are fi ——0.01, f2 ——0.1,
A = 5.0, and n = 2.0 (the first and the third sets),
a = 1.5 (the second set). We remark that the method is
not limited to the case fi « f2 and thus it is uniquely
suitable for identification of relatively short time, approx-
imate self-aKne trends, and also for processing a limited
number of experimental data. The accuracy and the ro-
bustness of the method suggest that a simple modifica-
tion may prove useful in cases when more complicated
spectra, characterized by several difFerent spectral expo-
nents in different frequency intervals, are involved. The
SF for such spectra can be constructed as a sum of sev-
eral functions of type (2). Although usually sharp, the
cutoffs of the realistic power-law spectra are not abso-
lutely sharp. We note, however, that the contribution to
the SF of the spectral regions in which the cutofFs eH'ec-

tively take place is additive. Therefore the expressions
obtained here constitute the essential part of any realis-
tic self-affine SF. Finally, we expect that the knowledge
of the precise form of the SF for finite domain power-law

TABLE I. Retrieved spectral parameters for time series
generated by using n = 1.2 (upper part of the table), o = 2.0
(middle part), and o. = 2.8 (lower part); in all parts the first
row corresponds to fi ——1/2, second to fi = 1/2, and the
third to fi ——1/2; in all examples A = 1 and fz ——0.5.

1.2010
1.2008
1.2008

2.0009
2.0006
2.0005

2.8012
2.8005
2.8000

0.9981
0.9984
0.9985

0.9976
0.9984
0.9988

0.9959
0.9976
0.9990

fi
0.3828x10 ~

0.1828x 10
0.9165x 10
0.3836x 10
0.1869x 10
0.10P7x1P '
Q.3842 x 1Q

0.1882x 10
0.1025x 10

0.5001
0.5000
0.5000

0.5004
0.5002
0.5001

0.5017
0.5010
0.5004

spectra will be useful for distinguishing between empiri-
cal time series that result &om low-dimensional strange
attractors and those from stochastic processes [27).
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