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Eigenvector statistics in the crossover region between Gaussian orthogonal
and unitary ensembles
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%'e give a general framework for the joint probability density of an eigenvalue and the corre-
sponding eigenvector. This we exactly determine for random Hamiltonians of the form K = S+iaA
where S (A) are symmetric (antisymmetric) N-dimensional matrices whose elements are normally
distributed. The random matrices K represent the Gaussian ensemble intermediate between or-
thogonal (n = 0) and unitary (o, = 1). In the limit of N m oo, we give the explicit form of the
probability density of one component of an eigenvector in the crossover region, a = O(1/N).

PACS number(s): 05.45.+b, 02.50.—r, 24.60.Ky

Random matrices [1], i.e., matrices whose elements are
random variables with given probability laws, have been
used to describe statistical properties of various quantum
systems; random matrices were originally introduced to
model highly excited states of complex nuclei [2]. Recent
advances in experimental techniques of condensed matter
physics have rendered possible the fabrication of submi-
crometer electronic devices. In such mesoscopic systems
there appear fluctuations due to quantum interference
effects which are well described by proper random ma-
trix models [3]. In general, it is believed that quantum
systems whose classical analogs behave chaotically show
universal Buctuation properties which are characteristic
of those of random matrix models [4,5].

Various studies indicate that, in the limit of large
matrix dimension, correlations of a few eigenvalues and
eigenvectors show universal behavior; they depend only
on the overall symmetry requirements that a matrix
should satisfy and are independent of all other details
of the distribution of individual matrix elements. For
the sake of theoretical convenience, the Gaussian form of
the distribution is usually employed. Three universality
classes of random matrices are known from the analy-
sis of symmetries: Time reversal invariant systems are
described by the ensemble of real symmetric matrices
known as the Gaussian orthogonal ensemble (GOE). On
the other hand, the Gaussian unitary ensemble (GUE),
the ensemble of Hermitian matrices with equally proba-
ble real and imaginary parts, - is appropriate to systems
with broken time reversal invariance. If spin dependent
interactions are important in the time reversal invariant
system, the relevant ensemble is the Gaussian symplectic
ensemble (GSE) which we will not discuss in this paper.
There are also many problems requiring the study of en-
sembles intermediate between these three classes. Among
them, of particular interest are the transitions to the
unitary ensemble. For example, in mesoscopic devices,
magnetic 6elds are common experimental tools and play
the role of a small perturbation breaking time reversal
invariance and drive the transition to the unitary ensem-

ble. In this paper, we consider a GOE-GUE crossover
represented by the following random matrix ensemble:

H = S+ iaA,

where S (A) are N-dimensional real symmetric (antisym-
metric) statistically independent random matrices. Inde-
pendent matrix elements of S and A obey the Gaussian
distribution with the same variance A:

(S;(,) = (1+6;,)A, (A,(,) = A (2)

where the angular bracket means the ensemble average.
The parameter a drives the crossover: cr = 0 (1) corre-
sponds to the GOE (GUE).

Pandey and Mehta studied the eigenvalue statistics of
this ensemble and got explicit forms of energy correla-
tion functions [6]. The same crossover has recently been
studied for small disordered metals with the help of the
supersymmetry method [7]. Less is known for the eigen-
vector statistics. Even the simplest correlation function,
the probability density of one component of an eigen-
vector, is not available in the crossover region. In the
limit of N -+ oo, this probability density takes simple
forms for the two extreme cases: oc e ~ /~z for the
GOE and oc e for the GUE where x is proportional to
the absolute square of any one component of an eigen-
vector. Until now, however, there is no explicitly known
family of interpolating functions between the above two
limits. Since both of the above forms are expressed by
a y„distribution of degree v with v = 1 for the GOE
and v = 2 for the GUE, a y with v continuously vary-
ing between 1 and 2 has been &equently used for this
purpose. On the other hand, Zyczkowski and Lenz (ZL)
proposed a different form of the one-parameter family of
interpolating functions [8]. Lacking the rigorous deriva-
tion, it is not clear how to relate the crossover driving
parameter [n in Eq. (1)] with the one in the interpolat-
ing function in the above two conjectures. We feel that
the basic assumptions of ZL are wrong: due to gauge
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freedom the distribution of the eigenvector component
can only depend on its modulus and therefore real and
imaginary parts cannot be distributed independently ac-
cording to two diR'erent Gaussians. The present stage of
theoretical understanding apparently requires more work
on the eigenvector statistics in the crossover region. We
also mention that such a crossover function is directly
concerned with the recent numerical experiments on the
conductance through quantum dots under magnetic fields
[9]. There the crossover function can be detected &om
the distribution of maxima of the conductance. Gener-
ally it determines the distribution of transition strengths
&om a fixed state to an eigenstate of the Hamiltonian.

In this paper, we give a formula for the joint prob-
ability density of an eigenvalue and the corresponding
eigenvector, Eq. (3). The formula is quite general and

valid even for general non-Hermitian matrices. For the
ensemble intermediate between orthogonal and unitary
Eq. (1), we give an expression of this joint probability
density for any finite N, Eq. (7). With the help of this
result we can give the exact interpolating form of the
probability density of one component of an eigenvector
in the limit of N ~ oo, Eq. (15). This form is also differ-
ent &om previous conjectures: the above mentioned y„
and the form presented in Ref. [8]. In the following we
outline a derivation of our main results focusing on the
probability density of one eigenvector component; details
will be given elsewhere.

We may obtain the joint probability density of find-

ing an eigenvalue E and the corresponding eigenvec-
tor (Q;) normalized to unity in a volume element
$2Ed2$ . . .$2$ as

(N
P(E &1 " &N) =

N
6 ).I@'I' — D«(H —E) 6' ).H'~y~ —Ey*

i=1 i =1 j=1

The formula is valid for any (not necessarily Hermitian)
complex N-dimensional matrix H. For the somewhat
lengthy derivation, here we can only make some sketchy
remarks. We first fix the component g1 g 0 and con-
sider the Jacobian given by the constraints of the eigen-
value equation. Then we go over to normalized variables
and finally we include Q1 among the independent vari-
ables multiplying by the 6 function for the norxnalization.
The phase of g1 is free and therefore chosen equally dis-
tributed. This leads to the factor 1/z. Strictly speaking,
the formula is valid for nondegenerate eigenvalues, i.e., we
assume the degenerate cases being of measure zero. The
factor 1/N arises because there are N different eigenval-
ues. For a Hermitian Hamiltonian, P is proportional to
6(lmE) implying that the eigenvalues are real. One may
easily check the proper normalization of P. Expressing
the components @; with the help of the eigenvalue equa-
tion by one of them, say $1, the corresponding 6 function
in the product in (3) is proportional to 62(Det(H —E)).
Therefore the complex energy integration may be carried
out, which cancels the strange Jacobian in (3) and leads
to a sum over all eigenvalues.

The transition ensemble Eq. (1) is still invariant un-
der real orthogonal transformations. Therefore, as man-

ifestly seen from Eq. (3), P may depend only on the
following orthogonal invariants:

N N N).&,' ).(@;)' ).I&'I'

Since P cannot depend on a global phase of (g.), we may
write P as

P = 6() lg, I

—1)6(lmE) f(E;cos p)

with a function f depending on E and

2
cos2p = )

Therefore in the course of calculating P expressed by
f we are free to choose g3 —i(4 = ~ ~ ~ —AN —0
and gq/Q1 ——e'~. Then due to normalization it follows
I+11' = 1@2I' = 1/2

We are now able to perform the averaging over the
first two rows and columns of H exactly. The last part of
integration may be done with the help of the expression of
determinants by Grassmann variables. The exact result
1s

p -6(1-X)
f E, cos p) =

N~nN 1(2~P)N —1/2 D(N——2) /2 A 1/2
t A /Eit' 2EA('1+n2) B

[A qA) AD BE

(2A(1 —a ) cosy't B 2/A(1 a+)'l 'f 1 B B+
I

+D ) BA(1 —n2) ( D ) (2 BE2 B&(1+a2))
J

2+ ZN-2 (7)

1
A = 2+sin p (——1),

Ct (8)

with determinants resulting &om Gaussian integrations ZN= (IDet(H —E)I')

=
I

—A(1+ a2)
t'

2 Bl
B~)

t'1
D = 4+sin

Ea )
and ZN is given by

(9)

/'

xex (1—~)P(1+m~ )

[1+~(, , )](1+(u)v'1 —(u'
(10)
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which is calculated with the help of Grassmann integra-
tion. Considering now the orthogonal and unitary limits
o, ~ 0 and n ~ 1, we get exact alternative expressions
for the density of states for any finite N In. these limits
essentially the b function for the normalization remains.
In the case of a = 1 it is easily seen that the p depen-
dence disappears. The limit o. ~ 0 is more delicate since
it produces the b function for the relative phases of Q;.

It is easy to integrate f over energy and we obtain
the joint probability density of eigenvector components.
This does not depend on the energy scale ~A. Further
on we are able to integrate over a number of variables
d QM+& d QN and get the reduced probability density
of components (Q; q. ..M). Introducing

N

) @; = r cosP+ir singcos8,
'=M+Z

N

). I&'I' = r'
i=M+1

with 0 & r & oo, 0 & P, 8 & m, we see the integration
measure proportional to

r 2N 2M 1 sinN —M— 2—
g sinN-—M —1

y dr egg (13)

Considering now the case M = 1 we get the probability
density of one component of eigenvector Pz(~Qz~ ). Of
particular interest is the limit N -+ oo. To get a finite
limit, we change the normalization as P,. ~ ~g;~ = N.
Then the average becomes (~Qq~ ) = 1. If o. is finite
we find Pq(z) oc e, and for o. = 0 we find Pq(z) oc

e ~2/~z, the Porter- Thomas distribution. Knowing the
exact result Eq. (7), we are able to get the probability
density Pq(z) = P1 (z, e) in the crossover region where
the properly scaled parameter e is defined as

~=2o. N. (14)

We finally obtain

F Q sin csin P
(15)

This result essentially follows from the D dependence
of Eq. (7) and the measure Eq. (13). In this limit
only the first term in the curly bracket in Eq. (7) con-
tributes. The integration over 8 can be done and leads
to a nonelementary function. Pq is normalized according
to Jd gqPq(~@q~, e) = 1. Note that we have also ex-
actly f d gq(gq( Pq((@q~, e) = 1. With introduction of
the scaled parameter e, N has disappeared &om the re-
sult and z = ~@q ~

varies from 0 to oo. Similarly e varies
between 0 and oo. Now the orthogonal limit is e -+ 0 and
the unitary limit is ~ -+ oo. Formula (15) includes both
limits exactly.

The value of Pq (0, e) can be expressed by an error func-
tion

W(ln z) = n zPq (z, e) (18)

for various parameters in& = —oo, —1,0, 1,+oo. We find
significant differences to both conjectures proposed in
Ref. [8]. In Fig. 2 we plot the density of ln z for e = 1 com-
pared to the conjectures with the same variance given by
Eq. (17). This yields for the variance (z2) —(z) 2 = 1.40,
corresponding to v = 2/1. 4 for y2 and 6 = 1.225 for
Zyczkowski and Lenz. Actually the new conjecture by
ZL yields a rather good approximation. The maxima are
slightly shifted to the left compared with the exact re-
sult (15) and in accordance with numerical simulations
of those authors on a kicked top [8]. One may ask why
the ZL distribution does yield such a good approxima-
tion. Actually this distribution appears earlier in the
literature [12] and also if one considers the distribution
of the squared modulus of one off-diagonal element of our
Hamiltonian (1): it is exactly a ZL distribution. In a dif-
ferent model for the magnetoconductance in the strongly
localized regime Meir and Entin-Wohlman [13] assume
that the overlap amplitudes between different sites are
directly given by a random matrix of type (1) and only
the distribution of one overlap enters the further calcu-
lation, which in that case is exactly a ZL distribution
varying on the scale n 1. Our theory determines the
eigenvector distribution (15), which starts from a ran-
dom Hamiltonian (1) and relates both via the parameter
o.. There is no need for fitting any parameter. In concrete
physical situations a can be expressed by the magnetic

-4 -3 -2

1n x

It increases like 1/(2~me) for c ~ 0. It is easily seen that
the first derivative with respect to z at z = 0 is given by

Pz (0, e) = —3'(0, e)/(2e) —1/n. , which increases even
more rapidly as e ~ 0. This behavior comes from the fact
that at e = 0, Pq(z, 0) is proportional to e ~ /~x and
can no longer be expanded in powers of z. For e -+ oo
it goes to the GUE result —1/n. We may also give the
variance of z = ~gq ~

expressed in terms of an exponential
integral:

(z ) —(z)' = 2 —ee'Eg(e) .

It interpolates between 2 for the GOE and 1 for the GUE.
For e ~ 0 it goes like 2 + aine.

In order to compare with previous conjectures [8], in
Fig. 1 we plot the probability density of lnz

FIG. 1. Density of 1n z = ln ~@x
~

for
1n s = —oo, —1,0, +1,+oo according to Eqs. (15) and (18).
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FIG. 2. Density of inc for given variance (s: ) —(z) = 1.40
in comparison with W(ln z) for y„and the result of
Zyczkowski and Lenz (ZL) with parameters e = 1, v = 2/1. 4,
5 = 1.225, respectively. Of course, in all three cases (z) = 1.

field. As in the case of level spacing the crossover from
GOE to GUE occurs already on the scale a N
Comparing with the numerical results of Jalabert et al.
[9] requires further integrations. Here we provide only the

exact expression (15) for the distribution of one eigenvec-
tor component, which is central in their paper. However,
our results make it possible to generalize the analysis of
these authors to a continuous change of the time-reversal
breaking magnetic 6eld. The above mentioned reduced
densities may be used to consider the many channel case.

We conclude with a remark on the general method (3).
It can easily be applied to consider complex [10] or real
asymmetric [ll] normally distributed matrices. In the
case of Hermitian matrices it seems not necessary to al-
low for general complex energies. However, it is very
convenient since due to this formulation the Jacobian
is automatically non-negative and therefore allows for a
Grassmann representation. Usually one has to take the
absolute value of the Jacobian and then a representation
in Grassmann variables is not possible. The famous pa-
per on random magnetic 6elds, supersymmetry and neg-
ative dimensions [14] suffers from this deficiency. Here we
have found a rigorous way to circumvent this diKculty.

We thank Fritz Haake for discussions. S.I. acknowl-
edges a stay at SFB 237 "Unordnung und grosse Fluktu-
ationen. "
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