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Self-organized criticality in the "game of Life"
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The question of saturation of self-organized criticality in the "game of Life" is analyzed through
finite-size scaling. We have carried out connection-machine simulations for lattices up to 1024' 1024.
In that range we find no evidence of saturation. We do, however, find finite-size exponents that
seem inconsistent with a single length-scale picture at criticality.

PACS number(s): 05.50.+q, 05.40.+j, 64.60.Ht

The evidence of self-organized criticality in the "game
of Life" [1,2] presented by Bak, Chen, and Creutz [3]
has been questioned by Bennett and Bourzutschky [4],
who claim that the criticality is an artifact resulting f'rom

small lattices. They find that for sizes larger than about
L x L = 100 x 100, the average "equilibration time" sat-
urates at (t)=200+10. We have carried out extensive
connection-machine studies for lattices up to 1024 x 1024.
Our data are consistent with those found by Bak, Chen,
and Creutz, although we estimate the scaling exponents
to be about 10% smaller than theirs. In contrast to Ben-
nett and Bourzutschky, we do not find saturation for L
up to 1024. However, we do observe a crossover in the
finite-size scaling, and our finite-size analysis gives ex-
ponents that seem inconsistent with simple theoretical
arguments.

The game of Life is defined on a square lattice, where
every site is a live site or a dead site. The evolutionary
rules for the sites are simple and based on the eighth
nearest neighbors: (1) Each live site will remain alive the
next time step if it has two or three live neighbors, oth-
erwise it will die. (2) At a dead site new life will be born
only if there are exactly three live neighbors. Initiating
the game of Life from some random configuration gen-
erally leads to a "rest" state with about 3% live sites,
partly consisting of simple cyclic life configurations. Our
simulations were carried out using open boundary condi-
tions, and the state was identified as being at rest when

it was identical to the state observed two or six time
steps earlier (longer periods never occurred in our sim-

ulations). To test for self-organized criticality, the rest
state is perturbed by Sipping a single, randomly selected
dead site to life. Since the density of life is low, the state
often returns to the same rest state in one time step. To
reduce the number of these "fiip fails" (and thereby the
computer time), we disregard the dead sites for which the
20 nearest neighbor sites are also dead, then Hipping a
dead site randomly selected among the rest. In this way
we reduce the number of fiip fails to 22%.

The evolutionary change caused by a single-site per-
turbation is called an avalanche. The liftetime of an
avalanche is the number of time steps before the state
again returns to a rest state. The size of an avalanche is
the space- and time-sum of the number of live sites that
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FIG. 1. (a) and (b) Log-log plots of the normalized dis-
tributions of lifetimes t and sizes s for avalanches caused by
single-site perturbations in the game of Life, simulated on
L x L lattices with L = 64 (E), I = 128 (o), L = 256 (D),
L = 512 (~), and L = 1024 (0}.The fits have slopes 1.41 and
1.27. (c) and (d) Log-log plot of the critical lifetime t, and
size s, versus L. The Sts have slopes 0.52 and 0.69. (e) and

(f) Log-log plot of the average lifetime (t) and size (s) versus
L. The fits have slopes 0.31 and 0.48. The dots are from Ref.
[4]
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were not alive two time steps earlier. For the state to
be self-organized critical the distribution of lifetimes and
sizes must be power law distributions with finite-size scal-
ing properties. It is important that the distributions are
found &om repeated random single-site perturbations; in
contrast, e.g. , the distribution of decay times to a rest
state from random initial conditions may not follow a
power law.

The normalized distributions D(t) and D(s) of
avalanche lifetimes and sizes () 1), found for different
lattice sizes, are shown in Figs. 1(a) and 1(b). The total
number of time steps for each lattice size was between
1000000 and 5000000. In agreement with the original
work of Bak, Chen, and Creutz we find that the distribu-
tions follow power laws (over three orders of magnitude).
D(t) oc t and D(s) oc s, with b = 1 4, and ~ = 1 3.
However, corrections to scaling as well as an exponen-
tial finite-size cutoff (variations from the power law) are
observed. We point out that both are real reproducible
features. For size 64 x 64 the rest state with all sites dead
is obtained after 1000000 timesteps. We do not find
any evidence of transient states, e.g. , for L = 512 the dis-
tributions obtained between 100QQQ and 2000000 time
steps are identical to those obtained between 2000000
and 5 000000 time steps. Anyhow, we always disregarded
the first 100 000 time steps.

Based on our data, finite-size analysis was performed,
assuming that the distributions follow the scaling forms
D(t) = t ~f(t/t, ) and D(s) = s g(s/s, ), where f and

g are scaling functions, and t, (x L' and s (x L~. The
resulting values of t, and s, are shown in Figs. 1(c) and
1(d). There seems to be a crossover at L 100 to finite-
size scaling with z = 0.5 and b = 0.7. The exponents z

and b are, however, determined within one decade only,
which calls for caution. Theoretically, the fact that z & 1
and h & 1 implies that for sufficient large L, t, « L and
s, (( L, i.e., an avalanche with the critical lifetime t and
critical size s will necessarily extend over only a small
part of the lattice, hence t and s are not related with
an avalanche of the size of the lattice. This seems to be
inconsistent with the usual single length-scale picture at
criticality, and we urge further studies in this direction.

We have in Figs. 1(e) and 1(f) shown the com-
puted average values (t) and (s). In agreement with
the scaling properties above, we find (t) oc L(2 s)' and
(s) oc L(2 &s where (2 —b)z 0.3 and (2—r)b 0.5.
The small value for the (t) exponent implies that effects
&om small avalanches and corrections to scaling may be
severe, and we conclude that (t) is not a good parame-
ter to test criticality; one should rather consider higher
moments. Contrary to the results for (t) by Bennett and
Bourzutschky, we do not find saturation. Their aver-
ages disregard lifetimes less than 7. Taking this into ac-
count our values of (t) only change by a number of order
unity. A change from open to periodic boundary condi-
tions may, however, change (t) by more. Further studies
on this point seem needed.

In summary, finite-size scaling does not show satura-
tion of self-organized criticality in the game of Life on
lattices up to 1024x1024. The low values of the finite-
size exponents are, on the other hand, not consistent with
the usual single length-scale picture at criticality.
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