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In the present paper we show how nonclassical, quite accurate, critical exponents can be extracted
in a very simple way from the Pade analysis of the results obtained by mean-field-like approximation
schemes, and in particular by the cluster variation method. We study the critical behavior of the
Ising model on several lattices (quadratic, triangular, simple cubic and face centered cubic) and two
problems of surface critical behavior. Both unbiased and biased approximants are used, and results
are in very good agreement with the exact or numerical ones.

PACS number(s): 05.50.+q

As is well known, mean-field-like approximations are
very useful tools in the investigation of phase transitions,
but they fail completely in predicting critical exponents
of low-dimensional systems, giving results which are in-
dependent of the model and the dimensionality. This is
due to neglecting long range correlations, and thus they
are completely unreliable if one is interested in the be-
havior of a model near critical or multicritical points.

On the other hand, there are some mean-field-like ap-
proximations which describe very accurately the low-

and/or high-temperature behavior of statistical mechan-
ical models. In particular, the cluster variation method
(CVM) introduced by Kikuchi [1] and reformulated sev-
eral times [2] has been shown [3] to reproduce exactly
many terms of the high- and low-temperature expansions
of thermodynamical quantities like specific heat, magne-
tization, and susceptibility.

In the present paper we show how this property of the
CVM (and also of other schemes, as we shall see) can be
used to build up a very simple procedure for determin-
ing quite accurately the critical temperature and critical
exponents of a given model, which relies on the Pade
analysis of low- and high-temperature results obtained
by the CVM. The plan of our presentation is as follows:
we first review the main ideas of the CVM and of Pade

approximants, then we describe in detail our technique
and several test applications and finally we discuss results
and possible generalizations.

The cluster variation method in its modern formula-
tion [2] can be seen as a truncation of a cumulant expan-
sion of the functional to be minimized in the variational
principle of statistical mechanics. The latter states that
the &ee energy F of a model system described by the
Hamiltonian 'R on a lattice A can be obtained by mini-
mizing the functional

F[pt, ]
= Tr(pt, 'R+ ktsTppln pA),

where k~ and T are, as customary, Boltzmann's constant
and absolute temperature, with respect to the density
m.atrix ph, subject to the constraint Trpb ——1. Upon
introducing the cluster density matrices p = Trh~ pg,
where o. is a cluster of n sites and the trace is performed
over all variables out of n, Eq. (I) is approximated by a
restricted variational principle for the functional

F[(p, a C P)] = ) Tr(p h )
a&P

+ktsT ) a Tr(p lnp ),
a&P
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where P is a set of "maximal" clusters and all their sub-
clusters, h is the n -body interaction contribution due
to the cluster a (inaximal clusters should be taken large
enough to contain all kind of interactions present in 'R),
the coefficients a obey [2]

To fix ideas, let us consider the Ising model on a face
centered cubic (fcc) lattice. The Hamiltonian is

) a =1 VPEP
PCn&P

and the p 's are subject to the constraints

(3)

Trp =1 Vo. EP, p =Trp( pp VaCPCP. (4)

Local minima of F can be obtained in a simple way by
means of an iteration scheme devised by Kikuchi [4], the
natural iteration method (NIM) which, for maximal clus-
ters up to 8-9 sites as those we used, does not require
large amounts of CPU time.

It should be clear that an approximation in this scheme
is uniquely defined by the choice of the maximal clus-
ters (so if the maximal clusters are all the eleinentary
cells of a simple cubic lattice, we will speak of the cube
approximation, and so on), and it will not be accurate
near critical points, where the correlation length of the
system becomes larger than the size of the maximal clus-
ters. Generally speaking, taking larger maximal clusters
will narrow the region in which the approximation is not
accurate.

Let us now turn to a brief review of some basic facts
about Pade approximants [5]. An [L,M] Pade approxi-
mant to a function F(z) is defined by

PL, (z) po+ piz+ p2z + ' + pl, z

Q~(z) 1+qiz+ qlz + . . + qsfz

The usefulness of these approximants in statistical me-
chanics derives from the fact that a function with a
power-law singular behavior

Z + Z ) (6)

with A(z) analytic at z„will have a logarithmic deriva-
tive of the form

d A
D(z) = —lnF(z) = — [1+O(z —z,)], z ~ z, ,dz zc

A*(z) = (z, —z)D(z) = 4+ 0(z —z, ), z m z, . (8)

In this case A is estimated directly as the value of the
approximant at z . If no estimate of z is given as an
input one speaks of unbiased approximants, otherwise the
approximants are called biased.

%e can now turn to the description of our technique.

and a simple pole like that in Eq. (7) can be repre-
sented exactly by Pade approximants. Clearly, z and —A

are given respectively by the pole and the corresponding
residue of the Pade approximant. Furthermore, if the
exact value (and this is sometimes the case) or a very
accurate estimate is available for z, better estimates of
A can be obtained by approximating the function

where J and h are the (reduced) interaction strength and
magnetic field, s; = +1 is the z component of a spin 1/2
operator at the lattice site i and the first summation is
over nearest neighbors (NN's). Our first step consists in
choosing two CVM approximations (i.e., two sets of max-
imal clusters) Mi and Mz in such a way that M2 can be
regarded as an improvement with respect to Mq. To be
concrete, in the following Mq will be the octahedron plus
tetrahedron approximation proposed by Aggarwal and
Tanaka [3], while M2 will be the oriented rhombohedrori
approximation (to be described in detail in a separate
paper [6]). This approximation is obtained by selecting
as maximal clusters all the primitive rhombohedral unit
cells of an fcc lattice with a given orientation (an fcc lat-
tice can be decomposed into primitive cells of this shape
in four different ways, corresponding to different orienta-
tions). Since a rhombohedron is made up of an octahe-
dron with two tetrahedra attached on opposite faces, we
can expect this approximation to improve with respect
to Mq. Indeed, this can be easily verified by compar-
ing diferent estimates for the critical temperature: one
obtains T, = 1/J, 10.03 f'rom the CVM tetrahedron
approximation, 10.01 &om Mq, 9.97 &om M2 and 9.83
from high-temperature expansions [7].

The next step is to compare results &om M~ and M2
to determine the temperature (or, equivalently, interac-
tion strength) range in which Mi is accurate in some
sense. Let us consider first the low-temperature region,
in order to obtain estimates for the critical temperature
and the critical exponent P associated with the vanish-
ing of the order parameter m = (s;). We have cho-
sen as a measure of the accuracy of Mq the quantity
hm(J) = ~mi(J) —m2(J)~, where mi, (J) is the value of
the order parameter (in zero field) as given by approx-
imation Mg, which, not too close to the critical point,
should be a good approximation to the absolute error
of mi(J) with respect to the exact (unknown) value (it
can be checked on two-dimensional problems that this is
a very reasonable assumption). Then we define a valueJ; of the interaction strength such that bm(J) ( e
for J ) J;„,where e is a small positive number, and
say that Mi (and consequently also Mz) is accurate for
J & J;„.Of course it would be desirable to take e very
small, since large values of e cause poor values of the or-
der parameter to be treated as accurate, but, on the other
hand, reducing e narrows the temperature range on which
the Fade analysis will be made. A good compromise,
which we have used throughout this paper, is e = 10
which for Mq and M2 as above yields J;„=0.14.

We then determine Pade approximants for the loga-
rithmic derivative of the magnetization

D(z) = —lnm(z),
dz

where (as customary for low-temperature approaches)
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[L,M](z„) = D(z„), z„=exp(J;„+nb, J),

n = 0, 1, 2, . . . , L+ M. (11)

The choice of hJ is constrained, since the above lin-
ear system becomes ill-conditioned as the interpolation
points become too close, either in the z direction (b,J
small) or in the D(z) direction (b J large). In Table I we
report estimates of T, and P obtained by unbiased [L, M]
approximants for 6J = 0.03. They indicate clearly that
T, 9.79 (a strong improvement with respect to the M2
estimate) and P 0.31, which are in good agreement
with the high-temperature expansion critical tempera-
ture and with P = 0.3258 6 0.0044 (Monte Carlo simu-
lations for the simple cubic lattice, Ref. [8]) respectively.
Diferent values of 6J in the neighborhood of 0.03 give
similar results.

Once an estimate for T, has been obtained, it can be
used to construct biased approximants for the logarith-
mic derivative of the high-temperature susceptibility. In
the disordered phase, we measure the accuracy of CVM
approximations by means of hc(J) = [ci(J) —c2(J)[,
where ci, (J) is the NN correlation function (s;s~) as
given by approximation Mi, . Requiring bc(J) ( 10
for J ( J „we obtained J „=0.048. [L, M] approxi-
mants have then been determined for the function

d
p'(m) = (m, —m) lny(ur), (12)

where iU = tanh(J) and y(m) is the uniform zero field
magnetic susceptibility. The I + M + 1 interpolation
points have been defined by m„= tanh(J „—nh J),n =
0, 1, . . . , L + M. For 6J = 0.002, all the [L, M] approx-
imants with 2 & L & 5 and L —1 & M & L+ 1, except
the [2, 1] one, give p = 1.26, a result which is not far
&om the best estimate p = 1.2390+0.0071 (Monte Carlo
simulations for the simple cubic lattice, Ref. [8]). A sim-
ilar analysis on the specific heat gives some indication
for o. 0.14, but data do not accumulate very well. It
should also be noted that biasing approximants with the
high-temperature expansion estimate for the critical tem-
perature improves results for the critical exponents: one
obtains P 0.33 and p 1.24.

We have done a similar analysis for the simple cubic
lattice, choosing for Mq the well-known cube approxima-
tion and for M2 an approximation (again to be described

TABLE I. (T„P) for the fcc Ising model (unbiased approx-
imants, J; = 0.14, b,J = 0.03).

z = e ~ is a variable which vanishes at zero tempera-
ture and m(z) is given by approximation Mi (or M2, if
this is not very time-consuming), by requiring that, for
a given pair of positive integers L and M,

in a separate paper [6]) which uses as maximal clusters
both the elementary cubes and the "stars" formed by
one site surrounded by its six nearest neighbors, which
is a straightforward generalization of the approximation
used by Finel and de Fontaine [9] in their investigation
of the two-dimensional axial next-nearest-neighbor Ising
(ANNNI) model. J; and J are 0.28 and 0.13, re-
spectively. Low-temperature unbiased approximants in-
dicate clearly T, 4.51, in very good agreement with
T, = 4.511424+0.000053 (Monte Carlo simulations, Ref.
[8]), while P is between 0.30 and 0.31. Biased approxi-
mants for P, however, are in favor of P 0.31. Results
&om biased high-temperature approximants for the sus-
ceptibility suggest p 1.24.

In Table II we report results for two-dimensional lat-
tices. In this case, due to the reduced dimensionality, the
CVM is expected to be less accurate, but biasing the ap-
proximants with the exactly known critical temperature
yields indeed very good results. We used the approxi-
mation B2~ proposed by Kikuchi and Brush [10] for the
square lattice and a straightforward generalization of it
for the triangular lattice, choosing N = 3 for Mq and
N = 4 for M2.

Finally, we want to discuss two test applications of our
method to surface problems. We have considered a semi-
infinite Ising model with a (100) free surface and unmod-
ified surface coupling, which is known [11] to exhibit a
so-called ordinary transition, with the surface layer mag-
netization mi vanishing with an exponent Pi which dif-
fers &om the bulk exponent P and is estimated to be
0.78 + 0.02 by Monte Carlo simulations [12] and 0.816
by second order e expansion [13]. For this problem we
have developed another CVM approximation (again de-
scribed in detail in Ref. [6)), which we refer to as 4 x N, in
which the semi-infinite system is approximated by a film
of N layers, with the topmost layer representing the &ee
surface, and the bottom layer constrained to the bulk,
which in turn is studied in the cube approximation. In
this system the maximal clusters for the CVM are chosen
as those clusters with 4K sites, formed by a column of
N —1 elementary cubes. We used N = 4 for Mq and
N = 5 for M2, obtaining J;„=0.30. Approximants
biased with the previously determined bulk critical tem-
perature for the simple cubic lattice indicate Pi 0.78,
in perfect agreement with Monte Carlo simulations.

Our last test application aims to illustrate that the
CVM is not the unique classical approximation on which
our method can be based. In particular, we have con-
sidered an approximation recently proposed by Lipowski
and Suzuki [14] for two-dimensional systems (referred to
as the LS approximation), which has been shown in Ref.
[15] to yield the exact boundary magnetization of the
square lattice Ising model. It is essentially a transfer
matrix mean Beld approximation, where the boundary

L
4
5
6
7
8

[L, L —1]
(9.75, 0.30)
(9.78, 0.31)
(9.78, 0.31)
(9.78, 0.31)
(9.79, 0.31)

[L, L]
(9.79, 0.31)
(9.78, 0.31)
(9.79, 0.31)
(9.79, 0.31)
(9.79, 0.31)

[L,L+ 1]
(9.78, 0.30)
(9.79, 0.31)
(9.79, 0.31)
(9.79, 0.31)
(9.79, 0.31)

Lattice
Square
Triang.

Jmin
0.53
0.35

0.123
0.125

Jmax
0.30
0.17

'Y

1.73
1.74

TABLE II. Results for two-dimensional lattices (biased ap-
proximants, exact T,).
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magnetization is calculated by considering two strips of
width N and N —1 with periodic boundary conditions
along the infinite direction and applying the same eKec-
tive field h,g at one side of each strip, where h,g is deter-
mined in such a way that the boundary magnetizations
on the opposite sides of the strips be equal. The approx-
imation is no more exact for more complicated models,
but one can expect it to be quite accurate. We have ap-
plied it to the three-state Potts model in two dimensions,
described by the Hamiltonian

We have taken N = 4 for Mq and N = 5 for Mz (K;„=
0.90), and have estimated the boundary magnetization
exponent Pq using approximants biased with the exact
critical temperature. Our results indicate clearly Pq
0.55, in very good agreement with Pq

——5/9, obtained

combining Cardy's result Pq
——v/(3v —1) [16] with the

conjecture v = 5/6, supported by many numerical results
[17].

We have shown how quite accurate estimates of criti-
cal temperatures and critical exponents can be obtained
by a Pade analysis of high- or low-temperature results
of mean-field-like approximations, and especially of the
cluster variation method. The method is quite simple
(some analytical work can be needed to construct new
CVM approximations, when necessary) and not at all
time-consuming (all the calculations reported in this pa-
per took a few hours of CPU time on a DEC Alpha ma-
chine), but nevertheless it yielded very satisfactory re-
sults in several test applications, also in surface prob-
lems. There are also several possible future develop-
ments, among which the calculation of critical amplitudes
and the use of more sophisticated approximants like dif-
ferential and partial difFerential approximants (the latter
applying to the study of multicritical phenomena) are
worth mentioning.
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