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Large amplitude plasma wave excitation by means of sequences of short laser pulses
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The generation of a large amplitude electron plasma wave by means of n short laser pulses is studied
in the quasistatic approximation using a one-dimensional relativistic cold plasma model. The problem is

reduced to considering the coupled equations for the vector and the scalar potentials. Preliminary re-
sults are obtained by means of a linear stability analysis of the system and by the integration of the Pois-
son equation for constant pulses. The energetics and time evolution of the excitation process are de-

scribed by the numerical integration of the relevant equations.

PACS nuInber(s): 52.40.Nk, 52.35.Mw, 52.40.0b

The possibility of exciting large amplitude electron
plasma waves, either by means of pulses of electromag-
netic (e.m. ) radiation [1]or by injection of bunches of rel-
ativistic electrons [2], has drawn much attention after
various proposals of using strong electrostatic {e.s.) po-
tential gradients to accelerate charged particles to TeV
energies in relatively short distances (tens of meters) [1,3].
Moreover, the recent technological availability of very in-
tense laser-pulse sources [4-6] has been accompanied by
several theoretical studies which have reconsidered in
much detail the mechanism of wave excitation [laser
wake-field accelerator (LWFA)] based on the strongly
nonlinear interaction between a short (rL ———0. 1-1 ps)
e.m. pulse and plasma electrons, via the relativistic pon-
deromotive force associated with the high frequency field
[7-17). Both analytical and numerical analysis have
shown that the MFA scheme seems to oFer some ad-
vantages if compared with other methods like plasma
beat wave accelerator (PBWA} [18-25] or plasma wake-
field accelerator (PWFA} [26-28]. The LWFA scheme,
however, requires very intense pulses if a suSciently large
plasma wave is to be actually generated.

In this paper we study the possibility of using a se-
quence of n short, medium intensity (i.e., A (1, where
A -+e A /rn, c is the dimensionless amplitude of the vec-
tor potential) e.m. pulses as a driver for large amplitude
plasma waves. Such a choice seems to ofFer some advan-
tages with respect to the use of a single, high amplitude
( A »1) pulse, since medium intensity pulses (a) are ex-
pected to be more stable to envelope perturbations, (b)
are already available for experiments ( A =1 corresponds
to a laser intensity I=1.38X10' W/cm, for a wave-
length I,= 1 pm}.

The propagation of laser pulses and the excitation of
e.s. oscillations in the plasma are described on the basis
of a cold relativistic Quid plasma model in which col-
lisions and ion dynamics are neglected. Moreover, a
one-dimensional description is used, that is, a uniform
system in {x,y} planes perpendicular to the (z) axis along
which the pulses propagate is considered. The assump-
tion of "slab" pulses is well satis6ed in the case of lasers
based on the chirped pulse amplification concept [4].

The variables g=z v&t and ~—=t are introduced,

v~(1+/)
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where y&=1/(1 —
v& )', y~=(1+ ~ Av ~

)'/, and the fol-
lowing dimensionless variables are used:
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(a) Linear stability analysis Typical ti.me and space
scales on which external perturbations to the envelope

where u& is the phase velocity of the excited plasma wave,
approximately equal to us=c(1 to~/t—ov2)'/2, the group
velocity in the plasma of the e.m. pulse of frequency cvu.

to =(4nnvez/m, )'/ is the electron plasma frequency
and tn, is the rest mass of the electron. Since it is as-
sumed that too»to, u& is slightly smaller than the speed
of light.

If the duration of the interaction between the plasma
and the pulses is smaller than the characteristic time of
modification of the pulses due to nonlinear self-efFects,
the quasistatic approximation [14] can be introduced to
simplify the fluid (continuity and momentum) equations.
This corresponds to neglecting a direct dependence of the
fluid variables on ~ and assuming that they follow adia-
batically the evolution of the e.s. potential of the plasma
wave, P(g, ~), and the vector potential associated with the
laser pulse, A~(g, r) The prob. lem may thus be formulat-
ed in terms of P(g, ~) and A~(g, ~)

I.et us consider a circularly polarized e.m. pulse,

A~(z, t)= ,'[A (vz, t)—e
' ' +c.c.](e„hie }, (1)

where Av is the scalar complex amplitude of the vector
potential.

From the set of Maxwell's and fluid equations we find
the following system of differential equations [15-17]:
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Ao((, r) can become unstable, as well as the dependence
of such an instability on the amplitude and propagation
velocity of the e.m. radiation in the plasma, may be es-
timated from a linear stability analysis of Eqs. (2) and (3).
For the sake of simplicity we introduce the new variables

Tx =y~g, t=, %=1+/,
2Uygy

(4)

and consider the unperturbed solution of the system in
the form A„(x,t)= A exp(ipx ), %(x,t)=@=yI, where
p= —+1—1/yi, yI =(1+A )'~, which corresponds to
a constant e.s. potential and a spatially modulated vector
potential of amplitude A. %e notice that, because of the

I

definition of g and x, u& is the velocity of propagation of
this modulation in the plasma. We analyze the evolution
of small perturbations by posing:

Ao(x, t)=[A+a(x, t }]e'~,

e(x, t }=4+q(x,t ), lq l «iV)

and linearizing Eqs. (2) and (3) in the small perturbations
a(x, t) and Ip(x, t) By. introducing an expansion in nor-
mal modes of Ip(x, t ) and of the real and imaginary parts
of a(x, t }, i.e., a„,at, /=exp[i (Xx —Qt)], the following
sixth degree in X dispersion relation is derived:

X— 1
2 2

Uy'Vyi'i
X [X—0] —2PX —P+ 01

Vy

A 1+
q i )X(X—0) X + =0.

Uyfygj rj.
(6)

Due to the quasistatic approximation, Eq. (6}is valid only
for perturbations of frequency much smaller than the
plasma frequency (in the drifting reference system in
which the laser beam is quasistationary), which means
that lQl «2u&y& [see Eq. (4}].

Two classes of complex solutions of Eq. (6}exist: a first
one, characterized by higher values of llmXl, corre-
sponds to evanescent perturbations already present for
A =0; a second one, with smaller values of lltrIXl, is in-
stead characteristic of nonzero e.m. fields. Perturbations
belonging to this second class, which we interpret as en-
velope instabilities of the modulated e.m. wave beam
coupled with relativistic electron plasma oscillations,
may grow exponentially in amplitude and thus lead the
system to instability.

To perform an analysis of the dependence of such in-
stability on the values of v& and A we go back to the vari-
ables g, r, that is, we consider perturbations of the form
exp[i(X'g 0'~)],—where X'= y+, 0'= 0/(2v& y&). We
can characterize the degree of the instability of the en-
velope by means of the width 50' of the frequency inter-
val which may be unstable and the maximum growth rate
I"=maxllmX'l. Moreover, an estimate of the charac-
teristic time vE of the instability can be obtained from the
relation ~z =1/(I"v'), where vs is the group velocity of a

superposition of unstable modes.
By solving Eq. (6) and making use of the expression of

vs in the limits 0—+0, X~O, we obtain the plots of 60'
and ~z vs A reported in Figs. I and 2. Figure 1 shows

that, for a given u& value, the width of the unstable re-
gion 60' grows with A, while we see from Fig. 2 that the
characteristic time of instability has a dependence

~z =1/A with a=1. We notice that, for not too large

y& values and A ) 1, unstable perturbations of the pulse
envelope can manifest themselves on time scales compa-
rable to those of the plasma wave excitation. As expect-
ed, for a given y&, envelope stability improves at A &1
and one is encouraged to look for excitation mechanisms
which are effective at limited A values.

(b) Plasma eaves excited by a given sequence of laser
pulses. Let us show that a large amplitude e.s. wave can
be generated by properly injecting in the plasma a se-
quence of n medium intensity laser pulses. This would al-
low us to produce large electric fields with the laser
sources already available, and to overcome the stability
problems previously discussed.

To do this, we first consider a sequence of nonevolving
rectangular pulses of constant amplitude Ao. Let L; and
d; (with i = l, . . ,n) be th.e length along the coordinate g
of the ith pulse and the separation between the ith and
the (i +1)th pulses, respectively. By solving Eq. (2}, it
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FIG. 1. AQ' vs A for y&=7 (full line), 10 (dashed line), 32
(dotted line). The dimensionless units de6ned in the text are
used eve~here.

FIG. 2. rE vs A for y& =7 (full line), 10 (dashed line), 32 (dot-
ted line).
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turns out that the optimal sequence in generating plasma
waves is that in which each pulse is switched on when the
e.s. potential is minimum and is switched off at the subse-

quent potential maximum. P(g} and E(g} can be deter-
mined, in terms of elliptic integrals, up to the wavebreak-
ing point, where the Suid description breaks down. As a
result of this analysis, analytical expressions for L; and d;
and, correspondingly, for the amplitude E; of the plasma
wave, in the wake of the ith pulse, have been obtained.
In Fig. 3 these quantities are plotted as functions of the
number of pulses (plots of d; are omitted since they coin-
cide with L; ones, for i &2-3}. The dashed lines show
the values of L; and E; for II& =1. In this case no wave-

breaking can occur [17]and the electric field can increase
indefinitely with n Asymptotically, for n +ao-,

E„/E„ I ~yt. On the contrary, when v& (1, the max-
imum number of pulses allowed in order to avoid wave-
breaking depends on Ao and on v& itself. The curves
referring to ye=10 (a), 32 (b), and 100 (c), for AII =0.7
and 1, are reported. Each line ends at the maximum al-
lowed n value for the given U&. In Fig. 3(b) the horizontal
dotted lines indicate the wavebreaking amplitude of the
field for each u& value considered. It is seen that, for a
given Ao value, an upper limit on the length of the op-
timal sequence exists due to the rapid increase of L;
with i

(c) Self consisten-t time evolution of the laser pulse
p/asma system. To correctly describe the energetics of
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the e.s. wave excitation process the consistent evolution
of the pulse envelope and frequency should be followed.

Equations (2} and (3}have been numerically integrated
under the assumptions that roc » ~

t}/t}r
~

and

(1+/) »(1+~Ac~ )/y&, the latter corresponding to
considering e.s. waves which do not undergo "wave-
breaking" [12,17]. We notice that the time integration of
the equation for Ao(g, r} allows us to take the effects of
the self-modifications of the laser pulses consistently into
account. By writing the complex amplitude in the form

AII(g, r) =
I Ao(g, r)lexp[iF(g, r)],

we can determine the "local" pulse frequency
nI(g, 'r)=r0II+vydF/r)g. The following integral of motion
exists:

I= A 2+ v co F x

Ap 6) q'T COp ~

In Fig. 4, the process of e.s. field generation by means
of n =3 pulses is shown for ye=100, at v=2000. At
r=O the pulses are almost rectangular with AII=1 and
suitable lengths and delays to maximize the excitation
process. The corresponding electric field, E = —r}glt}g,
and frequency are also plotted. For the sake of compar-
ison a single pulse of amplitude Ao =2.6, capable of gen-
erating a maximum electric field amplitude equal to that
produced in the previous case, is also shown. With refer-
ence to an unperturbed uniform plasma with n, =10's
cm, and to a laser wavelength A, =0.3 )um and a beam
radius ro=30 pm, it is interesting to compare the e.m.
energies required in the two cases considered above. For
n =3, the beam intensity is I3=1.5X10'9 W/cm~, the
time durations of the three pulses are vI=0. 07 ps,
'T2 0.08 ps, F3=0. 1 ps, respectively, and the total energy
in the three wave packets is F3=168 J. In the case
n =1, II =1020 W/cm2, vI=0. 1 ps, and WI=509 J. At
r=O, for n =3 the maximum electric field is E=1.9, and
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FIG. 3. The length L; (a) of the ith laser pulse of the se-
quence and the corresponding maximum electric field generat-
ed, E; (b), are plotted as functions of i for difFerent v~ values and
30=0.7 and 1. The dashed lines refer to v&=1 (y&= ~). The
full lines correspond to y&= 10 (a), 32 (b), and 100 (c). The dot-
ted horizontal lines indicate the wavebreaking field amplitudes
for the v& values considered.

FIG. 4. The e.s. field (thick full line), the sequence of n =3
pulses (thin full lines) of initial amplitude 30=1, and the e.m.
radiation frequency ro(g, r) (dotted lines) vs f, are plotted at
time ~=2000, for ye=100. Dashed line shows the single laser
pulse, of amplitude 20=2.6, capable of generating the same
electric field amplitude (horizontal dot-dashed lines).
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for n = 1 E=2.4. At v=2000, in both cases E=2.6, cor-
responding to an e.s. field amplitude of =260 GV/m.
Therefore, besides confirming the potentialities of laser
pulse sequences, the consistent analysis of the underlying
nonlinear interaction demonstrates that this scenario al-
lows one to lower the total energy demand on the laser
system.

Before concluding, it should be mentioned that two-
dimensional effects (see, for example, Refs. [7,29-33])
can, in principle, alter the physical picture that we have
described here, introducing some limitations on the
efficiency of the "resonant" plasma wave excitation pro-
cess. However, it is possible to envisage physical situa-
tions in which on one side self-effects can avoid a trans-
verse spreading of the laser beam, and, on the other side,
typical time scales for spreading are longer than those re-
quired for an e5cient pulse-plasma interaction. For ex-
ample, for the parameters considered in Fig. 4, the di-
mensionless pulse diffraction time rf=Ztt [30], where
Za=n(r tc/J)l( tos/ )c and rLc are the Rayleigh length
and the minimum spot size, respectively, is rf =2000,
that is much larger than the time needed to excite the e.s.
wave (r,„=a few units). Therefore, for sufftciently "fiat"
laser pulses, two-dimensional effects can be suitably limit-

ed by an appropriate choice of the experimental condi-
tions.

In conclusion, we have shown that it is preferable and
possible to generate large amplitude e.s. wake fields in a
plasma by using sequences of medium intensity (A ~ 1}
laser pulses instead of a single large amplitude (A ) 1)
e.m. wave packet, one major constraint being the availa-
bility of laser intensities up to 10' —10' W/cm . More-
over, the use of few pulses, i.e., n=3-4, suitably de-
phased and of limited amplitude, allows us to decrease
the growth rate of envelope instabilities and also to
reduce the total energy required to get an electric field of
a given amplitude. The required repetition rate of the
source could be realized by using two or more synchron-
ized lasers or, better, by suitably shaping a single long
pulse. A more extensive analytical and numerical study
supports the above discussed physical picture and will be
the subject of a forthcoming extended paper.
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