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Nonlocal vorticity cascade in two dimensions
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The whole set of simultaneous correlation functions describing steady vorticity cascade is obtained
from the Euler equation by a straightforward procedure. Nonlocality of the cascade provides for a
large logarithmic parameter that enables one to obtain a universal set of the correlation functions
of the vorticity u in the inertial interval: (u"(rz)u"(r2)) oc ln " (L/

~

rz —rz ~), with L being the
scale of the external pump.

PACS number(s): 47.10.+g, 47.27.Qs

A remarkable feature of incompressible Huid turbu-
lence is the presence of an essential interaction between
eddies of strongly different scales due to a sweeping of
small eddies by large ones. Such a nonlocality in k space
manifests itself differently in two and in three dimensions.
In the three dimensional (3D) case, it was shown that any
divergences (powerlike as well as logarithmic ones) that
appear in Eulerian variables for the Kolmogorov spec-
trum disappear after passing into Lagrangian variables
[1,2]. This means that sweeping has a strong effect upon
the time dependencies of the correlation functions while
the simultaneous correlators are determined by a dynam-
ical interaction which is local in k space. Due to sim-
ple geometrical reasons, the sweeping has stronger con-
sequences in two rather than in three dimensions. Even
if one considers simultaneous correlators, logarithmic in-
&ared divergences are present for the energy spectrum
E(k) oc k s obtained for a vorticity cascade &om a di-
mensional analysis [3]. The presence of the divergences
means that nonlocal interaction should play a substan-
tial role in shaping the energy spectrum. One can show
that the powers of the logarithm increase with the order
of perturbation theory. This suggests that a substan-
tial renormalization of the spectrum might occur. By
considering a one-loop approximation, Kraichnan found
the spectrum k sin (kL) which corresponds to the
vorticity correlator (u(rq)u(r2)) oc ln (L/

~

rq —r2 ~)

depending explicity on the pumping scale L [3). This es-
timate can be obtained also by different uncontrollable
closures assuming weak phase coherence (see [4] and ref-
erences therein). A natural question arises: does the
account of higher orders and of (at least substantial)
time correlations destroy this spectrum? Alternative pre-
dictions for the exponent have been suggested: —4 [5],
—11/3 [6], and those of conformal models [7]. The way
to solve the problem of accounting for nonlocal interac-
tion in the vorticity cascade is suggested in the present
paper.

"Logarithm" is the keyword that explains how it is
possible to 6nd a statistical solution of the Euler equa-
tion. We show that the simultaneous vorticity correlators
are solely determined by the influence of larger scales,
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which can be described in terms of the tensor of velocity
derivatives with a symmetric part (strain) and an anti-
symmetric one (vorticity). This confirms the generally
accepted physical picture of the vorticity cascade: a Huid
blob embedded into a larger scale velocity shear is ex-
tended along the direction of a positive strain value and
compressed along the direction of a negative one; such
stretching provides for the vorticity Hux into the small
scales with the rate of transfer proportional to the strain.
Vorticity rotates the Quid blob decelerating stretching
due to interchange of the axis of a positive and negative
strain. The problem of determining the vorticity spec-
trum in the inertial interval turns thus to be the problem
of a passive scalar [8,9] advected by the velocity field
produced by the previous (larger) scales. As one passes
into smaller scales, the effective vorticity and strain that
act on the scalar are renormalized. To find the law of
the renormalization one should take into account time
correlations between the velocity gradients produced by
different spectral intervals. By direct calculation of the
different-time correlation function, we show that, con-
trary to previous assumptions, the correlations are sub-
stantial. Surprisingly, that does not affect the scaling of
simultaneous correlation functions which are determined
solely by the Qux of the squared vorticity and the mean
stretching rate (average strain) s. The control parame-
ter of the theory is the product 8w, where ~, is the strain
correlation time. We can solve the problem in two limits
assuming this parameter to be either small or large. The
forms of vorticity correlation functions are the same in
both limits. We find 8 self-consistently in the following
way: The vorticity correlation function is expressed via
the mean strain, then the strain correlation function is
expressed via the vorticity one by inverting the curL op-
erator. All calculations are done in the locally comoving
reference frame (in the so-called quasi-Lagrangian vari-
ables) so that difFerent-time correlation functions are spa-
tially nonuniform while the Anal answers for simultaneous
correlation functions possess spatial homogeneity. Solv-
ing the integral equations for the average strain we get
a solution s oc ln I (kL). We can calculate the correla-
tion time of the vorticity (which is logarithmically large
in the comoving reference kame) but not of the strain.
This prevents our formalism from being quantitative: we
cannot calculate the numerical factors but only the pow-
ers of logarithms.
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The fact that the renormalization is only logarithmic
and anomalous exponents are absent for the vorticity cas-
cade seems quite natural. The point is that all powers of
the vorticity are the integrals of motion in the 2D Euler
equation. The solution found corresponds to a dimen-
sionless (logarithmic) vorticity thus allowing one to have
nonzero Buxes of all vorticity integrals. The same reason-
ing explains why a conformal minimal model [7] cannot
be a general turbulent solution [10].

Let us turn to the calculations. The Euler equation for
the vorticity field (U = curl u

(U + u V' (U = P

contains the random external source P. To eliminate ho-
mogeneous sweeping we pass to the locally comoving ref-
erence frame introducing the quasi-Lagrangian (QL) ve-
locity v(t, r) related to the Eulerian velocity:

stretching while u) describes rotation of a fiuid element.
The pair correlation function of u

tQ

{(tt(tl rl)(U(t2 r2)) dT1 dT2 (Ti

—T2, tU(ti, Ti)ri —tU(t2, T2)r2) (8)

is expressed via (p(tl, ri)p(t2, r2)) =:-(ti —t2, ri —r2).
Averaging with respect to both external velocity and ex-
ternal source is implied. The simultaneous correlation
function in the inertial interval (for ri, r2 « L) can be
extracted from (8). The main contribution to the integral

t 2(t—~)
{(U(t,ri)(U(t, r2)) = dT dT'=(T', iU(t, T

—oo 2(~—t)

u(t, r) = v t, r — v(T, O) dT
~ (2)

+T'/2) r i —w(t, T —T'/2) r2) (9)

The presence of a marked point (r = 0) makes the theory
spatially nonuniform in QL variables. This is the price
one should pay for sweeping elimination [2]. Equation
(1) takes the form

(U+ (v —v() )V (U = p,

is determined by the intervals of time T, T' when it is
possible to neglect the dependence of:- on the space ar-
gument. Then we get the estimate

t 2(t—~)

(~(t, rr)w(t, rr)) f d f dr'=(r'0) r.Pr , (10).
where v() ——v (t, 0). We aim at finding simultaneous
correlators that are the same for both sets of variables.

As a first step, we take in (3) only the long-range veloc-
ity with the wave vectors q & L, temporarily omitting
the short-range part of v. We are going to describe thus
the correlation functions of the passive scalar (U advected
by a large-scale velocity field V(t, r). We do this in the
spirit of Kraichnan's approach [9]. For the points with

~

r ]& L one can expand V (r) —V (0) = o pry. Solving
the resulting equation

The integral P2 ——J' dt =(t, 0) is the p»»iping rate of
the squared vorticity (enstrophy fiux) and T, is the time
necessary for the mean distance between two points to
increase from rl2 to L: exp(sT, )ri2 L. It is correct if
the value T, is larger than both T, and the characteristic
time of:-, which is true for sufficiently large values of
ln(L/ri2). We thus come to the Batchelor-Kraichnan
expression for the simultaneous pair correlation function

{(U(ri)(U(r2)) (P2/s) ln(L/ ] rl —rz ]) .

one gets

(i) + 0'tttprpV~ld = Q,

t

(U(t, r) = dT p(T, iU(t, 7)r) . .

(4)

The correlator (11) corresponds to F(k) = P2/sk2 in the
k space. This gives E(k) oc k

The mean stretching rate s can be easily found in the
cases of a rapid and slow strain. We start from consider-
ing the rapid case (assuming sT, « 1):

Here u) must satisfy iU + v)o = 0. The formal solution of
this equation can be written as

t
u) (t, t()) = T exp

~

— dt o (t) ~,

1
a = — dt, tr([s(ti) s(t2)])16

1

16
dtitr{v) (tl t2)'(tl)v)o(tl t2)'(t2)). (12)

where T designates the antichronological ordering. It is
useful to divide 2o p

——s p —a p where the symmetric
tensor s is the strain of the velocity V and the antisym-
metric part a p ——Oe p is expressed through its vorticity
0 =curl V. The matrix m can be represented in the form
of the product tu = m, tu:

—v) a/2 = 0, iU, + v), i/2 = 0,
where s = masm+. The transfer matrix m, describes

The value i is related to u), (determined. by 8) but not to
v)~ since ] v)~r ]=[ r ] by virtue of u) v) = 1. As one can
see, the value of the mean strain s strongly depends on
the relation between the time v., of the strain correlation
and the time ~ 0 . If 7, & 7 then the presence of
the vorticity is irrelevant [one can put u) (tl, t2) = 1]. If,
in contrast, T, )T, then s is suppressed [11].

To 6nd the vorticity correlation time, we calculate
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dti ((d(ti, ri)(t)(0, rz)) = dpi d72 dti-"(ti —Ti + Tzt u)(ti, ti —ri)ri —w(02 72)r2)
—OO 0 0 —OO

(P2/s )[ln (L/ri) +ln (L/r2) + ] .

The main contribution to (13) stems from the region
where exp('Ti8) L/ri and exp(1 zs) L/rz. This gives
the logarit&m-squared terms that are space inhomoge-
neous as it is natural for different-time correlation func-
tions in QL variables. The double logarithm here mani-
fests a,n anomalously large correlation time of (t) which is
a consequence of the QL choice of variables. At ri ——0
or rq ——0, the vorticity correlation time turns into in-
finity which corresponds to infinite correlation time in
Lagrangian variables.

Many-point correlation functions can be extracted
from the same relation (5). For example, the four-point
correlation function is as follows:

t1 tq tg t4

(211312213144) = fi(22 f4(22 f4(43 f 44((24 42243 4t)t

The reducible part of (tt)igzgsg4) gives the contribution
to (ui&uz(t)3(d4) which is a product of the pair correla-
tion functions (8). In the contribution supplied by the
irreducible part of (Pitttzttts$4), there will be only one
integration giving a logarithmic factor so that in the in-
ertial interval it is small in comparison with the prod-
uct of the pair correlation functions proportional to the
squared logarithm. The same is true for many-point cor-
relation functions of the order n ( ln(I/r): in the limit
of the large logarithm when 7; » r„ the main contri-
bution to the correlation functions is supplied by their
reducible parts. Therefore the statistics of the passive
scalar ~ advected by a large-scale velocity Beld appears
to be asymptotically Gaussian irrespective of the statis-
tics of the external infiuence ttt [see [ll] for the proof and
for the analysis of the non-Gaussian tails of the proba-
bility distribution at finite values of 1n(L/r)].

Let us emphasize that this statement on the Gaus-
sian property of a steady forced turbulence of a passive
scalar is new compared to Kraichnan's theory [9] where
the statistics of ru were claimed to depend on the statis-
tics of tt). Such a dependence was thought of as the result
of the conservation of arbitrary power of vorticity so that
the (2n)th correlation function should be determined by
the input of the (2n)th integral of motion and be inde-
pendent of lower moments. One can show that this is
not the case since only the fiux of squared vorticity is
constant in the inertial interval while higher fIuxes grow

I

with k due to a contribution to their pumping from lower
moments:

((Vi . Vi+ V2 V2)ui uz) (x»" (L/ri2). (14)

Now let us turn to the complete problem of describ-
ing vorticity cascade taking into account the contribu-
tions of difFerent scales. The velocity is now connected
to the vorticity: v (r) = e ~V'~ jd2r'ur(r') 1n(L/R)/2m'
with R = r' —r. The velocity difference that enters
Eq. (3) can be divided into three parts:

v (r) —v() ———zur(r)e prp+ zs p(r)rp
rl

27I' „1&„)(R r )
xur —mr

Here we have introduced the scale-dependent strain that
is determined by the scales larger than r:

(16)
The crucial point in the consideration is to drop the last
term in (15). By doing so, one neglects in (3) both the
contributions &om smaller scales and an interaction of
the scales of the same order. The formal reasons for this
are the small region of integration and the presence of the
difference (d(r') —(d(r) in this term. As a result, it gives
smaller powers of the logarithm in the renormalization of
the correlation functions than (16) gives. The physical
reason for such a neglect is that small-scale infiuence is
averaged while the spectral transfer due to interaction of
comparable scales can be neglected in comparison with
the spectral transfer by the renormalized strain. After
neglecting this term, we come to Eq. (4) where 0 is re-
placed by (d(r) and where the strain s(r) should be found
self-consistently as to provide the vorticity distribution
which gives that very strain according to (16).

If one presumes 87; (& 1, then the averaged strain that
determines the behavior of the function u) in (8) and (9)
is expressed via the difFerent-time correlation function
according to (12):

(i7)
f

4 )t' Ri Rip Ri~Ri~) ( R2qR2„R2&R2„')
dti(sp (ti, ri)s„„(tztrz)) =

2
d Ri " R2

~
e, 'R4 +en~ R4

X f dtt (13(tt 21)W(t322)),

One should substitute here the expression that is a gen-
eralization of (13) for r-dependent a(r). The function u)

is now ass»med to be expressed via the current strain
a(r) which we are going to find. We are interested in

I

logarithmic terms at r r~, r2. It can be readily checked
that terms depending only on ri or on r2 [like double
logarithmic terins in (13)) do not give any logarithmic
contribution to (17) due to averaging over angles. The
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same is true for any term depending separately on rq,
r2. The main contribution to (17) stems from the region

rz and gives thus the logarithm in the flrst power:

QO P2
d& -2 (18)

The strain here is considered as a function of the logarith-
mic variable f = ln(L/r). The contribution to (17) due
to (18) can be calculated explicitly. Up to a logarithmic
accuracy it is

(h „hp„—6 ph„„+h „hp„) . (19)

We thus come to a self-consistent equation for a(()
which is valid at ( )) 1. This equation follows from (19)

a(() Pz (20)

The solution of Eq. (20) for large g is

(21)

Now instead of (11) we have (~(rq)~(rz)) Pz f d(/a oc

$ /s. It gives E(k) Pz k ln (kL).
The logarithmic renormalization with a rapid strain

would be self-consistent if R; -+ 0 as g ~ oo. Un-
fortunately, if one estimates the correlation time r,
a/(a ) oc g /s one can see that a7; does not tend to
zero. This means that the renormalized strain is not
rapid. Fortunately, one can make all the above steps
(solving the passive scalar problem and then renormal-
ization) also in the opposite limit of a slow strain. Differ-
entiating the equation for tv and neglecting a comparing
to az one obtains the equation dzw, /dtz + ut, a /4 = 0.
In 2D, az is proportional to a unit matrix so that the an-
swer is given by the central limit theorem as in a scalar
case: as t ~ oo, ln]urr] oc J' gtraz(t')dt' oc at where

a = (gtra2). The law of renormalization is now as fol-

lows: az($) J' d(' ja((') which gives again (21) and the
same energy spectrum.

Note that the simultaneous strain correlator (a2) oc

$2/s grows with ( by the same law as (ur' ). This means

that whatever be the relation between the strain and the
vorticity produced by the external pump at large scales,
that relation tends to the universal limit in the inertial
interval. The independence of the ratio (a2) j(~2) of k

in the inertial interval justi6es the use of s instead of
a in (17) and guarantees that local suppression of the
vorticity cascade which happens in the regions of large

vorticity does not change the form of our solution. This
phenomenon should have strong infiuence on the value of
Kolmogorov's constant which we cannot calculate

The logarithmic renormalization of the strain corrob-
orates neglecting the last term in (15). By using the
solution found, one can estimate the contribution from
this term into the correlation functions and show that it
has one power of ( less than those taken into account.

This allows us to conclude that the shape of the energy
spectrum is found correctly and it does not depend on
a particular value of the unknown numerical constants.
The same is true for the high-order correlation function:
we can find k-dependencies but not constant factors. For
example, the fiuxes of the yorticity integrals of motion
are as follows: ((vq —vz)urguP~) oc ln " / (L/rq2), to be
compared with (14). We thus found the universal set of
the simultaneous correlation functions which corresponds
to small-scale dissipation of all vorticity integrals of mo-
tion. Please note that we have found the whole set of
simultaneous correlation functions for a nonlinear turbu-
lent problem directly from the Euler equation. The fact
that the true form of the pair correlation function co-
incides with the result of the one-loop calculation means
that there is no renormalization of the vertex index. Note
that this coincidence does not mean that the approxima-
tion [3] is correct (see also [12]); what this does mean
is that time correlations do not infiuence the structure
of simultaneous correlation functions. Probably, there
can exist other steady or quasisteady distributions [5,7]
but they do not correspond to the dissipation rates of
all powers of the vorticity nonzero in the inviscid limit.
Unlike conformal solutions, our logarithmic solution is
universal, i.e., the scaling does not depend on the statis-
tics of the pumping. Recent numeric analyses confirm
our predictions [13].
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