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Density waves of granular Sow in a pipe using lattice-gas automata
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We use a lattice-gas automaton modeling the formation of density waves of granular flow through a
vertical pipe. It is found that both the dissipation and the roughness of the walls of the pipe are essential

to the emergence of density waves. The density waves can only be observed when the average density of
the system is in a certain range. The power spectra of density fluctuations in one region in the pipe fol-

low, apart from a sharp peak corresponding to the density wave, a power-law spectrum 1/f' with a
close to 4, .

PACS number(s): 05.20.Dd, 47.50.+d, 47.20.—k, 46.10.+z

Granular materials exhibit many unusual phenomena,
such as size segregation [1-4],heap formation and con-
vection cells under vibration [5-8], and anomalous
sound propagation [9,10]. Even in simple geometries
such as hoppers and pipes, their flow under gravity still
shows complex dynamics [11,12]. Experiments [11,12]
and molecular-dynamics (MD) simulations [12-14]show
that the granular particles do not flow uniformly but
rather form density waves (or shock waves) where regions
of high density travel with velocity different from that of
the average velocity. In the experiment of flow in a
hopper Baxter et al. [11]found that density waves only
existed when rough sands were used. To understand the
density waves in granular flow, attempts have been made
by computer simulations with MD [12-14] and the
kinetic wave approach [14,15]. The mechanism for the
density waves is, however, not really clarified so far.

The present work is to study this problem from anoth-
er point of view, namely the lattice-gas automaton (LGA)
which was Srst introduced as a novel alternative to tradi-
tional methods for numerically solving the Navier-Stokes
equation [16]. As a sort of primitive molecular-dynamics
system it ofFers the advantage of guaranteed numerical
stability coupled with extreme computational simplicity.
We are interested in the density waves in a vertical nar-
row pipe which were observed experimentally by Poschel
[12] and simulated with MD by him and later by Lee
[14]. We consider a LGA at integer times steps
t =0, 1,2, . . . with N particles located at the sites of a
two-dimensional (2D) triangular lattice which is L sites
long vertically and 8' sites wide horizontally. Periodic
boundary conditions are used in the vertical direction
while 5xed boundary conditions are set for the walls. At
each site there are seven Boolean states which refer to the
velocities, v, (i =0, 1,2, . . . , 6). Here v, (i = 1,2, . . . , 6)
are the nearest-neighboring (NN) lattice vectors and
vo=O refers to the rest (unmoving} state. Each state can
be either empty or occupied by a single particle. There-
fore the number of particles per site has a maximal value
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of 7 and a minimal value of 0. The time evolution of
LGA consists of a collision step and a propagation step.
In the collision step particles change their velocities due
to collisions and in the subsequent propagation step parti-
cles move in the directions of their velocities to the NN
sites where they collide again.

The system is updated in parallel. Only the following
speci6ed collisions can deviate the trajectories of parti-
cles. All collisions conserve mass and momentum.

Let us number the six bonds connected to a site coun-
terclockwise, with an index i, defined as the integers
(mod6), i =1,2, . . . , 6, and label the rest particle with in-
dex 0. We consider only two- and three-body collisions.

For two-body collisions, we have the following.
(1) (i,i +3) goes to (i + l, i —2) and (i —l,i +2) with

equal probability of —,. Here (t', i + 3 }means two particles
with opposite velocities making a head-on collision (this
notation was also used in [16]).

(2) (i,i +2) goes to (O, i —2) with probability of p and
(i+3,i —1) with probability of 1 —p. Ifp is nonzero, this
means that the energy is dissipated due to collision. This
is the case for rough granular particles.

For three-body collision, we have the following.
(3) (i, i+2,i —2) goes to (O, i, i+3),(O, i —l, i +2),

(O,i+1,i —2) with probability of p/3 for each, and
(i +3,i + l, i —1) with probability of 1 —p.

The collision rules for moving particles with a rest par-
ticle involve typical mechanisms of granular flow [17,18].
Intuitively one can understand them as follows. Rest
particles in a region will decrease the local granular tem-
perature which can be regarded to be the (kinetic) energy,
causing a decrease in pressure in that region. The result-
ing pressure gradient will lead to a migration of particles
into that region, increasing its density and decreasing its
pressure and granular temperature even more. That
means that rest particles will induce having more rest
particles nearby. However, due to the restriction of the
I,GA that the rest state at one site can at most be occu-
pied by one particle, we cannot simulate the above-
mentioned mechanisms easily. For example, two moving
particles colliding with a rest particle from opposite
directions can stop each other in accordance with
momentum conservation. But on each site only one rest
particle is a11owed. Therefore the collision should be tak-
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en by an ofF-site collision, i.e., the two particles stay at
rest on the NN sites where they originally came from.
However, on these sites there may already exist other rest
particles. To make things easy, we will still use the on-
site collision but temporarily allow more than one parti-
cle on a site during the collision. Immediately after the
collision, the extra rest particles hop to NN sites random-
ly until they find a suitable site with no rest particle al-
ready sitting there. Only in this way can we incorporate
the mechanisms mentioned above. The collision rules
with rest particles are as follows.

(4) (i,O, i +3) goes to (0,0,0) with certainty.
(5) (i,O, i +2) goes to (0,0,i —2) with certainty.
So far, we have not considered the gravity which is the

driving force of the flow. We simply incorporate it by the
following rule.

(6) A rest particle decides to have a velocity along the
direction of gravity with probability g, if the resulting
state is empty at that time. A moving particle colliding
with a rest particle can change its velocity by a unit vec-
tor along gravity with probability g, if the resulting state
is possible on the triangular lattice used.

The sites at the walls of the system only have two
directions into which the particles can move. So, the col-
lision rule with the walls reads as follows.

(7) A particle colliding with the wall from one direction
can be bounced back with probability b and specularly
reflected into the other direction with probability 1 b. —
If b =0, the walls are smooth (perfect no-slip condition).
Otherwise, the walls have some roughness.

We evolve the system according to the collision rules
defined above. The initial configuration of the system is

set to be random in the sense that each state (except the
rest state) of each site is randomly occupied according to
a preassigned average density p. In the following we re-
port the results made on systems with length I.=2200
and width 8'=11. The lattice spacing is taken to be the
unit and the triangular lattice has an axis parallel to grav-
ity and to the walls.

Figure 1(a) shows the time evolution of the density in
the pipe measured every 80 time steps from t=1 to
t =40000 for p =0.1, g =0.5, b =0.5. The average den-
sity of the system is p= 1.0 (note that the range of p is be-
tween 0 and 7). The density plots are made as follows.
We divide the pipe along the vertical direction into 220
bins with equal length of 10 (total length L =2200) and
count the number of particles n, in the ith bin. The gray
scale of each bin is a linear function of n; T.he
n;(i=1,2, . . . ) at a given time are plotted from top to
bottom while densities at difFerent time steps are plotted
from right to left as time increases. Gravity is from top
to bottom. We see that initially the density is rather uni-
form and gradually regions of high density are being
formed out of the homogeneous system. A high-density
region may also die out and two high-density regions may
merge to form a single one. It seems clear that these are
the same density waves (or shock waves) which were also
observed in experiments [11,12] and MD simulations
[12—14]. We also found that the width of the density
wave initially increases with time and then saturates after
many time steps. For most of the time, these density
waves just travel with almost constant velocity which de-
pends on the parameters (p, g, b,p) used. This constant
velocity was also noted in MD simulations [14]. We have

(b)

{c)
FIG. 1. Time evolution of the density n; [i = 1,2, . . . , 220] in the 220 bins in the pipe of L =2200, W= 11,and p= 1.0. Densities

at a given time are plotted from top to bottom (direction of gravity) while densities at different time steps are plotted from right to left
(direction of time increase) every 80 time steps during 40000 time steps. The gray scale of each bin is a linear function of n;. Darker
regions correspond to higher densities. (a) p=0. 1, g=0.5, b=0.5; (b) p=0, g=0.5, b=0.5; (c) continued from (b) but with dissi-
pation switched on by setting p =0.1; (d) p =0.1, g =0.5, b =0.
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checked that the density waves do not disappear for very
long time steps. For systems with length L =220, we still
found density waves after 2X10 time steps. It seems to
us that the density waves are permanently present.

The average density p plays an important role in the
formation of density waves. We found that the density
waves can only be observed in a certain range of p. This
range is almost independent ofp, g, and b and is approxi-
mately between 0.6 and 1.6. This range might be under-
stood as follows. For very low density, the interactions
among the particles are so few that no collective phenom-
ena can be observed. For high density, the system would
more or less behave as a solid and lose some Quid proper-
ties due to space-filling constraints. Therefore, high den-

sity is not suitable for the density wave formation either.
Only within a range can the density wave be observed.

The difFerence between the "granular gas" and a regu-
lar gas is in the inherent dissipative nature of the elemen-

tary collision processes. Here we include the dissipation
through the parameter p. If we switch off p, no dissipa-
tion is present. In such a case, strikingly, the density
waves do not form. This is shown in Fig. 1(b), which is
otherwise the same as Fig. 1(a) except for p=0. From
this we can conclude that the dissipation among the par-
ticles is essential to the formation of density waves (this
was experimentally observed by Baxter et al. in a hopper
[11]).

One advantage of simulations is that one can easily
control and modify the dynamical process. From t =1 to
t =40000 we switch off' the dissipation, and the results
are in Fig. 1(b). Now starting from t =40000, we switch
the dissipation on by setting p =0.1, and we obtain the
results of Fig. 1(c) where density waves are observed
again. This reveals that even for a minute degree of dissi-
pation (provided p is nonzero}, its mere existence gives
rise to signiffcantly different physics as compared to that
of regular gases and liquids.

The roughness of walls is also essential to the density
wave formation. When we turn off the roughness parame-
ter b (b =0), we observe no density waves either. This is
shown in Fig. 1(d}.

To characterize the density Quctuations in a certain re-
gion with time, we calculate their power spectra. We did
this in a system of length L =220 and width W=11. We
recorded the number of particles in a vertical region of
length 10 every 10 time steps. The dynamical process is
performed for very long time steps so that we obtain
256K (1K=1024) data to analyze for each power spec-
trum. We first subtract the mean value from the data,
otherwise there would be a huge peak at f=0 in the
power spectra. We calculated the spectra using a stan-
dard fast Fourier transform (Fl'I') routine. To get better
statistics, an average process has been used. We broke
the time series of 256K points into S segments of M
points each. On each segment an Fe I was performed us-
ing a Parzen window [19]and the powers of the resulting
spectra were averaged. Here we used S=4. A represen-
tative power spectrum is shown in Fig. 2 for
p=0. 5, g=0.5, b=0.5, p=1.0. The frequency is in an
arbitrary unit and can be related to the real time period
(we check this relation by using the same program to ana-
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FIG. 2. Power spectrum of the time series of the density Nuc-

tuation inside a certain region in a pipe of L =220 and W= 11.
Parameters used here are p =g =b=0.5, p=1.0. The straight
line is least-squares fit with a slope of —1.33+0.02.

lyze a series of exactly periodic data with the same num-

ber of paints). The frequency f=1000 in Fig. 2 corre-
sponds to a time period of T=328. In Fig. 2 we observe
that a sharp peak exists around f=596. The time period
of this peak is T=328 000/596=550 and corresponds to
a wave velocity of 0 =L/T= ,",0 =0.4. T—his value coin-

cides very well with the velocity we measured for the den-

sity waves directly from the time-evolution plots of densi-

ty [similar to Fig. 1(a) but for p =0.5]. That is to say, the
highest-density region traveling periodically in the system
[see Fig. 1(a)] contributes to the power spectrum a sharp
peak. From Fig. 2 one sees that apart from this peak
there is a power-law regime where the spectrum falls off
as 1/f . The line in the log-log plot of Fig. 2 represents
a least-squares fit to the points between f=40 and 1000
after subtracting the sharp peak. The exponent is
a=1.33+0.02 (=T4). Our ability to study the behavior
in the very low frequency regime (f &40) was limited by
the long time series of data required. The exponent a is
found to be independent of the parameters used but the
position of the sharp peak (therefore the velocity of the
density wave} does depend on the parameters.

The picture revealed by Fig. 2 is rather clear. In Fig.
1(a) we observed the high-density region traveling period-
ically due to the periodic boundary condition. This wave
is very strong and most clearly distinguished from the
rest. This is why the peak in Fig. 2 is so high. Apart
from this wave, there are also other waves with a broad
range of frequencies (or traveling velocities). The spec-
trum of these waves follows a power-law distribution
1/f with a close to —'„which might be associated with
the dissipation instability discussed in [17,18].

In conclusion, by using a lattice-gas model we observed
the density waves found in experiments and MD simula-
tions. The density waves exist only in a range of average
densities. Both the dissipation among the granular parti-
cles and the roughness of the walls of pipes are essentia1
to the formation of such traveling waves which might be
similar to the kinetic waves also observed in trafBc jams
[20]. The density ffuctuations follow, apart from a sharp
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peak corresponding to the density wave discussed above,
a 1/f power spectra with a close to —', . Power-law spec-
tra have also been observed in experiments [11,12] and
MD simulations [13] and we conjecture that they are a
direct consequence of the dissipation instability [17,18].
The formation of density waves and the 1/f power
spectra is a rather complex phenomenon and further

work should be devoted to explain its mechanism.
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