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Static parametric fluctuations give nonstatistical behavior in uncoupled chaotic systems
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We show that an ensemble of logistic maps, with parameters distributed in some range inside a chaotic
region, cannot be statistical. This is so because any parameter range for this map includes periodic win-

dows. The effects of this periodicity in the averages of the system can be estimated, and are also ap-

parent in the power spectra of average values. As a counterexample, we show that the behavior for tent

maps, where chaotic regions do not include periodic windows, is statistical.

PACS number{s): 05.45.+b, 05.90.+m

I. INTRODU(. 11ON

It was shown in a recent work by Sinha [1] that in-

dependent chaotic maps under the influence of global
noise behave in a nonstatistical manner. In particular, it
was found that when a collection of logistic maps in their
chaotic regime has time-dependent but spatially homo-
geneous fluctuations in its nonlinear parameter, the aver-

age value of x shows persistent fluctuations even in the
large-N limit. This behavior is similar to that of an en-
semble of chaotic maps under weak global coupling, a
problem that has been studied in several recent works
[2—5].

It was also claimed in that work that when the applied
noise is static but space dependent, the behavior of this
uncoupled chaotic system is statistical. This means that,
for instance, if we have a large collection of logistic maps
with their parameters distributed in some narrow range
in the chaotic region, the average value of x should con-
ver e to some fixed value with fluctuations that die out as
1 N. At first sight, this seems quite plausible, since this
just reflects the statistical behavior one expects from a
collection of independent chaotic oscillators, where each
and every one of them is characterized by an invariant
probability distribution with finite support. But upon
more careful examination one has to realize that there is
a failure in this reasoning. This failure lies in the fact
that the statistical superposition mentioned before works
only if all the mappings included in the parameter region
of interest are purely chaotic. By "purely chaotic" we
mean here the absence of any periodic behavior, i.e., we
exclude cases of the type known as "periodic chaos" [6],
where the motion covers in a periodic way a finite collec-
tion of distinct chaotic windows.

But it is we11 known [7] that this is impossible to do
with any smooth distribution of parameters in the logistic
map, since there is at least a periodic window between
any two different points in parameter space where the
map is chaotic, and this periodic window (or windows)
represents a nonzero fraction of the parameter range.

Therefore, as we increase the size of the lattice on which
we are working, we mill be at the same time maintaining
some fraction of the elements moving in a periodic way.
And this part of the system will spoil the convergence of
the average, by keeping persistent fluctuations whose ori-
gin is simply the periodicity of the map in these windows.

In this paper we show that the intrusion of periodic
windows does alter the statistical properties of a collec-
tion of chaotic maps whose parameters are distributed.
We also show that in typical cases this efFect is extremely
small, thus explaining the results reported in Ref. [1].
We show how this effect depends on the initial
configuration of the lattice, and how the effect of periodic
windows on the fluctuations of the average can be es-
timated.

II. UNCOUPLED LOGISTIC MAPS
KITH PARAMETRIC NOISE

The ~odel used for this work is

x„'+,=1—a'(x„') (2.1)

where i is the space index and n is the time index. The
values of the parameter a are given by

a'=a+ac', (2.2)

where e' is a random number uniformly distributed be-
tween —1 and 1, cr is the (small) amplitude of the param-
eter fluctuations, and a is just the center of the distribu-
tion. This is denoted as "case (iii)" in Ref. [1],where a
slightly different prescription a'=a(1+o V) was used. It
is clear that these two prescriptions are identical if one
makes o.=ao'.

In order to test whether or not this system is statistical
we calculate the instantaneous mean value h„of the vari-
able x„', over large size lattices, and study the time evolu-
tion of this average. In particular, we check its mean-
square deviation (MSD), which is defined by
( ( ( h ) h) ), where —the angular brackets are time aver-
ages. We also check its power spectrum, which for a su-
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perposition of purely chaotic systems should be broad.
A comment should be made here about the meaning of

these averages. What we want to know here is whether a
single lattice, made out of many elements, can be statisti-
cal, in the sense that averages over those elements obey
the central limit theorem and the law of large numbers.
We are not considering the different problem of an en-

semble of lattices [8], which depending on the conditions
of the problem may or may not be statistical.

Before going over the numerical results, let us try to
give an estimate of the size we can expect these effects to
have. For this, we can do the following approximation:
we can separate the average h„ into two parts. One
comes from the points of the lattice where a falls in the
purely chaotic region, and another comes from those
points with a in a periodic window,

h =h'+h~=—— g x'+ — g x' .1 1
1l ft N N 1l N 8

a' chaotic a ' periodic

(2.3)

K
(&)=(h')+(h )=(1—b, )h'+ —g xk,k (2.5)

where the 1/K comes from the time average of wk. The
mean-square deviation of h becomes

K
'2

((k —(h/) )=—+6 z w, ——x, )
2

N EC
(2.6}

Now, the part that comes from chaotic a will converge
towards some fixed value h ' in the infinite lattice limit,
with uncorrelated fiuctuations g„. These fiuctuations will

have zero mean and a mean-square deviation that decays
as 1/N (multiplied by some coeScient of order 1}.

For the periodic part we will take into account only the
largest periodic window, of periodicity K. At some arbi-
trarily chosen time n =0, after the transients have died, a
fraction wk will have been attracted to the kth point in

the cycle, denoted xk. It is clear that the value xk
changes along the window, and is not even well defined at
its end, where the motion is over narrow chaotic strips.
However, since for narrow periodic windows these
changes are small, we will just approximate the whole in-

terval, including the chaotic strips, by a single representa-
tive value of xk.

With these approximations the value for the periodic
part of the average is now

K
hf =4 g wkxk, (2.4}

k=1

where wk =
w~k „~ ~ is the fraction of points in the lat-

tice with value xk at time n, and 6 is the relative width of
the periodic window, assumed to be small. The time
average of h is

be zero. Therefore we are considering here an effect that
is strongly dependent on the distribution of the initial

conditions. In general, if this distribution is homogene-
ous between some two values —not too close to each
other —and covers a good part of the ( —1, 1) range,
there will be small but nonzero deviations from the 1/K
mean value. This effect is the one that induces persistent
Suctuations on the mean values for a lattice of logistic
maps.

III. NUMERICAL RESULTS

A. Estimate of nonstatistical eSects

To verify what have been said above, we have done a
numerical estimate of the size of the effects one may ex-

pect in a simulation of a logistic map lattice, in order to
see under which conditions we may expect to find them.
The first limiting factor here is the relative width of the
periodic window, which for typically small cases (say of
order 10 }already makes the possible effects visible only
for lattices of 10 points or more. Besides this, we also
have to check what are the typical values for the frac-
tions wk for a uniformly distributed set of initial condi-
tions. Our numerical results show that these fractions
tend to deviate from the even value 1/K by a small
amount —of the order of a few percent —for initial con-
ditions with some bias (for instance, xo chosen between 0
and 1), and even for initial conditions distributed homo-
geneously in the whole (

—1, 1) range. This adds another
factor of 10 —10 or smaller to our estimate for the
saturation point of the MSD, and means that in typical
cases one should not see any nonstatistical effects for lat-
tices of less of 10 -10' points. This explains the null re-
sults found in Ref. [1], where lattices up to 10 points
were used, and means that in order to see the nonstatisti-
cal behavior of these systems in smaller lattices one has
to look for some specific conditions, in particular, a pa-
rameter range that includes small but still appreciable
periodic windows.

In our simulations we have used the parameters
a=1.96 and o =0.02, which gives us a' in the range
1.94—1.98. This range in parameter space includes a
narrow four-window around a =1.941, which takes close
to —,', of the covered range. We have tested the saturation

value given by Eq. (2.7) using an initial distribution with

xo between —0.5 and 0.5, which introduces some bias.
The results obtained for three different points inside the
window —one of them in its chaotic part —were con-
sistent with each other, and the final estimate for the sat-
uration point of the MSD is around 1.5 X 10 . The actual
values of wk and xk for the three tested points are given
in Table I.

K
=—+62 gN ~ ~

1

(w,.w,. )—,x,x, , (2.7)
1

X

where we are taking (1—b, ) = 1. Notice that if one could
choose the initial conditions for the lattice so as to cover
equally the K basins of attraction of the map f, then all
the wk would be equal to 1/K and the second term would

B. Actual samulabon of the latbce

We have simulated the dynamics of this systems on lat-
tices of sizes up to 633960 points, with the same ranges
of a and of initial conditions given above. The first 5000
iterations were discarded as a transient, and the statistics
were collected over 50 runs of 1024 iterations each. Since
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TABLE I. Values of x for the four cycle, and fractions of initial conditions attracted to them after 5000 iterations. The statistics

were compiled over 50 runs, on lattices of 40000 points. Here we show the results for three different values of a inside the four-

window. Errors in the fractions u are all of order 2X 10

1.9410
1.9415
1.9425

—0.9410
—0.9412
—0.9425

—0.7186
—0.7199
—0.7255

x3

—0.0022
—0.0062
—0.0225

x4

0.9999
0.9999
0.9990

Wi

0.2506
0.2500
0.2502

W2

0.2376
0.2355
0.2315

W3

0.2698
0.2740
0.2809

W4

0.2420
0.2405
0.2374

Estimated MSD

1.1X10
1.6X 10
2.7X10-'

these effects are sensitive to fluctuations in the distribu-
tion of initial conditions, we have repeated the simulation
four times, each with a different set of initial conditions.
The results of this calculation are given in Fig. 1, which
shows the beginning of the saturation of the MSD of h as
N grows, and in Fig. 2, which shows the power spectrum
of h.

In Fig. 1 we can see that for large n the MSD has devi-
ated strongly for the 1/N behavior, and is clearly starting
to saturate, with values that approach our previous esti-
mate of 1.5X10 from above. The bars give the total
spread obtained for the four repetitions, i.e., they go fram
the minimum to the maximum value obtained for the
MSD. As a comparison (and control, in order to test that
this effect is not just some roundoff effect from the com-
puter), we are including the results from the same calcu-
lations performed on lattices of tent maps,

x„'+, =1—a'lx„'l, (3.1}

I I I I III I I

104 =
X g

x g

using exactly the same parameters and run times as in the
logistic case. This system is expected to show perfectly
good statistical behavior in this case, because it does not
have any periodic windows in the range of a considered;
the tent map is purely chaotic for all values of a in the
range 1.94-1.98. In the figure we see that the behavior
of the MSD for tent map lattices is perfectly statistical,
following the 1/N law. We have not included spread
bars for these points since here the spreads are negligible.

In Fig. 2 we have plotted the power spectrum of h for
both the logistic and the tent lattices, for N=633960.
The spikes corresponding to the frequencies —,

' and —,
' are

quite evident in the spectrum for the logistic map. They
arise from the periodic part of the mean field, h&, and in-
clude contributions from the purely periodic part (funda-
mental and subharmonics}, and the periodically chaotic
[6] final part of the window. The noisy background is
formed by the purely chaotic part of the mean field, h;
which comes from most of the included range in a, with
some contribution from the periodically chaotic segment.
Notice that periodic chaos contributes to both types of
spectrum; in fact, the typical power spectrum of this kind
of motion is quite similar to that shown in Fig. 2. The
origins of these two are different, however. In "periodic
chaos" one single degree of freedom hops periodically
from one chaotic window to another. In the present situ-
ation, we are thinking about the addition of many degrees
of freedom. The average we perform in getting the mean
field h reduces the power of the spectrum of h ' for
nonzero frequencies, while maintaining the (relatively
weak) component h~.

We should mention that periodic spikes are visible
even for much smaller lattices, and appear in power spec-
tra well before saturation of the MSD. For comparison,
we also plot the power spectrum for the mean value for a
lattice of tent maps. It is evident that there is no periodi-
city at a11 in this case.

IV. CONCLUSIONS

We have shown that nonstatistical behavior appears
for lattices of uncoupled chaotic maps when these maps
are subject to static parametric fiuctuations. This effect is
due to the intrusion of periodic windows in the chaotic
parameter sector, which makes it impossible to say that a
given parameter range is purely chaotic. The magnitude
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FIG. 1. Mean-square deviation for the lattice average h vs

lattice size. The squares correspond to lattices of logistic maps,
and the bars show the spread of the MSD. The expected satura-
tion value for the MSD is around 1.5 X 10 . The crosses corre-
spond to lattices of tent maps, whose MSD does not saturate.
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FIG. 2. Power spectrum of the lattice average h for lattices
of logistic maps (top), and tent maps (bottom). The vertical
scale is the same for both figures.
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of this effect can be calculated, and the results from actu-
al simulations agree with other estimates. These effects

disappear in cases where it is possible to set a parameter
range where the evolution of the maps is purely chaotic,
and in the case of the tent map. (Notice that tent maps
were used in Ref. [8].)

This nonstatistical behavior is manifested in the satura-

tion of the MSD of the average h as the lattice size N
grows, and in the appearance of sharp spikes in the

power spectrum of h. . However, for most typical cases,
the saturation values for the MSD of the average h are so
small that they affect only extremely large lattices. Also,
the effect is quite sensitive to the distribution one chooses
for the initial conditions in the lattice. In principle, it

may even be possible to produce a distribution of initial
conditions that cancels the effects of at least the largest

periodic window, and makes the system behave statisti-

cally for even larger sizes of the lattice.
The situation with the power spectrum is different.

The spikes that signal periodicity in the lattice appear
even for small lattice sizes, even though their behavior
becomes consistent only as N grows. For large lattices,
one can observe very clearly the effect of the periodic
windows on the evolution of the average. The signals

coming from the whole window contribute to this period-
ic effect, including the subharmonics and the periodic
chaos. The noisy background comes mainly from the

mappings outside the periodic window, with some contri-
butions from the periodic chaos section inside.

This is a very simple model, whose nonstatistical
behavior is easy to understand, so much so that it can be
estimated beforehand. We believe, however, that there
has to be a connection with the more complex but similar
phenomena one finds in the case of globally coupled
chaotic mappings. (A review is given in Ref. [9].) Both
of them show saturation of the MSD, peaks in the power
spectrum (broad in the coupled case), and in both cases
the nonstatistical effects disappear for the continuously
chaotic examples of the tent map. In the uncoupled case
the explanation of this fact is simple; with no periodic
windows one gets invariant distributions for any values of
a, which gives finally simple statistical behavior. For the
coupled case the connection between continuous (in pa-
rameter space) chaos and statistical behavior has been
only postulated and discussed within a static approxima-
tion [10], but still the similarity between the two modes
seems to imply a deeper connection.
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