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Signatures of chaos in quantum billiards: Microwave experiments
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The signatures of classical chaos and the role of periodic orbits in the wave-mechanical eigenvalue
spectra of two-dimensional billiards are studied experimentally in microwave cavities. The survival
probability for all the chaotic cavity data shows a “correlation hole,” in agreement with theory, that is
absent for the integrable cavity. The spectral rigidity A;(L), which is a measure of long-range correla-
tion, is shown to be particularly sensitive to the presence of marginally stable periodic orbits. Agree-
ment with random-matrix theory is achieved only after excluding such orbits, which we do by construct-
ing a special geometry, the Sinai stadium. Pseudointegrable geometries are also studied, and are found

to display intermediate behavior.

PACS number(s): 05.45.+b, 03.65.5q, 84.40.Cb

The quantum mechanics, and more generally the wave
mechanics, of systems which are classically chaotic, is
currently of great interest [1]. It has been realized that
classical chaos manifests itself in unique, and often
universal ways, in the eigenvalue spectra and the eigen-
functions of the corresponding quantum systems [2-4].
It has also been recognized that the periodic orbits (PO’s)
of the classical system, although of measure zero, play a
crucial role in organizing the quantum behavior [1,5].
Although several major theoretical developments have
occurred, new results concerning the quantum signatures
of classical chaos are continually emerging. Further-
more, the experimental manifestations of quantum chaos
are only recently being studied, and real experimental
systems displaying quantum chaos are still relatively few
[6-10].

Recently two-dimensional (2D) electromagnetic sys-
tems, particularly microwave cavities, have emerged as a
very useful laboratory tool to study the issues of wave
chaos [7-9]. These experiments exploit the exact
equivalence of Maxwell’s equations with Schrodinger’s
equation for the 2D stationary TM modes of thin mi-
crowave cavities, viz., (V2+k2)1,b=0. One powerful ca-
pability of these experiments is the ability to observe
directly eigenfunctions, and this has led to a direct obser-
vation of scars in wave functions [7,11].

The theme of the present work is to test experimental-
ly, via highly precise measurements using microwave cav-
ities, the signatures of classical chaos in wave-mechanical
spectra. A very important advantage of the microwave
experiments is the ability to address essentially arbitrary
2D geometries, which are not accessible via numerical
simulation. This latter advantage is exploited in the
present work, in which we construct several billiards,
whose classical dynamics is integrable, chaotic, or even
pseudointegrable. By manipulating the cavity shape, we
are able to experimentally demonstrate and quantitatively
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study the influence of PO’s and their stability on the sta-
tistical features of the eigenvalue spectra. Furthermore,
pseudointegrable systems [12], which are not usually
found in atomic or nuclear systems, but are nevertheless
of importance from both theoretical and practical
viewpoints, are studied here experimentally.

We analyze the eigenvalue spectra using the nearest-
neighbor spacing P(s) for short-range correlations, and
the spectral rigidity A;(L) for longer-range correlations
[13]. To measure the consequences in the time domain,
we also study the Fourier transform of the spectral auto-
correlation function {((P(#))) which can be interpreted
as the survival probability [14,15]. Particularly striking
is the signature observed in the survival probability
((P(t))), which shows, for the chaotic cavities, the so-
called “correlation hole” [16]. We also show, via direct
experiment, the influence of the nature of the stability of
PO’s: Only for a new geometry which has only isolated
and unstable PO’s do we find quantitative agreement with
random-matrix theory.

The experiments were carried out in thin (height 6 mm)
copper cavities shaped in the form of a rectangle (21.8 cm
X35.3 cm with golden-mean aspect ratio), a chaotic Sinai
billiard (21.8 cmX44.0 cm with a 4.95 cm quarter disk),
a Sinai stadium (a Bunimovich stadium with an off-center
disk in the middle to eliminate all nonisolated PO’s), and
a pseudointegrable geometry (Fig. 2, top). Details of the
experimental setup to measure the eigenvalue spectrum
of the cavities are described in Ref. [17]. The cavities
were studied in the transmission mode using an HP8510
Network Analyzer. Figure 1(a) displays a typical experi-
mental transmission spectrum for one of the cavities.
The resonance frequencies f, are easily identified from
the transmission spectrum, which is converted to an ener-
gy spectrum E, = f2, and subsequently unfolded [2].

An important aspect of our work is the separation of
measurement artifacts from intrinsic system properties.
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FIG. 1. (a) Typical transmission spectrum for the cavities
studied. The peaks correspond to resonances. (b) The cumula-
tive density of states, N(E) vs E for the Sinai-stadium cavity.
Note the excellent agreement with the Weyl law (dotted). Inset:
the spacing statistics, P (s) vs s for the Sinai (solid) and Sinai sta-
dium (dashed) along with the Wigner surmise.

Preliminary experiments indicated that in order to ensure
that the measurement procedure does not influence the
properties of the system, and to minimize missing levels,
several precautions were needed. The transmission
method we employ is substantially superior to reflection
methods, since differences from zero need to be observed,
leading to more precise identification of levels, rather
than differences from unity in the latter. Another impor-
tant feature is our employment of variable coupling,
which ensures that the coupling mechanism does not per-
turb the eigenstates, in our case to less than 10™*. This is
confirmed by the agreement of individual resonance fre-
quencies and eigenfunctions, with calculations for both a
rectangle and a Sinai billiard [11]. Multiple coupling-
probe locations were necessary and were used in order to
ensure that accidental occurrence of nodes at a particular
coupling site did not lead to a missed level. In practice
we have found that four locations leading to four traces,
as in Fig. 1(a), are adequate.

“Good” data are obtained, using the Weyl formula for
N (E) as a yardstick, only when the above precautions are
taken. This is shown in Fig. 1(b), where we display the
experimental staircase for the first 704 levels for the
Sinai-stadium cavity. The agreement with the Weyl for-
mula is very good and shows that no levels were missed.
This was also true for the other geometries, except for the
rectangle, where the inherent tendency for level cluster-
ing leads to several near degeneracies, no matter what the
aspect ratio of the cavity. The nearest-neighbor spacing
distribution for the eigenmodes of the cavities shows level

repulsion clearly for the chaotic cavities [inset of Fig.
1(b)], which also show good agreement with the Wigner
surmise [13].

The results for A;(L), shown in Fig. 2, are found to de-
pend crucially on the nature of the periodic orbits present
in the geometry. It has been conjectured that the spectra
of time invariant quantal systems in which the classical
motion is strongly chaotic have Gaussian-orthogonal-
ensemble (GOE) fluctuations [18]. For the Sinai billiard,
which is strongly chaotic, we see that A;(L) follows the
GOE curve up to L ~ 10 and then a linear rise is seen. In
a Sinai billiard, both isolated and nonisolated orbits are
present [19]. The presence of these nonisolated orbits,
which are marginally stable, leads to stronger fluctua-
tions in the energy spectrum, causing a linear rise in A;.
This form of the rise was seen to be the same when the
experiment was repeated with a larger disk (radius=10
cm). It is noted that the presence of random spurious
levels in a GOE sample would also lead to a linear rise,
which is clearly not the case here, and further demon-
strates the high quality of the data. The theoretical form
for the spectral rigidity using semiclassical theory [5] is
A3(L)=1/7n(L)—0.007 for 1<<L <<L,,. (which is
the same as in a GOE of random-matrix theory), where
L ..(=hd,, /Ty,) is the outer scale of the spectrum.
Here d,, is the mean level spacing and T, is the period
of the shortest orbit. The rigidity A;(L) is then expected
to saturate for L >>L ... L .. can be further evaluated
in terms of the area A4 and the number of levels N;
using the Weyl area approximation, we get
Lox=2V'TAN /I ;,, where I, is the length of the
shortest PO. The experimental A;(L) saturates at 0.466
for L =110, which compares well with the theoretical
value of 0.45.

The rigidity in the spectrum is also seen to be very sen-
sitive to the stability of the periodic orbits. Clear
differences are seen between the Sinai, Sinai-stadium, and
the pseudointegrable billiard. Only for the Sinai stadium
which has only marginally stable PO’s do the data show
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FIG. 2. The spectral rigidity, A;(L) vs the energy length L,
for (a) the Sinai billiard, (b) the Sinai stadium, and (c) the pseu-
dointegrable cavities and the theoretical forms expected when
the corresponding classical motion is integrable (Poisson) or
strongly chaotic (GOE).
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clear agreement with the GOE. The relevance of PO’s to
the statistical analysis has been known, and in some ex-
periments has been accounted for numerically [9]. The
present results represent a direct experimental demon-
stration of the PO contribution.

Until recently, theoretical work has focused mainly on
classifying systems on the basis of statistical properties of
the energy spectrum, as discussed above. Of equal funda-
mental importance is the difference between these sys-
tems in the time domain. Several theoretical studies [20]
have focused on examining the survival probability, P(z),
which is defined as P(t)=|{4(¢)|$#(0))|? and is the re-
currence probability of a given initial wave function ¢(0),
the wave function itself being defined as

This quantity is found to depend on the initial states, a;.
Following earlier work by Pechukas [21], Wilkie and
Brumer [14] have shown that (( P(¢))), the survival prob-
ability averaged over initial states and Hamiltonians,
shows a distinct difference between the regular and irreg-
ular spectrum, but these differences are confined to short
times t ~27#/( AE ), the long-time limit being the same
in both cases.

In Fig. 3, (( P(t))) vs time is shown for the Sinai, the
Sinai-stadium, and the rectangle cavities described above.
This quantity was computed from the experimental
“stick” spectra in the following way. Following Ref.
[22], P(¢) averaged over initial states was calculated from
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FIG. 3. The survival probability averaged over initial states
and Hamiltonians, {( P(¢))) vs ¢, for the cavities. The asymptot-
ic value is 0.25. Top: the Sinai (dotted) and the Sinai stadium
(solid), along with the theory (dashed) follow the theoretical
form obtained from random-matrix theory. Bottom: the rec-
tangle data show no such correlations.
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The average over Hamiltonians to obtain ({( P(z))) was
done by averaging over n =21 to 420, each segment con-
taining N =10 levels. The time ¢ was appropriately time
scaled with respect to the average energy spacing to get
quantitative comparison with theory.

We see a rapid dephasing of (( P(¢))) in time t =1/N
(here N =10) for all three cases. This corresponds to
short time scale dynamics [23] which is not universal.
For the chaotic case, (( P(¢))) goes below the asymptotic
value before recovering to it, describing a correlation
hole. This is universal and is unambiguously present in
the chaotic Sinai billiard spectrum and the Sinai stadium,
and is clearly absent in the integrable rectangle spectrum.

A quantitative comparison of our data with random-
matrix theory (RMT) is carried out following Ref. [15],
who have evaluated the further averaging over the Ham-
iltonians giving

(P)N=P,(D

3

=N+—2{1+ANO[%5(t)—%bzﬁ(t)]} . (2)

Here b,g(¢) is the two-level form factor [13], and B=1

for the GOE. The Ayo denotes the convolution
Ayo f(t)=fdt'Ay(t')F(t —t')
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FIG. 4. The spacing statistics, P(s) vs s, along with the inte-
grable (dashed) and chaotic (solid) limits, and the survival prob-
ability for the pseudointegrable cavity. Both statistical mea-
sures show intermediate behavior.
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and
Ay(2)=N"[sin(7Nt /mt)]?

due to the finite subspace, N, used.

We have compared the above theoretical form with the
experimental data for the chaotic case in Fig. 3 and the
data are in accord with theoretical expectations. The
similarity in the form of the Sinai and the Sinai stadium
{P(t)) indicates that the form is not sensitive to the
presence of the marginally stable PO’s, and only depends
on the classical phase space being chaotic.

Another feature of PO’s, besides the influence of their
stability, is the nature of their proliferation, i.e., power
law or exponentially as the length of the PO’s increases.
We have studied this experimentally by constructing a
pseudointegrable cavity. For the pseudointegrable case
studied, the PO’s occur in one parameter families [12]
and the asymptotic form for the proliferation of PO’s is
the same as for the integrable case, i.e., =</ 2 [24]. But
there are differences in the rate of proliferations of PO’s
[25] which contribute to the spectral rigidity. This causes
the rigidity to rise faster than logarithmically, giving rise
to the observed deviations from a GOE form, even for
small energy lengths, L. For the survival probability, an
intermediate situation is found, in that the correlation
hole is present but is weaker. For intermediate situa-
tions, Ref. [15] has suggested on the basis of arguments
based on a fraction of the phase space being chaotic [26]
that b,s() can be written as Bb,(t/B)+[(1—B)/N15(1),
where b, is the exact expression for the GOE (S8=1).
Using this ansatz, we have the best agreement with the
data for the pseudointegrable case for f=0.68 (Fig. 4).
Even though this argument is not perfectly applicable to
pseudointegrable systems since the phase flow is confined

to a surface with genus 2, the same argument gives
B=0.65 for A;(L), in reasonable agreement with that ob-
tained from the survival probability. The theory of pseu-
dointegrable geometries is not on firm ground yet, and
further developments [27] are required—however, our
experimental data can be used as quantitative tests of fu-
ture theories.

The good agreement found between experiment and
theory leads to two important conclusions. First, proper
experimental procedures can lead to extremely precise
data. Also, the results of this paper show that important
statistical analysis can be reliably carried out using
room-temperature cavities, and higher Q (e.g., supercon-
ducting cavities at low temperatures <4.2 K) is in gen-
eral not needed. Room-temperature studies have impor-
tant implications in electromagnetics, in view of potential
applications in microwave systems.

The approach taken here has been to study the stick
spectrum obtained from the measured eigenvalues of the
different cavities. In the process, information regarding
resonance amplitudes and absorption widths has been
discarded, and in effect the real system has been replaced
by a corresponding idealized system. Future work will
explore the inclusion of amplitudes and widths, and will
address the very interesting issue of inverse deconvolu-
tion of classical dynamics from the measured wave spec-
trum.
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