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We report accurate numerical results for a surface-induced polar effect in a nematic liquid crys-
tal, associated with the symmetry breaking of anisotropic interfacial interactions. By performing
numerical simulations, the orientational profiles of the director, the surface molecular tilt, and the
resulting optical phase shift are obtained as a function of both the anchoring strength and an exter-
nal electric field E. In a simple geometry with homogeneous boundary conditions, the polar effect
is directly related to the difference in the anchoring energy, and its magnitude depends primarily on

E2
PACS number(s): 61.30.Gd, 78.20.Jq

The interaction between a liquid crystal (LC) and a
treated substrate is important for a basic understand-
ing of physical phenomena at an interface as well as for
practical applications. For instance, the broken symme-
try and specific interactions at an interface lead, under
various circumstances, to novel orientational phenomena
[1,2] in the layer adjacent to the interface which may
not be observable in the bulk. Moreover, the control of
molecular orientation and surface tilt play a critical role
in many electro-optic devices.

It is known that a properly treated solid substrate can
preferentially orient the constituent molecules of LC’s in
a certain direction, as a result of anisotropic interfacial
interactions between the molecules and the substrate [3].
Particularly, considerable interest has been focused on
the interfacial properties of the nematic phase [4] which
is characterized by only the presence of orientational or-
der. Due to the inversion symmetry, most of the cou-
plings of this system with external fields are quadratic
in nature, as for example, the coupling of the dielectric
anisotropy with an external electric field. However, a
coupling of the induced polarization associated with the
orientational distortions can produce a linear effect which
is known as the flexoelectric effect [5].

Recently, it has been demonstrated [6,7] that a strong
polar effect, having the flexoelectric origin, exists in a
planar sample with two different polymer layers. Typi-
cal homogeneous samples exhibit no polar effect but only
surface domains [8] are observed. In this Brief Report we
perform accurate calculations of the external symmetry-
breaking effect of the interfacial interactions between two
surface layers on the polar electro-optic properties of
LC’s. The resultant polar effect is discussed in terms of
physical parameters such as surface tilts and anchoring
strengths. It is found that the optical phase difference
depends primarily on E~2 of the applied electric field.

For symmetrical interfaces, in the presence of an ex-
ternal electric field above the Fréedericksz threshold [9],
two flexoelectrically induced polarizations in the upper
and lower regions of the sample exactly cancel, while
for asymmetrical interfaces, a net polarization exists and
couples with the electric field to produce the polar effect.
This suggests that asymmetry in the interfacial interac-
tions is an essential factor for realizing the polar effect.
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Experimentally, we confirmed the existence of this polar
effect in a commercial material E7 (from EM Chemi-
cals) at room temperature [6,7]. Two different interfaces
were produced by using two different aligning polymers,
poly(1,4-butylene terephthalate) (PBT), which contains
aromatic rings which resemble the cores of the liquid-
crystal molecules, and nylon 6,6 (NYL), which resembles
the tails of the liquid-crystal molecules [10]. It should be
noted that no polar effect was observed for the sample
made up with the same polymer layers on both surfaces.

In order to examine the polar effect more accurately,
we perform numerical simulations for the bulk orienta-
tional distortions, the surface tilts, and the optical phase
difference as a function of the anchoring energy, the elec-
tric field, and material parameters such as the mag-
nitude of the flexoelectric coefficient and the dielectric
anisotropy. We use two different methods; one is based
on a direct integration of the Euler-Lagrange equation
that minimizes the free-energy density and the other uses
the relaxation method applicable to solve a full dynam-
ical problem. In the first case, the director orientation
and its rate of change in space is estimated at one of
two surfaces. The differential equation is then numeri-
cally integrated to the other surface through the bulk.
When the integration does not yield a desired orienta-
tion at the surface, the initial conditions are varied, with
the restrictions imposed by the problem, until it does.
In the second, an initial configuration is assigned to the
director orientation and adjusted to satisfy the equation
of motion which causes the free energy to relax toward
a minimum [11]. Although this method is more general,
it takes long time to obtain the correct equilibrium con-
figuration. Here, we are concerned with only a static
problem by using this relaxation method. Once the di-
rector configuration is found, the optical-path difference
can be computed by using a 2x2 Jones matrix method
[12].

For numerical simulations by the first method de-
scribed above, we construct a usual free energy of a
nematic sample of thickness d, aligned homogeneously
along the y axis, in the presence of an electric field E
in the z direction. Assume that the dielectric anisotropy
€, is positive and the distortions, mostly splay, occur
along the z direction. Denoting partial derivatives by
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subscripts, the free-energy density f per unit area can be
written as

d
f= / dz[(K1/2)(1 + rsin®)0% — éEsinfcos ()6,
0
—(1/87)€a E*sin®0] + four, (1)

where é, K,, and K3 represent the mean flexoelectric
coefficient, the splay elastic constant, and the bend elas-
tic constant, respectively. The anisotropy in the elastic
constant is denoted by xk = (K3 — K1)/ K;. Here fs,, de-
notes the surface anchoring energy, and the space-charge
effects were ignored. Minimizing the free energy, Eq. (1),
the Euler-Lagrange equation leads to

(1 + sin®6)0,. + wsinfcos(0)6? + £~ Zsinfcosh = 0

(0<z<d), (2)

where the dielectric coherence length ¢ is given by
47K /e, E?. The boundary condition represents the
torque balance at each surface:

(0f/00.) £ (8fsur/00) =0 (3)

at z = 0 and z = d, respectively. Macroscopically, the
effect of the surface torque can be described in terms of
an anisotropic interfacial energy which depends on both
the surface tilt and the anchoring strength. For sim-
plicity, we choose the interfacial energy fqur in a form
[13] W (5 - )2 = Wsin?0 with the surface normal $ and
the director 7i, ignoring terms of surface polarization
(x sinf) on homogeneous surfaces [14]. Accordingly, the
two boundary conditions can be rewritten as

K,(1+ nsin201,2)01|172 — eEsinf; zcosb o

:th,gsinﬁl,gcos@lyg = 0. (4)

We first obtain the results in the one constant approx-
imation (x = 0), and discuss the effect of the anisotropy
K on the optical phase difference associated with the po-
lar effect later. The integration of the Euler-Lagrange
equation yields z = ¢ fe(C —sin?a)~/2da, where C is a
field-dependent integration constant which can be deter-
mined from the boundary conditions, Eq. (4). Although
numerical calculations are required to exactly solve the
equation for z(#), it is interesting to see the qualitative
features of the infinitely anchored case (W;., — oc).
Near the Fréedericksz threshold E., the maximum distor-
tion angle 8,, x (E/E, — 1)'/2, which is a characteristic
of the second-order transition, and 0(z) =~ ,,sin(rz/d).
The optical-path difference § ~ n.dv(E/E. — 1) where
v = [(ne/n,)*>—1] <« 1 with n. and n, the extraordinary
and ordinary refractive indices, respectively. For suffi-
ciently high fields, a complete distortion of the sample is
obtained, and the maximum distortion angle 6,,, becomes
/2.

Based on Eqgs. (2) and (4), together with the litera-
ture values of K = (1/2)(K; + K3) = 1.57 x 1077 dyn

in one constant approximation, ¢, = 13.8, ¢ = 8 x 10™*
cgs unit for the E7 material [15,16], W; = 0.10 dyn/cm,
W, = 0.10 or 0.15 dyn/cm, we carried out accurate calcu-
lations to evaluate the orientational distortions 6(z) for
the symmetrical and asymmetrical cases as a function
of z/d for fixed electric field E. Figures 1(a) and 1(b)
show the numerical results for the two cases, respectively.
As expected, for the symmetrical case, the differences in
f(z) between (+)F and (—)E are identical and symmetric
with respect to z/d = 0.5. However, for the asymmet-
rical case, the difference in 6(z) at the weakly anchored
surface is larger than at the strongly anchored one. This
difference directly results in the optical-path difference.
We confirmed that the two methods employed produce
identical results within less than 1% error.

In Figs. 2(a) and 2(b), the surface tilts, 1 and 6, are
plotted as a function of the anchoring energy, Wy, varied
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FIG. 1. The spatial distortion angle 6 as a function of the
normalized z/d for (a) the symmetrical surfaces with the an-
choring energies W; = W, = 0.10 dyn/cm, and (b) asym-
metrical surfaces with the anchoring energies W; = 0.10
dyn/cm and W, = 0.15 dyn/cm, respectively. The electric
field E = 2.5 V/pm, the dielectric anisotropy €, = 13.8, and
the flexoelectric coefficient & = 8 x 10™* cgs unit. The solid
and dashed lines represent two polarities of the electric field
(+£)E, respectively.
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FIG. 2. The surface tilt § at the two surfaces, (1) and (2),
with anchoring energies W, fixed as 0.15 dyn/cm and W,
varied, respectively. The electric field E = 3.0 V/um. The
solid and dashed lines represent two polarities of the electric
field (£)E, respectively.

at one surface, and W5 = 0.15 dyn/cm, fixed at the other.
It is clearly seen that for a given field E, the surface
tilt and its difference between (+)E and (—)E become
larger with decreasing anchoring energy. Furthermore,
the surface tilt is inversely proportional to the anchoring
energy. Qualitatively, this behavior can be understood
as follows. Suppose that the sample cell consists of two
surface layers where the angle 6(z) varies continuously
from 6,, = m/2 to 6, and 6, respectively. For surface
tilts up to quadratic order, the first integral of Eq. (2)
which satisfies # =~ m/2 and 6, ~ 0 near the middle of
the sample, and Eq. (4) yield the field dependence of 6,
and 6.

012(E) =~ [(§/n+&/b12)* +1]7V2, (5)

where the flexoelectric coherence length n = K/eE and
the extrapolation length b, 2 = K/Wi 2. The flexoelec-
tric coupling tends to amplify the surface tilt on one
surface and to reduce that on the other, which will be
clearly shown from numerical results. As b; 2 — 0, then
0, =~ 62 — 0, which is the case of the infinite anchoring.

Figures 3(a) and 3(b) show the surface tilts, 8, and 65,
as a function of the electric field E for W; = 0.10 dyn/cm
and W3 = 0.15 dyn/cm. The surface tilt monotonically
increases with increasing E. The relative difference in
the surface tilts between (+)E and (—)E is proportional
to that in the anchoring energies.

We now calculate the optical-path difference § due to
the deformations under consideration:

5 = ne (d - /d[1 + Vsin20(z)]_1/2dz) : (6)

The resulting polarity-dependent path difference Aé is
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FIG. 3. The surface tilt 6 at the two surfaces, (1) and (2),
with anchoring energies W; = 0.10 dyn/cm and W; = 0.15
dyn/cm, respectively, as a function of the electric field E. The
solid and dashed lines represent two polarities of the electric
field (+)E, respectively.

then given by
Ad = [6(+E) — §(—E)]/2. (7

If the two interfaces are identical, then Aé = 0, indepen-
dent of the polarity of the field E. With the help of the
accurate solution of (z) to Eq. (2) with proper bound-
ary conditions, Eq. (4), the optical-path difference Aé
can be obtained. The path difference computed by using
the 2x2 Jones matrix method is in excellent agreement
with those obtained by Eq. (7).

Figure 4 shows the phase shift, ® = 2w A§/ ], of the ac
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FIG. 4. The optical phase shift & due to the polar effect
as a function of the applied field E. The material parameters
being used are W1 = 0.10 dyn/cm, W2 = 0.15 dyn/cm, the
dielectric anisotropy €, = 13.8, and the flexoelectric coeffi-
cient & = 8 x 10~* cgs unit. The solid line was fitted to a
form of &, + >, an/E™ (n < 3) with &, ~ 0.
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transmitted intensity, where A = 0.514 ym, n, = 1.522,
and An = 0.224 are used [15,16]. The phase shift was
fitted to a form of ®, + > a,/E™ (n < 3) where @,
represents a background phase shift (®, ~ 0) and a,’s
denote constants that depend on such material parame-
ters as n., n,, €, K, and the interfacial energy difference
(AW). Note that the difference AW used for numerical
simulations is 5.0 x 1072 dyn/cm which is comparable
to the strength for weak anchoring. The fitted values of
a,'s are a; = 0, az = 1.012, and a3 = 0.014, respectively.
This tells us that the phase shift decays predominantly
as E~2, which agrees well with the previous results [6].
Also, the same order of the magnitude of a, was found.
One interesting feature is that the £ 2 dependence be-
comes profound [17] with decreasing the magnitude of
€qa- For the case of k # 0, taking K; = 1.08 x 10~ 7 dyn
and K3 = 2.05 x 1077 dyn [16], it was found that the
resulant phase shift is quite insensitive to x (at most 9%
difference) for a given field. This is physically reasonable
since mostly splay deformations are involved in our case.

Another point is that the phase shift becomes smaller
at higher frequencies. In fact, the thickness £ of the sur-
face layers will increase with decreasing the field strength
E. Since the elastic distortion of a surface layer will relax
like (y/K)&* (with v the relevant viscosity) [18], a full re-
sponse at frequencies f above f. ~ K/(7€%) =~ ¢, E?/~ is

not expected. Thus, the 1/f divergence of the maximum
response should terminate at f ~ K/(yd?), which is the
frequency corresponding to the relaxation of a surface
layer of thickness equal to the sample thickness d. Fur-
ther simulations on the frequency dependence by the re-
laxation method would provide useful information about
the dynamics of the surface states.

In summary, we have presented accurate numerical re-
sults for a strong polar effect in a homogeneously aligned
nematic liquid crystal, associated with the asymmetry in
the anisotropic interfacial interactions between two sur-
face layers. We have employed two simulation methods,
one of which is a powerful tool for solving a full dynam-
ical problem. The resulting optical phase shift decays
essentially as F 2, which is in good agreement with the
experimental results [6]. This £~2 dependence becomes
profound as the dielectric coupling decreases. The dif-
ference AW required for realizing this polar effect is of
the order of 1.0 x 1072 dyn/cm. The complete picture
of its dynamical behavior would be useful for describing
other surface phenomena associated with the symmetry
breaking. imposed externally.
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