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Multidiffusion in critical dynamics of strings and membranes
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We study dynamical roughening of strings which do not break the symmetry either parallel or
vertical to the overall suspension. The suggested nonlocal dynamics enforces a buildup of long-

range correlations and the system achieves self-organized criticality with a universality class which

exhibits nontrivial temporal scalings and power-law-correlated activity along the string, even though
only localized Gaussian noise is applied. We observe multiscaling of the temporal behavior both
perpendicular and parallel (multidiffusion) to the evolving string at criticality.

PACS number(s): 68.10.Gw, 68.35.3a, 82.65.Dp, 87.22.—q

Dynamical roughening of fronts and interfaces has been
studied quite intensively in recent years by using stochas-
tic [1, 2], deterministic [3], as well as various deposition
models [4, 5]. In all of these models one considers the
temporal progression of a front h(z, t), x C [1,I], where

(h) increases with time t Thu.s the h ~ —h symmetry
is broken, implying that the large-scale evolution may be
governed by the Karder-Parisi-Zhang (KPZ) equation:
dh/dt = b,h+ (dh/dz)2 + rl(z, t) In con.trast to a pro-
gressing kont, we consider in this paper the dynamical
evolution of a string (h(z)) constrained to a plane with a
unidirectional geometry (no overhangs). The important
difference to standard interface models is that the up-
dating rules are not only symmetric under x ~ —x but
also under 6 ~ —h. In the simplest case where subse-
quent wrinkles on the string are completely uncorrelated,
the large scale evolution of the string (z, h(z)) can be
described by the Edwardson-Wilkinson (EW) equation
dh/dt = Ah+ g(x, t); see Ref. [6]. The concept may eas-

ily be generalized to the roughening dynamics of surfaces
or membranes in higher dimensions.

In contrast to the simplest possible symmetric dynam-
ics, where the motion of the string appears randomly
uncorrelated, we consider here the case where wrinkles
on the string always happen at the point of global min-
imum g along the string. We demonstrate in this pa-
per that this specific and conceptually simple nonlocal
dynamics leads to a previously unreported class of criti-
cal exponents. The model is a symmetric analog to the
asymmetric interface model of Ref. [7], where the activ-
ity of the interface appeared exactly at the point where
the pinning was minimal [7, 8].

The model is defined on a lattice with sites (x, h). In
the one-dimensional version a discrete string h(z) is de-

fined on x = 1, 2, 3, ..., L. Along the string a sequence of
uncorrelated Gaussian random numbers g is distributed.
We use periodic boundary conditions. The chain is up-
dated, using a global comparison, by finding the site with
the smallest random number g among all sites on the
string. On this site one chooses with equal probability to
either add or subtract 1 from h. Next, the neighboring
sites are adjusted in the same direction as the chosen site,
precisely until all slopes ~h(x) —h(x —1)

~

& 1. This cre-
ates a local burst of activity that in simulations appears

exponentially bounded. New random g's are assigned to
all newly adjusted sites. Thus the updating algorithm is
symmetric in h.

Notice the difference to the asymmetrical model of Ref.
[7] which does not depend on whether the noise is gen-
erated along the updating dynamics or already was pre-
determined at the beginning. In contrast, the symmetric
model is defined through the subsequent generation of
the noise. Otherwise the activity would get trapped by
the quenched noise in localized regions around the small-
est g values, and the scalings would become widely dif-
ferent from what we observe in the present model. One
may interpret the g as barriers for a dynamics driven by
fluctuations much smaller than g, like proposed in the
evolution dynamics of Ref. [9]. Thus the present model
can be understood as describing the dynamics of random
barriers which can modify each other according to the h
field.

It is important to stress that the crucial ingredient of
the dynamics is the global comparison of the barriers g.
Numerically we find that without the global comparison
of g, then independently on whether the noise is quenched
or generated along the updated string, the large scale
behavior appears to be identical to the one of the EW
equation.

Consider now the large scale evolution of a string
governed by the symmetric model defined above. Ini-
tially, the string roughens in a transient towards the
saturated state. We restrict to the saturated states in
the following. First notice &om simulations of satu-
rated systems with L = 32 to L = 1024 that the width
ur = ((h —(h))2) ~ oc L" with y = 0.46+ 0.04 whereas
the infinite moment II = (max(h) —min(h)) oc L
Thus there is no significant indication of spatial multi-
scaling [10] and the scaling exponent is coinpatible with
the one predicted by the EW equation where y = 2. The
transient time is denoted w and moments of the height-
height time correlations [11,12] are measured by ensem-
ble averaging over saturated states

W, (L, t) = (( [h(x, t+~) —h(x, ~)]

-(h(* t+ ) -h( )))')"
From Fig. 1 we observe for the second moment
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FIG. 1. Scaling of height-height correlations with time
(for system size L = 1024), started at saturated time: The
full line shows the second moment lV, the solid circles the oo
moment H(t), and the dotted line displays the ratio of sites
where height has changed. To guide the eye is thin dashed
lines with slope 0.35.

~~ ——0.42 + 0.02 is incompatible with uncorrelated sub-
sequent jumps determined by the scaling of Eq. (3). In
fact, as seen in Ref. [13], a Levy flight with spatial ex-
ponent f = 2 [corresponding to P(X) oc X 3] has a first
passage probability with temporal exponent r~(Levy) =
min(2 —1/f, 1.5) = 1.5 and passage probability at all
with exponent Tg(Levy) = max(1/f, 0.5j = 0.5. Thus
the activity observed in the symmetric model stays for
longer time localized than expected from its spatial cor-
relations alone.

To characterize the saturated state of the present
model one may also investigate the distribution of g along
the string. In Fig. 3 it is seen that the minimal g along
the saturated strings does not exceed a certain thresh-
old value, g„;t 0.74, which reHects that all q & g„;t
eEectively are "pinned. " Notice that the value of g„;t, is
much higher than in the broken symmetry model of Ref.
[7] where an analogy to directed percolation is used in
Ref. [14] to prove that rk, ;i(b) = 0.46.

Another quantity of interest is the moments of accu-
mulated activity along the string:

W2(I, t) cc t ' with P2
——0.35 6 0.02. The infinite

moment

H(t) = ( max (h(z, t + ~) —h(z, ~) )
—min (h(z, t + ~) —h(z, ~) )) (2)

scales as H(t) oc t~- with P = 0.20+0.03. Also the zero
moment, defined as the number of sites where changes
have occurred, displays a clear scaling: W(t) oc t~' with

Po
——0.43 + 0.03. This temporal multiscaling is beyond

anything that could be described within the framework
of Langevin equations with uncorrelated white noise.

In fact we will now, as in Ref. [12], consider the behav-
ior of the activity along the string. In the transient, the
activity along the string appears uncorrelated in space,
but as time progresses subsequent activities get corre-
lated over larger and larger distances. Finally, at satu-
ration, a critical state is built up, in the sense that the
subsequent spatial activity displayed in Fig. 2(a) exhibits
scale invariance:
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Because nontrivial spatial correlations naturally appear
from the dynamics, the model exhibits self-organized crit-
ical behavior. These spatial correlations naturally induce
some temporal correlations. For a given point x we mon-
itor two quantities in the saturated critical state: The
waiting times for subsequent activity and the probability
for return since a certain activity. As a function of time
t we observe for the corresponding distributions

Piv(t) oc t ' ' and P~(t) oc t (4) log„( t )

The scaling exponent of the return activity 7~ ——0.42 +
0.02 resembles the scaling of activated sites, i.e. , 7~ =
Po, which reflects that the temporal spreading of ac-
tivity approximately balance the decrease in the local
average activity. Furthermore notice that the exponent

FIG. 2. (a) Spatial distribution of activity centers, sepa-
rated in time by dt =1/L, 2/I, 4/L, 10/L, and 100/L with a
system size L = 1024. (b) Probability for activity in a given
site as function of time: "Steep" full line: first return; "Flat"
full line: all returns.



49 BRIEF REPORTS 921

0.04

0.03

0.02

0.01

'0
~ I

~ I~~I II
~ I I

IiI rI IIr
II II

~ ~ ~1 ~I ggl I
~li

& r chili
I

s ~

I

0QQ ~ I I I I I

0.25 0.50 0.75

FIG. 3. Ensemble averaged distribution of noise g on a
saturated interface (with length L = 512). Full line display
histogram of all g, dashed only of minimal g. As input we
used g C [0, 1] homogeneously distributed. Notice the self-
organized threshold for pinned sites g„;~ ——0.74 corresponding
to a fraction of 0.26 inactive sites.

( +g )e i/~

A, (t) = ) ~h(t'+1, x) —I (t', ~)~
(a=

(5)

As shown in Fig. 4 this quantity scales for all q over
five orders of magnitude, with exponents (i ——1 (per
definition), (q ——0.80 + 0.01, (4 ——0.70 6 0.02, and

0.61 6 0.02 (and iil fac't (p = Po = 0.43 6 0.03).
The reason for being interested in the Aq's is that they
directly associate with quantities dependent on the activ-
ity pattern, and that the Aq scaling differs in a nontrivial
way &om the height-height correlations. In contrast, for
a progressing interface like in Ref. [7], the A~ and W~

would scale identically. An example where the pattern
of accumulated activity is useful can be found in Ref.
[9] which studies the evolution of a large number of sys-
tems, each with many metastable states, and organized
such that the systems locally can modify each others bar-
riers. For suKciently low temperatures this collection of
weakly coupled systems is governed by Buctuations con-
nected to the passing of the overall lowest barrier, like in
the present model. The accumulated quantity above is
then associated to the counting of the number of times
some of the systems have penetrated new barriers. The
scaling exponents of the evolution model of Ref. [9] fur-
thermore appear identical to exponents of the present
string model and the two models therefore belong to the
same new universality class.

We now investigate the scalings along the string.
Whereas the previously measured exponents y, P, and

( relate to scalings perpendicular to the main direction
of the suspended string, one may also study the scaling
of displacement of a particle diffusing along the rough-
ening string [15]. To do this we consider an ensemble of
passively noninteracting particles that moves along sat-
urated strings. For the motion of each of these particles
alone we break the up down symmetry (h -+ —h) by a
dynamics that moves a particle at point x at each time
step [t, t+ dt] a step 6 = h(z+ 1) —h(z —1). In Fig.
5 we display the average of the moments of the absolute
displacement X of the particles as function af time t.
We observe a first moment scaling (X) oc to' 4+ ', sec-
ond moment scaling (X )

~2 Ix t + os, and an infinite
moment scaling (X ) oc t + T'his '

mu. ltiscaling
of the dynamical exponents Zq defined by the scaling

(Xi)i«oc ti~x& we call multidiff'usion. This phenomena
of widely different dynamical behaviors of typical and
maximal displacements may have important implications
for processes that depend, respectively, on a single parti-
cle or on the bulk properties of the passively "diffusing"
particles.

It is emphasized that in contrast to what is expected
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FIG. 4. Moments of accumulated absolute values of height
changes. Full line for second moment, small black circles for
fourth moment, and big black solid circles for infinite moment.
System size L = 1024.

FIG. 5. Moments of total displacement of passively diffus-
ing particles along the string. Dashed line is first moment, full
line is second moment, and big black dots display the infinite
moment.
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for KPZ or EW like dynamics, we find Z2 P y/P2. Thus
the relations between motions perpendicular to the string
(h ~ t and 6 ~ z) do not relate directly to the scaling
of motion along the string.

To summarize, we have introduced a universality class
in nonequilibrium statistical physics which, by using a
simple ionlocal rule, develops critical states with self-
organized thresholds, nontrivial scalings, and power-law-
correlated activity. The model is studied for a one-
dimensional string geometry but is easily generalized to
higher dimensions, and may then define a new class of
nontrivial roughening phenomena in surfaces and mem-
branes. Furthermore, the nonequilibrium dynamics that
drive the string or membrane to its self-organized critical
state is symmetric in both space x and field h, in contrast,

to the other models that dynamically develop critical-
ity (see Refs. [16—18, 7]). Finally we introduced a new
concept, multidiBusion, that describes processes where
the extreme displacement of randomly moving particles
scales differently than the typical displacement. We are
in the progress of studying the model at finite Huctua-
tions, and believe that the proposed nonlocal dynamics
can appear from a local dynamics where the probabil-
ity for spontaneous update of a site is determined by
the passage probability over random barriers at very low
temperatures.

K.S. thanks the Carlsberg Foundation for financial
support. %e thank Tomas Bohr for stimulating discus-
sions about passively diffusing particles.
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