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Derivation of the modified difFusion equations in a gas mixture
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The derivation of the modified diffusion equations is presented. These equations of a relaxational type

generalize Fick's law and are applicable for large spatial and temporal gradients. The telegraph equation

for the concentration is found in the simplest case. The derivation and the equations themselves are

similar, except for the intrinsic velocity, to those for heat and momentum transfer in hydrodynamics of

fast processes proposed earlier by one of the authors [Khonkin, Fluid Mech. Sov. Res. 9, 93 (1980)]. The

concentration distribution from the 5-shaped source is given as an illustration.

PACS number(s): 05.20.Dd, 05.60.+w, 47.45.—n, 51.10.+ y

I. INTRODUCTION

In the past decades there has been a great deal of work
done on generalized forms of Fick's law of diffusion. The
Boltzmann equation or its models [e.g., the Bhatnagar-
Gross-Krook (BGK) model] are usually the basic kinetic
equations giving rise to such forms. Though the erst at-
tempts were purely heuristic (see [1] and references
therein), later attempts and achievements were based on
the more or less solid grounds of the kinetic theory and
irreversible thermodynamics.

Equations for mixtures were investigated in [2—7],
non-Fickian diffusion in [8—12] (in [13—15] for the special
case of uniform shear flow). In [16—19] the telegraph
(hyperbolic) equation resulting as a special case was ana-

lyzed. Taylor dispersion has also been under research us-

ing these alternative diffusion equations [20]. General
questions of the kinetic theory and the extended irreversi-
ble thermodynamics leading to relaxation and other non-
classical transport equations and the relations of the two
approaches were treated in various articles [21—28] and

monographs [29—31].
We should especially mention a kinetic approach by

Eu, which for mixtures was begun in [8]. General aspects
of this approach were then analyzed in [32—34] and final-

ly summarized in a monograph [35] published on the sub-

ject and related topics (see also [36,37]).
Some years ago one of the authors (Khonkin [21]) de-

rived from the Boltzmann equation the system of hydro-
dynamical equations for fast and large-gradient phenome-
na, when the linear laws of momentum and heat trans-
port (Wavier-Stokes and Fourier laws) are no longer val-
id. In this derivation Khonkin [21] assumed that the hy-
drodynamical parameters can vary on small spatiotem-

poral scales, i.e., the Knudsen number is of the order of
unity. These equations were then applied to the descrip-
tion of shock-wave structure [38]. The results obtained
were in good agreement with experiments and simula-

tions.
In this paper we use the method of Ref. [21] for the gas

mixture and to derive the diffusion equation that general-

izes Fick's law. We would like to note the simplicity of
the obtained constitutive relations [Eq. (5)] in comparison
with other relations proposed in the literature. Section II
is devoted to analysis and Sec. III is for conclusions.

II. ANALYSIS

du
p +T m=O

dt

dT—'nk +m".Vu+7' q=O .
dt

Here

(2)

d cl—=—+u.V, J;=m; f c,f;d'u, , c, =v, —u.

Consider the system of the Boltzmann equations for
the X-component gas mixture in the usual notation [39],

Qf,—+v Vf = g f f f (f,'f' f,f, )g, bdbdE—d'"v, .

j=1

i=1, . . . , X,
and the conservation laws for the hydrodynamical pa-
rameters which result from Eq. (1) after its multiplication

by m, , m, ,v, , and m; U; and integration over v, :

Bp;

Bt
+V.(p u+J )=0,
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Let the distribution functions be as follows:

f, =f (1+0,»
f, =n, (2trkT/-m, )

r exp[ —m, (v, —u) /(2kT)] .

Then we can get from Eqs. (1) and (2)
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d(;;)
+c; V(P f, )

N N= A —A, + g I; + g f f ffofo($,' P' .—P,.P. )g, b db dediv, ,

where

At'=(f; m;c;ti)/(pkT)V P p+(f; /p)[m;c; /(3kT) —1](P pVpu +V p )+(fv/p, . )V+,

A; =f; m;l(kT)(c, c& ,'c—, 5—&)Vu&+f;c; [m, c, /(2kT) —
—,']V lnT+fvc, (n/n, . )d,

I;, =f f ff; fj (p,'+pj p;
——

p, )g;, b db dad'v,

P tt=~, ti p5 —
ti, d;=V(n, /n)+(n;/n —p;/p)Vlnp .

We now multiply this relation by m;vI and integrate
over v;. Using the symmetry properties of I," we obtain

dJ, N

+pd;+ g B,1=0,
t

1

where

B,, =m, ,',', + j c, —c,
' r,

dI'=g, bdb dad v;"d v

(4)

To calculate g~, B; we use the result of Ferziger and

Kaper [39] obtained during the determination of the
diffusion coeScient by the Chapman-Enskog method.
We have

N

y ffvfv(D»+D» D"' D»')dy—d c. —

If P, «1 and d/dt =I/r, where r is the mean free
time (this case corresponds to moderate spatial and tem-
poral gradients [21]),then we can neglect A, ', c, V(p,fv),

and the last term on the right-hand side of Eq. (3) as these
terms are of the first order in the small parameter.
Therefore

d( . v) N

+A; —g IJ=O.dt

taking into account g+, pJD; =0.
Substitution of these formulas into Eq. (4) leads to the

following expression for g+, B;:
N N

g B;~ = (kT/n—) g (m;m, D; ) '(p;J —
pJ J; ) .

j=1 j=l
Consequently

J; N'
+p d,. (kT/n) —g (m, m DJ)

dt j—
1

X(p;JJ —pjJ;) =0 .

Thus we can see that Fick's law follows from these re-
lations if we neglect d J, /dt Comb. ining Eqs. (2) and (5)
for the simplest case of the binary mixture %=2,
m i

=m2 =m, u=0, p =const we have for the isothermal
diffusion the telegraph equation

By By(mlkT) =b,y —(1/D)
Bt

Here b, is the Laplace operator and y =p, /p is the mass
concentration of the first component. Equation (6) difFers
from the usual diffusion equation

(n /n, )f, (5;» ——p;/p)c;,

where

dy=g;~& db de, D,"=n/(kT)m;D~»c;, .

Hence after doing some algebra and accounting for the
momentum conservation,

m;c;+m. c.=m;c,'+m c'-,

by its left-hand side. Due to that term, Eq. (6) is hyper-
bolic (the so-called telegraph equation).

The solution of the initial-value problem for Eq. (6) is
determined by both the initial value y(r, O) and the time
derivative By (r, t) /Bt ~, 0. Therefore to coinpare the
solutions of Eqs. (6) and (7) we are to find the Green's
function of Eq. (6), i.e., the solution of the equation

we obtain

m; y (D;» DJ» )ff, (c;—c,')dy d'cj-
j=1

=(p!n, )(5,» —p, /p)c, ,

(1/cT) —hy+(1/D) =5(r, t) .ay ay' at2 at

According to Morse and Feshbach [40], we have in the
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one-dimensional case (n = 1, x =x, )

CT CTt
2

y (x, t) = exp
2 2D

XIo QcT t x—h (cTt —x),

in the two-dimensional case ( n =2, p =Qx, +x 2 )

CT 2E

y (p, t) = exp — (cIt 2 p—)
2n 2D

Xcosh (/cT2t p2 h (c—Tt —p),
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and in the three-dimensional case
r = Qx', +x', +x', )

CT CTt
2

y(r, t)= exp
4ar 2D

CTr
X 5(e t —r)+ (c t —

)
2D

CT 2t2 2

2D

Xh (cTt r)—

(n=3,
FIG. 1. Green's functions for the classical and the modified

diffusion equations.

of the asymptotic expansions of the Bessel functions and
the hyperbolical cosine for large arguments. Figure 1 il-

lustrates this difference between the classical and the
modified diffusion equations in a qualitative way.

So the solutions of the modified difFusion equation are
different from the solutions of the classical equation in
the vicinity of the disturbance front, but when we move
away from the front to the trail region these differences
are smoothed out due to the small value of the relaxation
time pD/p.

III. CONCLUSIONS
where h (x) is the Heaviside step function [h (x)=0 when
x (0, h (x)=1 when x & 0]. The Green's function for Eq.
(7) is

y(r, t)=D(2V ttDt ) "exp( r /4Dt)h —(t) .

In contrast to this function the Green's functions for
the modified diffusion equation (6) are zero for r )cTt,
i.e., concentration disturbances propagate with a finite
speed. Unlike the case of the adiabatic sound speed
cs=(ykT/m)'t intrinsic for the propagation of acousti-
cal waves [21] (here y is the ratio of specific-heat capaci-
ties), concentration disturbances in a uniform medium
propagate with isothermal sound speed cr = (kT/m )'~2.

The main difference between these Green's functions is
for r CTt. For r «CTt the modified Green's functions
turn into classical ones. This can be proven with the use

Using the method proposed in Ref. [21] we have de-
rived in this paper the diffusion equation which is the
generalization of Fick's law. The presented equation can
be used to describe the phenomena of the mass transport
for large concentration gradients and/or time derivatives.
Furthermore, in the simplest case the equation for the
concentration is hyperbolic rather than parabolic thus
predicting the finite velocity of the propagation of distur-
bances. Therefore the presented results can be another
way to solve the old paradox of the infiniteness of this ve-

locity.
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