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A noninterferometric method for reconstructing the second-order correlations of a partially coherent

optical Geld is described. It is assumed that the Geld propagates close to one particular direction, so that

the paraxial approximation may be used, and that the field correlations in some cross section may be well

approximated by the quasihomogeneous model. Two reconstruction formulas are derived which unique-

ly determine the cross-spectral density function, characterizing the correlations, from knowledge of the

spatial distribution of the spectral density in several parallel planes.

PACS number(s): 42.25.—p, 42.30.Wb, 42.50.Ar

Because direct measurements of the phase of a
coherent optical field are very difficult to make, this in-
formation is usually obtained either by holography or by
reconstructing the phase from knowledge of the intensity.
Many methods for phase reconstruction have been pro-
posed that make use of intensity data in one or more
planes, and some have been quite successful [I]. It is of
interest to examine whether an analogous approach
might be feasible for obtaining the second-order correla-
tions of partially coherent light.

Conventional techniques for determining such correla-
tions are based on interferometric measurements [2]. In
general, it is rather difficult to obtain a complete charac-
terization of a partially coherent field by such methods.
For example, in order to determine the degree of coher-
ence of a field from a Young's-type interference experi-
ment, one must sample the field at all pairs of points.

In this Brief Report, we propose a noninterferometric
technique for reconstructing the cross-spectral density
function, which characterizes the second-order correla-
tions at frequency co, from knowledge of the spatial distri-
bution of the spectral density at the same frequency [3,4].
Because, in general, knowledge of the spectral density
throughout all space is not sufficient to uniquely deter-
mine the cross-spectral density [5], we assutne a priori
that the correlations in a certain plane can be well ap-
proximated by the quasihomogeneous model [6]. As will
be evident later, this mode1 leads to a unique solution
which, in principle, makes it possible to obtain a com-
plete reconstruction.

Let us assume that the fluctuating optical field can be
adequately represented by the complex scalar field V(r, t )

and that V(r, t) is statistically stationary, at least in the
wide sense. The second-order correlations of the field

The spectral density and the spectral degree of coherence
are then given by the formulas

S(r;co):—W(r, r;co) (3)

to(r, , r2;to)
p(r, , ri, co) =

QS(r„co)QS(rz', co)
(4)

respectively.
Our reconstruction problem is to determine the cross-

spectral density W( r i, r2, co ) at frequency co from
knowledge of the spectral density S(r;co) at the same fre-

quency, for a field propagating close to the positive z axis.
The cross-spectral density at two points r, =(p, ,z, ) and

rz=(pz, zz) in the half-space z &0 may be expressed in

the following form, which is valid in the paraxial approx-
imation [7]:

fluctuations at two points in space, r, and r2, and at two
instants of time, t and t +~, may be characterized by the
mutual coherence function I (ri, r2', r), defined by the ex-

pression

I (r„r2,~)=( V'(r, , t)V(ri, t+r)) .

Here the asterisk denotes the complex conjugate and the
angular brackets indicate an average taken over the en-
semble [ V(r, t ) ] of field realizations.

For our purpose, it is more convenient to describe the
field correlations by the cross-spectral density function
W(r„r2', co), which is the Fourier transform of the mutual

coherence function:
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where the domains of integration for both integrals extend over the entire z =0 plane, 8" '(p&, p2) = W(p&, O,p2, 0) and
k =co/c (c being the speed of light in vacuum). W' '(p„p2) can be considered to be the cross-spectral density of a pla-
nar secondary source that generates the cross-spectral density W(p„z„p2,z2) on propagation. For convenience, we
have omitted the frequency argument co in W and we shall continue to do so. From Eq. (5), it is clear that any method
that determines 8' '(p&, p2) can also be used to determine W(p„z„p2,z2). Therefore we will now restrict our discus-
sion to the reconstruction of W' '(p„p2) from knowledge of the spectral density S(r).

On substituting from Eq. (5) into Eq. (3), we obtain the following expression for the spectral density of the field
throughout the half-space z )0:

$(p, z)= ~(0) g )
—ik [2p.(p2

—
p& ) +p&

—
p2 j/2z~2 &2

2 2ir z P»P2 e Pi P2 ~ (6)

It will be useful to rewrite this expression in an alternate
form. If we take the spatial Fourier transform of Eq. (6)
with respect to p and change the variables of integration
to the average and difference coordinates, R=(pI+pz)/2
and 6—=pz

—pI, we obtain the formula

S(f,z)= flV' '(R, —fz/k)e ' '
d R, (7)

where the Fourier transform S( f,z) of the spectral densi-

ty is defined as

S(f,z)= fS(p,z)e ' 'Pd p (8)

and

'N'0'(R, h) —= W'0'(R —6/2, R+d/2) .

Equation (6), or alternatively Eq. (7},is the basis of the
mathematical formulation of our reconstruction problem:
with S(p,z) assumed to be known throughout the half-
space z &0, we wish to determine W' '(p„p2). However,
as already mentioned, there are many different
W' '(p, ,p2)'s that yield the same S(p,z). Therefore, in
general, the problem does not have a unique solution.

Furthermore, in practice, it is unreasonable to expect
that we would know S(p,z) for all p and all z & 0. More
realistically, we could measure S(p,z) in several planes,
say, z =g„z= (2, . . ., z =g (see Fig. 1). For example,
we could take several photographic exposures, or use a
charge-coupled-device (CCD) camera, to determine
S(p, z } in these planes. As the number m of measurement
planes is diminished, we would expect the problem to be-
corne more ill-posed, i.e., the number of possible solutions
to increase further.

In order to make the problem well-posed, even for the
case when S(p,z) is only known in a small number of
planes, we will introduce some additional information
about 8" '(p»p2). In particular, we will assume that the
correlations of the field in the plane z=O can be de-
scribed well by the quasihomogeneous model [6], which
frequently provides a good description of sources encoun-
tered in nature and in the laboratory. This model
represents a secondary source whose spectral degree of
coherence iM' '(p&,p2) =p(p„O,p2, 0) in the plane z =0 de-
pends on the two position vectors p& and p2 only through

their difference p2
—

p& and, further, whose spectral densi-

ty S' '(p) —=$(p, O} in the plane z=0 is approximately
constant over the transverse correlation width [i.e., over
the effective width of the absolute value of the spectral
degree of coherence iM' '(p„p2)]. When the field satisfies
these conditions, the cross-spectral density may be ex-
pressed in the approximate form

W(0)(p p ) $(0) P~+Pz
f "'(P2—~i) .

2
(10)

We will now assume that we know the spectral density
in two arbitrary planes z =g, & 0 and z =

$2 & g, and that
we also know the location of the secondary source plane
z=0, where the field distribution is quasihomogeneous.
In order to completely determine W' '(p, p2), we need to
reconstruct both S' '(p) and iM' '(d). We will later de-
scribe how knowledge of the spectral density in a third
plane can be used to locate the source plane z =0.

Applying Eq. (7) to the two planes z =g, and z =(2 and
using Eqs. (8)—(10), we obtain the following equivalent
expressions for iM' '(6):

S( —k hi(2, (2)(0)(g)—
S'"(—k~/g2)

(12}

z=(, Z=(2 z=( z=(

FIG. 1. Illustrating the m measurement planes in which the
spectral density S(p,z) is known.

The solutions of these two equations for S' '(f} and
iM' '(6 ) are readily found to be
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and

S' '(f)=S' '(f/a)H~(f)

where

a=(z/((& 1,
S(f,g, )

Hs( f) =
S( fg(/gz, gz )

p' '(h)=p' '(5/a)H„(h), (14)

(15)

that the reconstructions from different pairs of planes be
identical. However, the uniqueness of such a procedure
still needs further study.

The reconstruction formulas that we have derived con-
tain infinite products. Let us examine the quality of the
reconstructions when only a finite number of terms is re-
tained, for the case of a Gaussian, quasihomogeneous,
secondary source. The spectral density and the spectral
degree of coherence in the source plane then have the
form

(25)

S( —kh, /gz, gz)
H„(b, ) =

S( —kh, /g, g, )

%e can now eliminate S' ' and p' ' from the right-
hand sides of Eqs. (13) and (14) as follows. We first form
X new pairs of equations by replacing f by f/a in Eq.
(13) and 4 by 6/a in Eq. (14), where m takes on the
values 1,2, . . . , N. These new equations are then com-
bined, yielding the formulas

—6 /2a.p(0)(g) e P

respectively. Figures 2(a) and 2(b) show the reconstruc-
tions of these functions from knowledge of the spectral
density in the two measurement planes (&=10 cm and
hz=12 cm. The parameters in Eqs. (25) and (26) were
chosen to have the values 0.

&
=1 cm and 0. =1 mm. ForP

this example, the required calculations, i.e., first deter-

S' '(f)=S (
' + 'f) gH ( "f)

n=0

and

(0)(g) (0)(&—(%+1)g) g H (&
—ng)

P
n=0

Ef we proceed to the limit as N~ ~ of the above equa-
tions and make use of the limiting forms

lim S' '(a ' +"f)=J S(p, g()d p (20)
&~ oc

and

we obtain the reconstruction formulas [8]

(21)
O. ~ 1.0 1.5 2.0 '.S ~.() ~.~ 4.0

p (cm)

S' '(f)= fS(p, g, )d p g H (a "f)
n=0

(22)

and 0,6

p( '(6)= P H„(a "b, ) .
n=0

It should be noted that the conservation law [9]

S"' p d'p= S p, , d'p

(23)

(24)

was used in deriving Eq. (20). To determine the inverse
spatial density S' '(p) itself, one only needs to take the in-
verse spatial Fourier transform of expression (22).

Formulas (22) and (23) allow us to reconstruct S' I(p)
and p'o'(6) from knowledge of the spectral density in any
two planes parallel to the source plane z =0. If the spec-
tral density were known in three (or more) planes, we
would expect to obtain the same reconstructions for any
pair of planes. Therefore, if the location of the source
plane z =0 were not known, we could, in principle, deter-
mine the location of the source plane z=0 by requiring

0.0 ~

0.0 0.5 1.0 1.& 2.0 2.5 3.0 3.5 l.()

FIG. 2. Reconstructions of a Gaussian, quasihomogeneous,
secondary source [Eqs. (25) and (26)], using Eqs. (22) and (23)
and retaining only a finite number of terms in the products. (a)
shows the spectrum S' '(p) and (b) shows the spectral degree of
coherence p' '(6, ). These reconstructions were performed using
the spectral density in the planes (,=10 cm and (,=12 cm.
The parameters characterizing the field in the source plane z =0
were taken to be ~z = 1 cm and o„=1 mm.
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mining the spectral density in the measurement planes,
then a plying Eqs. (22) and (23) to reconstruct p' '(5)
and S' '( f), and finally taking the inverse spatial Fourier
transform of S' '(f) to determine S' '(p), were all per-
formed analytically. We see that excellent results are ob-
tained even with only a few terms in the products appear-
ing in Eqs. (22) and (23).
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