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Structural information in the local electric field of dissolved B-DNA
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%'e have developed a theoretical model of the electric potential and field for 8-DNA in solution to in-

vestigate the persistence of structural information in the local field. A Green-function technique is used

to account for the phosphate groups, the dominant charges of the polyelectrolyte DNA, as discrete sur-

face charges exhibiting helical geometry. In addition to the DNA macromolecule, a region of condensed

ions and bulk solvent are treated as dielectric media with cylindrical symmetry. We have derived analyt-

ical expressions that manifest the symmetry of the system. The leading term is equivalent to that of a

continuous line charge and thus only reflects cylindrical symmetry. Information reflecting the helical

structure is contained in the terms of higher order. The effective decay length for helical information in
0

the local electric field is approximately 5 A beyond the surface of DNA. These results have significance

for investigations of nucleic-acid-protein interactions and for experimental efforts to image DNA with

scanning force microscopics.

PACS number{s): 87.15.—v, 36.20.—r, 41.20.Cv

I. INTRODUCTION

The nature of the DNA-solvent interface has been the
subject of ongoing theoretical [1—9] and experimental
[10—13] efforts impacting a number of fields including
biological physics, polymer physics, and fluid dynamics.
DNA is a polyelectrolyte exhibiting helical symmetry
with a high density of surface charge due to pairs of
phosphate groups with a periodicity of 3.4 A along the
helical axis [14]. The interest in the electrostatic proper-
ties of DNA has evolved over the past several decades,
ranging from investigations of the physical mechanisms
governing gel electrophoresis [4], to the role of the elec-
tric potential and electric field in DNA-protein [2] and
DNA-DNA [7,10] interactions, to attempts to image
DNA with scanning force microscopics [15].

A variety of idealizations have been used in developing
theoretical models for the thermodynamic and electro-
static properties of polyelectrolytes due to the inherent
complexities of these systems. One class of idealization
treats the solvent with versions of either the Debye-
Huckel or Poisson-Boltzmann equations, but treats DNA
as a continuous charge distribution with cylindrical sym-
metry [1,4]. Another class of models includes more
structural detail of DNA, placing less emphasis on the
solvent [2]. A third class of models includes structural
details about both DNA and the solvent [g]; however, the
length of the DNA macromolecule and the amount of
surrounding solvent that can be considered are limited by
computational power. In general, each class of theoreti-
cal models exhibits definite but limited reliability.

More recently, measurements of DNA systems with
controlled amounts of solvent between DNA surfaces
have begun to elucidate additional mechanisms governing
the interface. Parsegian and co-workers [10] have
highlighted the role of water, measuring a repulsive "hy-
dration force" in the near-contact region; Gruen, Marcel-
ja, and Pailthrope [7) have attributed this effect to a

surface-induced polarization of the aqueous solvent. In
addition to water-based interaction mechanisms, the role
of the solvent ions has been highlighted by Manning con-
densation theory [5] and Edwards, Ying, and Tribble re-
cently measured a dielectric relaxation in DNA gels that
is attributed to a counter-ion-based mechanism [13].
These recent results draw attention to the local electric
field.

Here we report on our calculations of model DNA
with discrete charges in helical geometry. We have un-
dertaken this investigation to address the issue of what
structural information exists in the local electric field due
to DNA. More specifically, how quickly does the electric
field approach that of a featureless, charged cylinder (far
field), or within what distance is the helical geometry evi-
dent (local or near field)? In the following we present
analytical expressions that describe the detailed geometry
of the local field and we present plots that quantify the
loss of the helical "signature" as a function of distance
from the DNA surface. In addition, we also summarize a
preliminary consideration regarding the contribution to
the local field due to the charge distribution of the bases.

II. CALCULATION OF THE ELECTRIC FIELD

An exact calculation of the electric potential and field
for DNA in solution is currently an intractable problem.
An idealized model is necessary in order to make pro-
gress in understanding the physical mechanisms govern-
ing the interface, as well as the properties of DNA in sol-
vent. The dominant charged species of DNA occurs at
the phosphate groups, which reside on the backbones of
the helical strands, i.e., essentially at the solvent-DNA in-
terface [2,14]. Electric dipole and higher-order charge
distributions occur in other regions of the molecule, such
as the base pairs. Surrounding the negatively charged
DNA is a region of condensed ions [5]. This region is at
a molarity of about 2 independent of the molarity of the
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surrounding bulklike solvent, which is typically tens of
millimolars.

Figure 1 presents the geometry of our model. Figure
l(a) displays the arrangement of charges in one of the
DNA helices. Figure 1(b) is the geometry for a single
surface charge and for three concentric dielectric
cylinders representing the regions of DNA, the con-
densed ions, and the surrounding solvent, respectively.
The boundary between DNA and the Manning cloud [the
e, -e, boundary in Fig. 1(b)] contains the surface charge,
corresponding to the phosphate groups, exhibiting helical

(a)

FIG. 1. (a) Geometry of the surface charge distribution. The
line marked as s =0 identi6es one of the ten discrete line

charges (see the text). {b) Geometry for a single surface charge
embedded in three concentric dielectric media. The dielectric
constants el, e2, and e3 refer to the DNA, Manning cloud, and
bulk solvent, respectively.

symmetry, as shown in Fig. 1(a).
There are a number of techniques that are traditionally

used to solve boundary-value problems in electrostatics
[16]. Some of the more familiar come under the heading
of solution by conformal mapping, solution by inversion,
solution by method of images, separation of variables,
and the more general solution by the Green-f'unction
method. The practical application of one or more of
these techniques depends crucially on the degree of sym-
metry in the given problem as well as on the effective
dimensionality. Neither conformal mapping nor inver-
sion apply to the present case since the former is suited
only for two-dimensional systems and the latter f&~r

spherical boundaries, while the geometry unique to the
helix possesses neither of these attributes. Likewise, t.he
method of images is only useful if one can find a fi'nit~

number of judiciously placed image charges v hich, t&~-

gether with the real charge (or charges), satisfy the rc-
quissite boundary conditions. Again, the helical charge
distribution in a cylindrical dielectric medium does not
admit a finite number of image charges. Thus, of the
techniques mentioned here, the full power of the Green-
function approach is required for solving the problem ai
hand.

It is worthwhile to comment further on the manner in

which the helical geometry is included in this model of
concentric dielectric cylinders. Although the double-
helix configuration of point charges does not possess cy-
lindrical symmetry„ the helix charges are located on a sin-

gle cylindrical surface and thus cylindrical coordinates
provide the most natural system in which to separate
Laplace's operator. As described in complete detail in
the Appendixes, the potential for the double helix is ob-
tained by summing the Green function over the helical
charge distribution. Note, however, that the sum is bro-
ken out as ten sums of discrete line charges at the bound-
ary. Thus this calculation is not a traditional lattice cal-
culation of DNA [17,18j, but instead ten displaced line

charges in cylindrical symmetry where the configuration
of these line charges is equivalent to that of the double
helix. This approach proved to be both conceptually sim-

ple and calculationally convenient, as will be seen below.
The validity of this approach corresponds to the degree
that the phosphate groups determine the electric pote»-
tial and field in the solvent surrounding DNA [2].

The solvent has been modeled as two dielectric region».
%hiie the phosphate groups are essentially boond surface
charges, counterions and other solvent ions are free
charges. The cylindrical shell of condensed ions accounts
for the "'charging" near the DNA surface and this rela-
tively high molar region is treated as dielectrically dis-
tinct from the bu1k solvent. This treatment is supported
by previous investigations [5,13].

The model parameters are as fo11ows: The DNA ra-
dius 6 = lO A, the radius of the Manning cloud d =20 A,
the helix pitch I'=—31.45 A, and the vertical rise per
charge Az ——3. 145 A. X =P/Az is the number of steps
taken along the helix reqUired to complete one period of
the helix. The dielectric constants in the three region»
are ~, =-- .0, e, =-50 Ccorresponding to 2M NaCLj, ;~nd

cg ——78 (col respondIHg to lo fIlM NaCI), I cspectlvcl'j.
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The phosphate groups are offset a distance 5=1.57 A
from the planes of the base pairs as indicated by a survey
of B-DNA structures. The mathematical details of the
calculation of the potential are presented in the appen-
dixes. Appendix A outlines the calculation of the poten-
tial of an infinite discrete helical charge distribution. Ap-
pendix B summarizes the calculation of the potential of a
point charge in three cylindrically symmetric dielectric
media based on the Green-function technique and

I
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The exact electric field for the idealized model of DNA
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while for the region d ~p ( oo, corresponding to the bulk solvent, we have
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Here, I and K are modified Bessel functions and the
functions r( k), 8, and R are given in (B14), (B21), and
(B22).

A few remarks pertaining to these expressions are in
order. First, note that the leading-order term in E is the
familiar 1 jp term which is what we expect for a line

charge. The rest of the terms in E may therefore be re-

garded as "corrections" to the line-charge contribution
arising from the helical geometry of the charge distribu-
tion. Likewise, both E& and E, vanish identically for a

pure line charge; hence, (211 terms appearing in (2.3), (2.4),
(2.6), and (2.7) are due to the helical geometry of the
charge distribution.

The full expressions are somewhat cumbersome, and
we have computed values of the electric field using
MATHEMATICA running on a Quadra 700. However, it is
instructive to make some estimates of the range of the
various correction terms which, after all, are the signa-
ture of the helical structure. Each of the p-dependent
parts of the summands appearing in the infinite series ex-
pressions are of similar form [e.g. , see (2.10) below] for all
field components; we will focus on those corresponding to
E for the intermediate region defined by b ~p~d. The
extent (in p) of the correction terms is dominated by the
longest wavelength in the problem, which is in turn,
given by the reciprocal of the smallest wave number k.
Inspection of the various terms in (2.2) indicates that the
value of the repeat length of the charge configuration
(and which takes 5 into account) in the z-direction is

(k;„)'=P/2~, which follows directly from considera-
tion of the constrained double sums. This corresponds to
a length scale of =5 A. We therefore expect the decay
length of the dominant corrections of all the field com-

ponents to be of the order of about 5 A from the DNA
surface. An estimate of the leading p-dependent correc-
tion term in the sum confirms this behavior. Indeed, us-

ing the asymptotic expansions [19] (note the leading-
order terms are independent of the order m of the Bessel
functions),

0,)

I (w) — [1+O(w ')],
2 Irw

1/2

(2.8)

K (w)- e "'[1+O(w ')] (2.9)

[the corresponding form for K' (w) is obtained from (2.9)
simply by multiplying that by —1], we can show that
k;„setsthe scale for the corrections. Consider a typical
term of the form

rI k)I' (kp)+K' (kp) . (2. 10)

From the definition of r in (B14) and using the above ex-

pansions, we have

r( I,)I' (kP }

[1+O(kd) '] . (2.11)
E3+ t-2 V 2~kp

This is maximized for p=d since I is an increasing
function of its argument. The point is that (2.11) be-
comes proportional to a decaying exponential e ", with

decay length k ' —5 A. Similarly, from (2.9), we see that
K' (k,„p)decays like e "Pi&kp and, hence, so does
(2.10).

Now let us discuss the symmetry properties of the sur-
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to the detailed geometry of the helix. Except at the loca-
tion of the surface charges where there is a singularity,
the magnitude of these correction terms approaches two-
thirds that of the line-charge contribution. Furthermore,
there is increasing structure with approach to the DNA
surface: The effective decay length of this structure is

0

about 5 A which is significant for the interaction of DNA
with other (macro)molecules. Of course, one expects
both the potential and electric-field components to
diverge at the sites of the point charges. This divergence
is prevented in our calculations by taking a finite number
(=100) of terms in our Fourier-Bessel expansions. This
turned out to give adequate estimates, typically valid
within a few percent, for the entire near-field region ex-
cluding the charge sites.

It is intriguing to consider the detailed geometry of the
local electric field as calculated here with regards to the
dynamics of the DNA-solvent interface and DNA-DNA
and DNA-protein interactions. In addition, there has
been an ongoing experimental effort to probe the local
electric field with scanning probe microscopics; our
theoretical results indicate experimental length scales for
first accessing cylindrical and then helical information
with approach to the DNA surface. Note that the sugars
and the bases will, in general, also make an electrostatic
contribution. The charge distributions for these subunits
have been calculated [2,20] and the dipole moments of
the bases are quite distinctive. It should be recognized,
however, that the progress we have made in carrying out
these calculations is due to symmetry; expanding this
model to include the dipole and higher-order moments
for a nontrivial sequence of bases is possible. Currently
we are extending this calculation to investigate the possi-
bility of a distinctive signature in the local electric field
attributable to the charge distribution of a given base.

To conclude, we have derived analytical expressions
for the electric potential and field to investigate the effect
of the helical geometry on the local field near B-DNA.
Helical information is a significant component of the lo-
cal field and is characterized by an effective decay length
of 5 A beyond the DNA surface.
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APPENDIX A: POTKNTIAI. OF AN INFINITE
DISCRETE HELICAL CHARGE DISTRIBUTION

The potential in cylindrical coordinates (p, P, z) from
an extended charge source whose charges are distributed
along the interface boundary located at p=b [Figs. 1(a)
and 1(b)] can be obtained in a mostly straightforward
manner by summing the single-charge potentials. The
calculation of the single-charge potential is summarized
in Appendix B. The linearity of Maxwell's equations al-
lows this "reductionist" approach whereby the potential
for a charged double helix immersed in a given medium is
built up from the single-charge potentials computed for
the same medium (we assume for simplicity that the
response of the medium is linear as well, i.e., we ignore

back-reaction effects). The potential for a unit charge
satisfying prescribed boundary conditions is the Green
function. As discussed in Sec. II, the Green-function
method is uniquely suited for our application. In build-
ing up the complete double-helix potential, our strategy is
to regard the single helix of evenly spaced point charges
as a two-dimensional regular lattice wrapped around the
cylinder p=b. Then, instead of summing the charges
along the helix, we first decompose this lattice into a
finite collection of one-dimensional vertical line-charge
distributions that run parallel to the z axis and sum over
all the charges in one such line, and then sum over the
finite collection of these one-dimensional chains. This
procedure yields the potential for a single infinite helix of
point charges. The second helix is accounted for by
reflecting through the longitudinal axis, essentially dou-
bling the single-helix expression. We shall use
(B23)—(B25) as the starting point for constructing the po-
tential from an infinite, discretely charged (double) helix,
which represents an idealization of DNA.

Take the helix axis coincident with the z axis. P is the
pitch, b,z is the vertical rise per residue, and Eo =P/b, z is
the number of steps taken along the helix required to
complete one period of the helix. Without loss of gen-
erality, fix the location of the "origin" charge at (b, 0,0),
i.e., translate the coordinate system of Fig. 1(a) by
z~z+5. As outlined above, we represent the infinite
discrete helix of point charges as a finite collection of
infinite vertical discrete line-charge distributions, each of
which is located at p=b. These line-charge distributions
are equally spaced in the P direction with constant angu-
lar separation b, (t =2ir/Xo, corresponding to the location
of the phosphate groups. Such a decomposition facili-
tates the derivation of the helix potential: The sum over
the finite number of vertical chains leads to a simple set
of geometric constraints reflecting the helical nature of
the charge distribution which are easy to incorporate into
our final expressions. We note that the position of the
nth charge on the sth vertical chain with fixed angular
coordinate P,. is (b,g„z„,), where

z„,=nP+sAz, (A 1)

2'
Np

(A2)

with 0&s&(X,—1) and —m &n &~. For example,
with 5 =0,

{(b,O, nP)~ —~ &n & ao I

corresponds to the vertical chain located at p=b and
/=0. The separation between its adjacent charges is

z„+,0 —z„o=P. The "next" chain (s =1) is located at
p=b and /=2m/No. Adjacent cha.rges on this chain are
also separated by an amount P, but z„i

—z p
=Az, which

represents the vertical rise per charge along the helix.
There are Np vertical line-charge distributions making up
the complete helix (Xo = 10 for 8-DNA and Xo = 11 for
A-DNA). For s =%0, it follows from (Al) and
(A2) that z„~= (n + 1)P and P& =2ir, reflecting the fact

that after Np "steps" through the angular displacement
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b,p =2m /No, one arrives at the location of the (n +1}th
charge at a distance P above the nth charge on the same
chain.

The single-helix potential is obtained by replacing
z'~z„, and )1)'~)III, in the single-charge potentials
(B23)—(B25) and summing over n and s (for a helix with
equal charges q at the residue sights). The sum on n (for
fixed s} builds up one infinite vertical line charge, and is
effected by means of the Poisson summation formula [21]

cos[k[z —(nP+sb, z }]I

cos(k[z —sM]) g 5 k—2K 271j
P . „P(A3)

+4'z(m ) l, k=0)+C)z(m ) l, k )0) . (A4)

We note from (B23)—(B25) that the (single-chain) poten-
tial 4' involves a double-mode (sum over m ) 1, integrate
over k )0) expansion and the decomposition in (A4) fol-
lows from expanding these modes out as indicated using
(A3). Physically, each fixed mode probes a specific angu-
lar separation and length scale. The m modes re6ect the
angular separation, while the k modes re6ect the scale of
structure in the z direction [note that k —(2n. /P ) ].

We turn to the m =k =0 mode in (B24) and (A4} and
evaluate the small-k limit [the j =0 term from (A3)]:

1
lim $(0 k)[r(() k)I0(kp)+Ko(kp}]cos(k[z —spaz]),
k~0 2k

which allows one to carry out the k integrations immedi-

ately, but care must be taken in treating the limits as
k —+0 implied by the j=0 contribution in (A3). We shall
outline the major steps required for computing the poten-
tial, focusing our attention on 42, where the subscript 2
indicates the intermediate layer in the model. The devel-

opment of the helix potential in the other two regions
(0 ~p ~ b and d &p }makes use of similar manipulations.

Having summed over n using (A3), the resulting line-

charge potential depends on s which serves to label the
vertical chain. We make this explicit by writing 42. It
will be convenient both conceptually and computational-
ly to split off the zero-mode (rn =0, k =0}contribution
from the higher-mode terms; thus,

CIz=@z(m =O, k =0)+4&(m =O, k )0)

Using (A7) —(A9) in (B14), (B21), and (A5), we find that
the expression (A5) becomes

b —ln(p) —ln(k)+
262

E'3 E2
ln(kd) (A10)

for small k. As expected, a logarithmic divergence ap-
pears as k ~0 and is due to the fact we have considered
an infinitely long cylinder. In textbook calculations of
the electric field from an infinite line charge, mention of
this particular divergence is avoided either by computing
the electric field directly (without recourse to a potential)
or by truncating the line charge to have a finite length L,
computing the field therefrom, and then taking the limit
L~00. In either case the electric field is always finite
and well defined. Indeed, the divergent constant appear-
ing in (A10) can be safely discarded since, as usual, the
potential is only defined up to an additive constant —that
is to say, only differences in the potential are physically
relevant [the constant in (A10) is annihilated by the gra-
dient]. We therefore replace the expression (A10) with

ln(p) .
2E2

(Al 1)

b

2

(e2 e3} 1 b

e3( e2+ e3 ) m d d

(e) e2)(e2 e3)

e3(e2+e3) d

1 b+-
Pl P

+(e,+e2)

(A12)

This is to be substituted into the expression for the
(m ) 1, k=0) contribution in (A4). For the remaining
terms in (A4), one simply replaces k2' /P and sums
over all j ~ 1. The sum over negative j does not contrib-
ute since k ~ 0.

The potential for one complete helix follows from sum-

ming over the No vertical line charges:

Next, we calculate the k~0 limit implied in the
(m ) 1, k=0) contribution in (A4). Using the limiting
forms given in (A7) —(A9) with (B14) and (B21), we find,
after some tedious but straightforward algebra, that

1
lim 8( k)[r( k)I (kp)+E (kp)]cos(k[z —spaz])
k~o 2k

where the factor of —,
' comes from the formal identity

(A5) N —10

@h.);.= X @'.
s=0

(A13)

f dk f(k)5(k)= —,'f(0) . (A6) These finite sums can be carried out in closed form by
means of the following identities;

This requires the limiting forms for the modified Bessel
functions of fixed order m and sma11 argument w~0
[19]:

No —1

cos [z —s hz ] =Nocos
2&j
P 5, )~, (A14)

(w/2)
I m+1

X (w)~ —,'I (m)(w/2)™, m ) 1

II:0(w)~ —ln(w), m =0 .

(A7)

(A8)

(A9) and

No —1
277$

cos m
s=0 0

=No«s(ms')5, )N (A15)
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A'o —]

cos [z —s b,z ] cos m
2&J 277s

P No

No 2~J
2

+ 0 ~(j+m) INP m,

2'J+ {I ~(j m)—, IN0 (A16)

(I)~/+ 2~/N0. The pure zero-mode part of (A13) is sim-

ply

2q /e2
{t{2h„;„(m=0,k =0)= —N0 ln(p) .

Summing the second term in (A4) over s using (A14) gives

(m:0 k)0)

2q
"

1 2~I
cos zb~1, I Az

for integer I, —~ & I & ~. Because of the Kronecker 6's

appearing in (A14)—(A16), the sums over j in (A13) will

be replaced by sums over I. Note that the last identity
(A16) implies constrained double sums for the (m &1,
k )0) modes. The cosine factors in (A16) couple togeth-
er the z and {t{dependences and are both invariant under
the coupled set of transformations z~z+P/N0 and

1

2~I
+0, 2+I /Az (0, 2~I /Az ) IO g P

2ml
+Ko PAz

(A18)

The third term in (A4) sums to the following expression:

4 00

42 h,);„(m& 1,k =0)= g cos(IN0(I{)
P

1

e3(e2+e3) I d

(E) E2)(E2 E3)

63(E2+ 63)

21'
b

d
+(e)+@2)

' lXo '
1No

1 b+—
I p

(A19)

In implementing the constraints implied by the identity in (A16), we take m to be the independent sum variable and j to
be the dependent variable. Then, the constraint 6[ + ] 1~ together with the fact that m 1 and j 1 implies

j=(IN0 —m)&1. But N0)0, so we must have I&1, and thus 1 ~m ~(IN0 —1). Likewise, the other constraint
5( ) IN together with m & 1 and j ) 1 implies m ) (1—IN0) ) 1. This time, there is no restriction on I, but m is

bounded below: m &max[1, 1 IN0], as th—e reader can verify. Thus, the higher-mode contributions take the following
form:

(m 1 k&0)
1Xo

cos (IN0 —m }+m{t)
bur 1, , P

1 2v 2'
X 9 (2 /p)(IN ) P[ (2 /p)(IN ))I (IN0™)p +K (IN0 m )p

INo m

2qNo (X)

1=—~ m =maxI1, 1
—lNo]

cos (IN0+ m )
—m p

27TZ

1 2%
+m, {2n/P)(IN +m) [m, (2m/P)(IN +m)} m ( N0 m }P

INo+ m Q P

+K (IN{)+m )pP
(A20}

The potential for the region d &p is given by 43. Carrying out the same steps as for @2, we obtain the single-helix po-

tential N3 he]'„,where

2q /e3
43 „,) „(m=O, k =0)= —No ln(p), {A21)

2q 1 2~I 2+i
@3 h )' (m =0,k &0)= g —cos z %02 I/Iz, K0 pb~1=, l Az

(A22}
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4 00

43„„,„(m& 1,k =0)= g cos(lNpp)

(Ez —E, )
+1

E3(Ez+ E3 )

2INO

+(E,+Ez)
E3 Ez+E3

INO

1 b

I p
(A23)

INO
—12' o ~ ' 2~z 1 2'

43 b~]' (m ) 1,k )0)= g g cos (1Np m—) +m (() R (z yp](]N ]K (1Np m )P
1=1 m=1

I = —oo m =max[1, 1—INO]

r

2&z
cos (1No+ m ) —m (()

1 2'
X Rm (zn/p](IN +m] m ( p ™P

1N(]+m ' o I' (A24)

The double-helix potential is obtained from the single-helix one according to

d,„b],b,];„(P,(t, z ) =4b~];„(P,g,z+5)+4b,];„(P,P+~, z —5), (A25)

where we have returned to the coordinate system of Fig. 1(a). Note that 4b,];„(p,p, z+5) describes the contribution
from the single helix with phosphate groups offset by an amount 5 above the plane of the base planes as shown in Fig.
1(a). 4b„;„(p,p+m. ,z —5) describes the contribution from the complementary helix where the phosphate groups are
offset by —5 [see Eq. (2.13)]. Naturally, the resulting expressions (A26) —(A33) have terms similar to those of the single
helical potential derived above, with modifications due to the interference of the two single-helix potentials. They are

4q /Ez
M b ] (m =0 k =0)= Np n(p) (A26)

4q /E3
43 d b] b ]. (m =0 k =0)= Np

&
ln(p) (A27)

T

4q
"

1 2n 1 2m 1 2m 1 2m 1
z +o,z~]zaz "(o,z~]taz]io & P +&o

& P
I=1

(A28)

4q
"

1 2m 1 2n. l 2al
3 doUb]~ bg]]x(m =0~k )0)= g —cos z cos 5 Rp z~&&~,Ep p

7T I 1
z Az ' ' hz

(A29)

gq4zd,„„],b,];„(m) l, k=O)= g cos(INog)

INO
(Ez E3) 1 b

E3(Ez+E3) 1 d d

(E] Ez)(Ez E3) b

E (E+E,) d

INO IN()
1 b+—
I p

+ (E]+Ez)

(A30)

8 QO

N3 do b] be] (m 1,k =0)= g cos(lNp(( } 21NO

+(E,+Ez)

(Ez —E3) +1
E3(Ez+E3)'

(E]—Ez )( Ez
—E3)

'E3('Ez+ E3 ) d

'
INO

1 b

l p
(A31)



DAVID HOCHBERG, THOMAS W. KEPHART, AND GLENN EDWARDS 49

e2 d,„b],„,];„{m 1,k )0)
1%p —1

X' X
1=1 m =2,even

2&z 2mcos (INo —m )+mP cos (INo —m )5

IN —1p

sin
m = l, odd

27Tz
(INo —m )+m]t sin

2'
p 0(IN —m )5

1 2% 2&
, {2 /p)(IN + )

rf, (2 /pl(]N — )]I (INo™)p +& (INo™)p
l'V 0 + P?l 0 p P P

4qNo' b.
l = —oo m =max[2, 2 —lNp ],even

cos (INo+m )
—m(t) cos (INo+m )5

2%Z 2'

m =max[1 1 lNp] odd

sin (IN +m) —m(I) sin (IN +m)527TZ 2K

p 0 p 0

t
1

' 2' 2'
, (2 /p)(IN + ) r[,(2 /p){IN + )]I ( INo ™p+K (INo ™pP

(A32)

and

43db]h]'„(m l, k&0)
lNp —14q/0 2&z 2K

cos (INo —m )+mP cos (INo —m )5
l =1 m =2,even

lNp —1

sin (INo —m )+mP sin (IN„—m )5
2&z 277

m = l, odd P

2~, 1

+m (2~/p)(]N —~)&~ (INo m )p
lN0 m

I= —oo m =-max[2 2 —lNo]'eve

cos (INo+ m ) m{]) cos — (INo+ m )5
2&z 2~

m =max [1, 1
—/N p ],odd

sin (IN +m) —mP sin (IN +m)527Tz 2K

P P
/

1 2~
IN + +m, (2~/p)(]N +m)+m (INo ™p (A33)

APPENDIX 8: POTENTIAL
GF A PGINT CHARGE IN A CYLINDRICALLY

SYMMETRIC DIELECTRIC MEDIUM

Pere we obtain the electrostatic potential due to a sin-
gle point charge q embedded in a medium consisting of
three cylindrically concentric dielectric layers, as depict-
ed in Fig. (1b). The charge is located on the inner bound-
ary separating the first and second layers and corresponds

to a single phosphate group in this application. We are
to solve the Maxwell equations in cylindrical coordinates,
x =(p, P, z):

V D=O, and VXE=O,

inside each layer, where D=a(p)E, subject to the bound-
ary conditions (p is the outward unit radial vector)
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(D2 —D, ).p=4n. o (P,z),
(E2—E, ) Xp=0,

at p=b, and

(E3—E2}Xp=O,

at p=d, where

ei, 0&p(b
e(p)= e, , b &p&d

63~ d p& 00

(B2)

(B3)

(B4)

the expansions and in order to do so, we must remember
to divide it by 2, relative to the higher modes. Periodicity
in the angle P implies a discrete Fourier expansion in that
variable, while the z dependence is handled with a con-
tinuous Fourier series. The form in (B8) results from tak-
ing the product of the separate basis functions for each
independent variable (P and z) on the cylinder. Note that
the regularity of the potential 4, at the origin, p=0, and
the finiteness of 43 at infinity have already been incor-
porated in the above expansions.

It is straightforward to work out the relations among
the various expansion coefficients (B8}which follow from
the boundary conditions. From (B2) we have

is a piecewise constant dielectric "constant. " The surface
charge distribution (located at p=b) is denoted by o.
Since VXE=O everywhere (i.e., for 0&p& 00), we can
derive the field from a potential E= —V4, and thus
reduce the problem to one of solving Laplace's equation
V 4=0 inside each layer subject to the above boundary
conditions (B2) and (B3).

As discussed in Sec. II, of the number of techniques
which are used for solving electrostatic boundary-value
problems, only the Green-function method is suited for
solving the field from a helical charge distribution. This
requires knowledge of the single-charge potential to
which we now turn. We can immediately write down the
most general Ansatze which solve Laplace's equation (in
cylindrical coordinates) in each of the three regions by
generalizing the representation of the Green function in
cylindrical coordinates [16]:

and

Bkz 84,+
az az p=b p

ac, ac,+ =0
a(() ay

ae, ae,—e2 +e, =4mo,
p p p=(

which imply

'A( '

and

A)
' A2'

'A2

Bi B2
(kb) C =[r( kjI (kb)+K (kb)]

1 2

Dj D2

(B9)

00

f dk I (kp)P((m kj(p, z)
m ——o

for 0&p(b,

(B5)

Di

0cs

B) B2
E(I' (kb) C

—ez[r( k~I' (kb)+K' (kb)]
1 2

D2

00

@2 y f dk[r(pg, k)I~(kp)+I~~(kp)]&z(~ k}(P,z )
m=o

(B6)

&cc

0'sc

4m

k oss (B10)

for b &p & d, and

00

f dk &.(kp)&3(m k) 0
m ——o

for d (p( ~, where I and K are the two linearly in-
dependent modified Bessel functions of order m and

V;( k~(P, z)= A,.(m, k)cos(mg)sin(kz)

where the prime indicates differentiation with respect to
the arguments and we have expanded the surface charge
distribution in terms of the same complete set as used for
the 7;, that is,

00

o (P,z }=g f dk arcs(m, k)cos(mg)sin(kz)
m=o

+8;(m, k }cos(mP)cos(kz)

+C;(m, k)sin(mP)sin(kz)

+D;(m, k)sin(mP)cos(kz) (B8)

+o cc(m, k)cos(mg)cos(kz)

+o ss(m, k)sin(m P)sin(kz)

uses a complete set of basis functions for expanding any
function on a cylinder. The prime on the sums indicates
division of the m =0 modes by a factor of —,'. The
higher-mode terms are doubled in number due to the fact
that the cosine is an even function. Instead of writing the
zero mode as a separate term, we choose to include it in

+o.sc(m, k)sin(m $)cos( kz} . (811)

8+3 8@2+ =0
aO ,=,

Similarly, from (B3) we have

ae, ac,+
Bz Bz p
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843 8@2
E3 +E2 =0,

~P ~P =d

B3 B2
c,K' (kd) C =e~[r~ k~I' (kd)+K' (kd)]

3 2

so that D, , D2

(813)

B3 B2
K (kd) C =[r~ kII (kd)+K (kd)]

3 2

D3 D~

and

(812)

The solution of the boundary conditions is easily ob-
tained. We find that

(e, e3)—K' (kd)K (kd)

e,I (kd}K'(kd) —ezI'(kd)K (kd)

while

B,
C,

D)

ocs

ace

0sc

[r, „II(kb)+K (kb)]

(e( E2)r~ k~I' (kb)I (kb)+ [e,I' (kb)K (kb) e2K' (k—b)I (kb)] ~ss
(815)

and

B2

Cq

0cs
occ

0sc

I (kb)

(e, F2)r~ k~I' —(kb)I (kb)+[a, I' (kb}K (kb) e,K' (kb—)I (kb)] ass
(816)

443 B3 C3 D, I (kd)
1+r( ~)

A~ B2 C2 D2 ' ' Km(kd)
(817)

The expansion coefficients are now completely specified in terms of the given surface charge density o. If we special-
ize to a point charge q located on the boundary point (b, P', z') separating the first and second dielectric layers, then

o (P,z ) = —5(P —
(t ')Biz —z') .

b
(818)

The moments [taken with respect to the expansion (88)] of the point charge are calculated from (inverse) Fourier-sine
and Fourier-cosine transforms:

cc(m, k)

cs(m, k)

sc(m, k)

~ss(m, k)

Defining

cos( m (t ')cos( kz')

cos(m P')sin(kz')

sin(m(t ')cos(kz')

sin( m P' )sin( kz '
)

(819)

r( y)I (kb)+K (kb)

(E) E2)r~ k~I' (kb)I (kb)+[@,I' (kb)K (kb) —@2K' (kb)I (kb)]

I (kb)

(e, —e~)r~ k~I' (kb)I (kb)+[e,I' (kb)K (kb) e2K' (kb)I (kb)]—

I (kd)IBPl, , ftl, k

(820)

(B21)

(B22)

in terms of which the potential in each dielectric layer is given by

4,(p, P,z) = —g f 2 „I(kp)cos(k[z —z'])cos(m [P—P'])4q 1 dk
b ~, o

(823)
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for 0 p(b, while

4z(p, P,z)= —g 8 k(r~ k)I (kp)+K (kp))cos(k[z —z'])cos(m [P P—'])4q 1
" dk

b m.
o o k

for b ~ p (d, and

43(p, g, z)= —g f R „K(kp)cos(k[z —z'])cos(m [P—P'])4q 1 ~dk
b vr o o k

(B24)

(B25)

for d & p & ao.
As a check on our calculations, we note that for equal-e limit, e& =e2=e3 —=e, r~ k~ ~0, and we recognize the Wron-

skian factor '@[I (w), K (w)]= —I/w appearing in the coefficient functions (B20)—(B22). In this limit, this is
equivalent to pushing the et-ez boundary layer into the origin and the e2 e3 b-oundary out to infinity. So 43 vanishes
while 4, and 4z can be combined into a single manifestly symmetric expression 4(xy) =4(y x) with range 0 &p & ao:

00

4(x,y) = —g f dkI (kp& )K (kp& )cos(k[z —z'])cos(m [P—P']), (B26)
E 7T o 0

where p & (p& ) is the smaller (larger) of the magnitudes ~x~ and ~y~, and 4 is the (unique) solution (i.e., Green function)
of Poisson's equation,

Vz@(x,y) = — 5(p —b )5(p p')5—(z —z') .
P

(B27)
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