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Integrability and localized excitations in nonlinear discrete systems
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We analyze the origin and features of localized Pxci:ations in nonlinear discrete Klein-Gordon
systems. We connect the presence of statiollary Pxritations with th» existence of local integrability
of the original X-degree-of-freedolII systelll. The Inet, l&od consists of constru(;ting a reduced probleln
of a few degrees of freedom and analyzing it, s phase-space structure with the help of geometrical
methods (Poincare ruaps). YVc find a correspondence between regular and chaotic motion in the

reduced problem on one side and localized aII(l del()calized states in the infinite systelrI on the other
side. The periodic trajectories corresponding t, ~& ellipti( fixe(l points of the Poincare IIIap are related
t.o previous numerical and analytical st, u(li» s. 'A'~. analyze th~', stability (if the periodic orbits with
respect to small-amplitude phonons as v ('fl 1S t. l&( i&ll, ernal stability (if lnultiple-frequency localized
Pxcitations. We find an energy thresh(il(l for I h( «xisten('P (if statiollary l(icalized Pxcitations an(l
an energy threshold for the existence of jrrstahijities due ru internal resonances (onset of chaos).
Approximation schemes ac(oulrting f(ir tl&P n&. tiII ~)It)I)Prti(~ l~f stationary localized Px(itations ':I(
applied.

PACS number(s): 03.20. +i, 03.20.Pw. 63.2().By

I. INTRO DU CTION

In this paper we study nonlinear localized cxcitations
(NLEs) in various Hamiltonian lattices of the nonlirrear
Klein-Gordon type. There are several reasons for st, u(Iy-

ing NLEs. First there is the generaI. problcrll of local-
ization phenomena in systelns with and n)ithout disor-
der. Second we mention the links between regular and
stochastic motion on one side and dynamic properties of
coInplex systems with Irlany degrees of freedonl orl th»

other side. Finally thc connection between (.Ontirluulll

systems (partial differentia equations) and discrete sys-
tems (coupled ordinary differential equations) stijl jros-
scsses many unresolved puzzles in the dcs( rIption of »oll-
linear phenomena.

Localization phenomena in partial differential cqua-
tiorrs (PDEs) are usually projected onto properties r)f

soliton and solitary solutions and are widely studied [1 l.

Much less is known about localization properties in (ou-
pled ordinary differential equations (C.ODE). This is r.s-

pecially true for localized excitations with internal os( il-

lating degrees of freedom such as thc breather nlodes i»
the continuum sine-Gordon system (2]. The reasorr furr

that is t.hc loss of the continuous translational sylnmctry
golIlg ovcI' fIoIIl PDE to CODE. Thc rclrlalniIlg dls('I'ct(*

translational symmetry in CODE is too weak t, (i be IIsef~. lI

f()r thc study of dynam1c solutions. Thus lt. Was natural
to study first the subclass of integrable CODE. sirlce t ll(

presence of additional global constants of Irlotioll sug-
gests the existcncc of hidden additional syrrlrnetrics. Us-

ing the powerful inverse scattering technique Ahlowitz
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and Ladik found an integrable lattice model. which pos-
sesses localized excitations with an internal oscillating
degree of freedom (in analogy to continuum sine-Gordon
jrreathers) [3]. However, to proceed in the understanding
of the rnatter of interest it is necessary to study noninte-
grable CODE.

Several attempts to do so are known. The nl()st ill-
tcnsivc studies were done by Takeno„Sievers, Hori, an(l
co-workers (see [4- 7] and references therein) and Page
r, al. (kk, 9] (it is inrpossible to cite all contributions to
this subject; for more recent, developments see (10]). Thr
object of their study was the famous Ferlni-Pasta-Ulalrl
(FPU) systenr (see e.g. , [ll]). These orre-dirrrensronaj
(.haiIls nre characterized by particles connected with their.
llenrest neighbors via noIIlinear springs, where the spri11g
l)otcntial is a (ertairl polynomial of nth degree ill the
lclative coordinates of two nearest neighbors. These sys-
tclns have at least, two global constants of nlotion-- total
~ ncrgy and rnomcnturll. In a certain continuurrl lilllit tile
FP&.!systcrll can be Illapped onto a special PDE, naIII~:. ly,
the Kortewr. g--cleVries equation (12] which is &ompjetejy
i»t.egrablc. but possesses ~~o blather@. So it (.aln( as '.~

sllrprise that Tnkeno cf nt, . found rather stable long-live(l
l)1'e IthcrlIke cxcit.atiorls on t.hc FPU lattice. Which rollld
Pvc1l Inove ovcI' lorlt~ dlstaIlces t, hrough thc lattl(. e. Tt i-

Qetller wltll tile fact that thc frecjueIl(. les of t. llosP. Ilollllll-
11' k)( allzcd cxclt, at, loIls werc well Q6ovc thc pholloll ball(. l

I()f' slrlall ~lllplitude, osr. illat, ions near thc ground state).
It v as logical to assume that those XLES arc riot (.()»-
rlectcd t. && slnlllaI' P,xcltat loIls ()f th.e coI I'e, spolldlllg P Dl'i.
Ind(. c(l nlaking the colltilluum limit, i.e. . goillg ()vcr fronj

CODI'. I (i n, (;orr~'. sp()IMllrlg PDE, (illc ls ]('ft wit/i

phonoll barld, where l, he upper band edge is shifted t.()

l rlflIlitp'. Thus t he 6LE fl ccluell( lcs also shift t(i illflrllt g'

ar~(l 1)e(on&P. mcanirlgless it& t, he (.olltirluulll lirllit. H(iv'-

1063-651X/94/49(1)/836(15)/$06. 00 .1994 The American Physical Society



49 INTEGRABILITY AND LOCALIZED EXCITATIONS IN. . . 837

ever, this kind of argument is essentially based on the
proper choice of energy scales of the CODE in the con-
tinuum limit. In other words, if one chooses an energy
scale where the dispersion relation between the frequency
and wave number of small amplitude phonons is linear,
the above statement about the continuum limit is true.
As we will show in Sec. II, the proper choice of an energy
scale is as essential in nonlinear systems as the choice
of several model parameters. For example, it was shown

[5] that the NLE solution in the discrete FPU lattice be-
comes nearly delocalized if the frequency of the NLE is
lowered to the upper phonon band edge. Thus we have
a solution on the lattice, which can be described by a
field (slow spatial variations), although the frequency of
the field's oscillation is slightly above the upper phonon
band edge (cf. [13]). As long as one considers this par-
ticular weakly localized NLE solution, one could replace
the CODE by a proper PDE.

The existence of total momentum conservation law in
the FPU systems is directly linked to the absence of a
phonon gap. The phonon branch is acousticlike and the
lower band edge frequency is zero. Breaking the momen-
tum conservation would lead to a finite phonon gap and
thus to a possibility of exciting NLEs with frequencies be-

low the phonon band. In that case there is no principal
hurdle to link NLEs of the CODE with solutions of the
corresponding PDE. Adding so-called on-site potentials
to the FPU Hamiltonian one indeed breaks the momen-
tum conservation and lands in another important class
of CODE, the discrete Klein-Gordon systems. Usually
one reduces the spring potential to a harmonic one and
adds the necessary nonlinearity into the on-site poten-
tials. First the existence of NLEs with frequencies in the
phonon gap was reported in [14] for a discrete 44 system
with single-well on-site potentials; later Campbell and
Peyrard found breatherlike NLEs with frequencies in the
phonon gap in the discrete 4 system with double-well
on-site potentials [15]. The existence of the same type of
NLEs was confirmed also for a Os system [16].

Recently two of us have shown that the properties of
NLEs in discrete Klein-Gordon systems are much richer
than initially anticipated [17,18]. Especially we were able
to describe the properties of NLEs in a reduced problem
of a few degrees of freedom. We linked the existence of
regular motion of the reduced problem on a torus to the
existence of multi@/e frequency stationary NLEs in the
infinite degree of &eedom system. In this contribution we
want to present a careful analysis of the correspondence
between the reduced and the full problem. Our goal is
to investigate the phase-space structure of the reduced
problem and to show the linkage between regular and
stochastic motion in the reduced problem on one side
and localization properties of the full system on the other
side.

The paper is organized as follows. In Sec. II we in-
troduce the models and briefly characterize the main dy-
namic properties of NLEs. In Sec. III we discuss sev-
eral numerical and analytical methods for obtaining such
NLE solutions. In Sec. IV the reduced problem is intro-
duced. We investigate the Poincare map of the reduced
problem over a large energy range. Then we show the

correspondence between the reduced and full problems.
Stability analysis of the NLEs is applied to relaxational
and existence properties of NLEs in Sec. V. In Sec. VI
we briefly review application of our method to several
Klein-Gordon lattices. Section VII is used to sum up
and discuss the results.

II. MODELS AND LOCALIZED SOLUTIONS

We study a class of d = 1 dimensional discrete classical
models given by the Hamiltonian

N

H = ) P( +——t (Q( —Qi i) + V(Qi)

V(z) = V@4(z) = —(z' —1)',
4

and (iii) double quadratic (DQ),

V(*) = VDq(z) = 2(lzl —1)' (4)

Examples (ii) and (iii) are multiwell potentials leading to
two degenerated ground states of the Hamiltonian (1).
The C case gives one local ground state, separated by
a barrier from a global instability. The important difFer-
ence between DQ on one side and 44 and @s on the other
side is that the whole nonlinearity of the DQ potential
appears in the point x = 0.

To produce nonlinear localized excitations numerically
(if the system allows for their existence) we choose an ini-
tial condition which corresponds to a localization of en-
ergy. In [1?] we simply positioned the whole system into
its ground state and then displaced one (central) particle
by a given amount of displacement. Then the evolution of
the system can be studied by means of molecular dynam-
ics. We used always periodic boundary conditions. Since
some amount of the initial energy will be transformed
into traveling phonons (radiation), one has to take care
of the system size to exclude efFects of return. This can
be done in two ways: (i) by choosing a large enough sys-
tem (thus making the time of return large) and/or (ii)
by applying an additional friction to particles far away
&om the initial energy burst. We avoided (ii) since usu-
ally there will be some effects of phonon reflection at the
boundary between the frictioned and nonfrictioned parts
of the chain. We used the Verlet algorithm for solving
the Newtonian equations of motion. The time step if not

P& and Q& are canonically conjugated momentum and
displacement of the tth particle, where l marks the num-
ber of the unit cell. C measures the interaction to the
nearest-neighbor particles. All variables are dimension-
less. The mass of the particles is equal to unity. X is
the total number of particles. The nonlinearity appears
in the on-site potential V(z). Typical examples of V(z)
are (i) 4's,

1 2 1
V(z) = Vga(z) = —z ——z

2 3

(ii) C'4,
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indicated specially was 6 = 0.005. The system sizes were
cV = 3000 if not indicated specially.

Before coming to examples of NLE, let us ment, ion the
properties of (1) for small amplitude oscillations around
the ground state. A simple calculation yields the follow-

ing dispersion law for small-amplitude phonons:

= ajo + 4C sin (rrq/%),

where q = 0, 1, 2, . . . , (K —1) is the wave number, or~ is
the &equency of a phonon with wave vector q, and ~0
measures the lower phonon band edge: asap = 1 for DQ
and C s and ajo ——v 2 for Cj4.

Now let us show some typical examples of NLE for C"
for a special choice of the interaction strength C =- O. l.
This value was considered because it corresponds to a
balance between the on-site energy of a particle and the
energy of the springs connecting it to the neighbors for
energies of the order of the barrier height of V(:r). Usi&-

ally it is argued that (1) and (3) have a displacive limit,
C'. & 1 and an order-disorder limit C « 1 [19). However,
because of t, he nonlinearity we have a second parameter-
the energy. Thus what, one has to do is to study the
behavior of the system in the phase plan» (energy„C" I.
Since we are looking for localized excitations, we do sf'

by calculating the on-site potential energy of one di~-

placerl particle and the spring (interaction) energy, if all
other particles are holded at their ground state position
rl (e.g. , tI =——1). The result is shown in Fig. 1 where th»
different parts of the energy are plotted versus amplitude
of the displaced particle for several interaction strength»
('. Ke see that for C' & 1 for all amplitudes smaller than
a certain C'-dependent threshold the system is displacive,
i.e. , the energy of the springs overcomes the on-site e»-
ergy. Above that threshold the system becomes ~ loser
to uncorrelated particles. That C' interval coul(l be de-
Gned as the displacive or better strongly correlated limit.

10'

For 0.05 & C ( 1 we find two amplitude thresholds:
if the amplitude is lower than the smaller threshold or
larger than the larger threshold we have weak interac-
tions, whereas in between the two threshold values th~.

«hoosen amplitude yields slightly stronger interaction en-
~ rgies t, han on-site energies. In that sense this C interval
can be defined as an intermediate coupling. For C & 0.0."'~

the interaction energy is always small compared to th~*

on-site energy. Thus we can call this C interval as a weak
correlated limit;. From the above it becoines clear t, hat,
t.he choosen value of C = 0.1 and energy ranges around
0.25 certainly cannot be addressed to weak correlations.
sine» the coupling energy is of the same order as (arrd
»ven slightly larger t, han) the on-site energy.

To «haracterize the behavior of t, he system we intro-
duce;x local energy variable e~.

« --;,P! + 1'(Q!)+ —C I(Q! —Q(-!) + (Q! —Qj+i)

((i }

The sum over all local energies gives the total conserved
energy. If NLE are excited, the initial local energy burst
should mainly stay within the NLE. Thus defining

&'(2m-y1) =

and exciting the local energy burst at lattice site l =- 0
by choosing a proper value of rn in (6) we will control
t, he time dependence of e(2 +ii. If this function does not
decay (or decay slowly enough) to zero, the existence of
a NLE can be con6rmed. The terminus "slowly enough"
has to be specified with respect to the typical group v»-

locities of small-amplitude phonons. This sets the time
s«ale v e are interested in

/(d j! + 2C
f, && rn-—

9(,'

II& Fig. ' we show the time dependence of c(„.)
for an ini-

10a

~10'-

10

—3.:
10

10 ' I I
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FIG. 1. Potential energy versus initial displacement Q
for a particle in a 4 chain, where all other particles are fixed
at the ground state position g = —1. Solid line, on-site energy
(3}; long dashed line, spring energy for C = 1; short dashed
line, spring energy for C = 0.1; dash-dotted line, spring en-
ergy for C" — 0.01. Note the discontinuity because of the
harrier in !'3}.

10

FIG. 2. elsl versus time (dashed line) for Il! with C
0.1, K = 3000, and Qjj(t = 0} —1.3456. Total energy of
the chain, solid line. Inset: energy distribution c'i" " versus
particle number for the same solution as in Fig. 2 measured
for ]000 .-. f -. 1150.
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This ansatz is motivated by the structure of the known
solutions of breathers in some continuum models, which
are the most prominent examples of localized vibrations
in the continuum. The main idea of the RWA is to rep-
resent FI(t) in a Fourier series

FI(t) = ) clue'" "
k= —oo

—1.0—

—1.5—
I

I II II Il 'll II ll I I

I I

I II II II Il Il
I

I I I g g

—2.0
0 20

I I I

40 60
TIME

80 100

FIG. 3. Displacement of central particle (dashed line) and
nearest-neighbor particles (solid line) versus time for the same
initial condition as in Fig. 2. Note that measurement is per-
formed after a waiting period of t = 1000.

tial condition Qp(t = 0) = 1.3456, QIgp ———1, Ql = 0
of the C4 system. Clearly a NLE is found. After a short
time period of the order of 100 time units nearly con-
stant values of e~5~ are observed. The NLE is stable over
a long period of time with some weak indication of en-

ergy radiation. The energy distribution within the NLE
is shown in the inset of Fig. 2. Essentially three particles
are involved in the motion, so we And a rather localized
solution. In Fig. 3 we show the Ql(t) dependence for the
central jt = 0 and the nearest neighbors l = +1 particles.
While the central particle performs large-amplitude os-
cillations crossing the barrier of its on-site potential, the
nearest neighbors are confined to the well of the chosen
ground state.

Before characterizing the NLE more precisely, we will
discuss in Sec. III known methods of approximate an-
alytic handling of these objects, especially the rotating-
wave approximation (RWA). We will show that the RWA
can be a rather powerful method; however, it does not
provide us with much physical insight into the origin of
NLEs. Moreover we will see that the complexity of the
problem can make the RWA, useless in a practical sense,
thus forcing us to understand and to describe the NLE
in another way.

to insert the ansatz into the original equations of mo-
tion, to collect terms with equal harmonics km~, k =
0, +1,k2, . . . , and to neglect all coeKcients in the Fourier
representation of FI(t): O'Ig = 0 for ~k~ & kp. The sim-
plest version implies kp ——2, i.e. , FI(t) is assumed to be
a harmonic function. Before turning to the interacting
case of many particles, let us shortly discuss the results
of such an approach for the nonlinear motion of a single
particle.

A. Single particle

We want to apply the RWA to the one-particle problem

Q = V (Q). (12)

The potential V(Q) should provide bound motion, at
least for the cases under consideration. Since this prob-
lem is integrable, one can (at least numerically) calculate
the period of the periodic solution (12) and thus the fun-

damental frequency. For example, for the class of poten-
tials

V(Q) = Q (13)

Here I'(z) is the gamma function. Applying RWA with
ko ——2 one derives the approximation

2m —121—fn (2 )
1/2 1/2m (— ) ' E1/2 —1/2

m! (m —1)!

the solution for the frequency can be found analytically
as a function of the energy E:

1~( ) /
I'(1/2m + 1/2) EI /2

r(1/2 )

(14)

III. ROTATING-WAVE APPROXIMATION

QI(t) = Fi(t), (9)

where the function FI(t) is periodic with some fundamen-
tal &equency ~q..

2~
Fl(t) = F)(t+ T~), T~ ———

(dy
(10)

A large number of publications originating in works
of Takeno, Sievers, and Hori [4—6] view the NLE as
monochromatic modes of the lattice, i.e., the solution
is sought in the form

First we note the remarkable coincidence between the
exact result (14) and the approximation (15) with respect
to the energy dependence, which was achieved within the
RWA using the exact relation between the amplitude and
the energy as it follows from (13). Moreover comparing
the prefactors for, e.g. , m = 2 in (13) yields 1.1981 and
1.2247 for the exact result (14) and the approximation
(15), respectively. That means that the simplest RWA in
the case of (13) already gives an error of less then 2.3%.

Next we consider the 44 potential (3). There it is
known that the u(E) dependence yields a minimum with
~ = 0 for E = 0.25 (the barrier height) [20, 21] [see the
solid line in Fig. 4(a)]. To apply RWA in this case we
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explicitly write down the resulting equations of the pro-
cedure as described at the beginning of Sec. III choosing
ko ——4:

0 = —4p+ 4'0+ 64p(4, + 42+ 42) + 12414242
+6C, C 2, (16)

&14 1 41 ( 34041 + 6404142 + 341 + 64 142
+640@242 + 34,'4 2 + 64142), (17)

—4~, 42 ——4'2 —( 34042 + 3O041 + 64, 4' + 342
+64041@3+ 6414243 + 6424 s)

(»)
—90~, 4'3 43 ( 34p43+ 342 + 6404142+ 4,

+64,24, + 6422422) .

1.50

1.25-
~ ~

~ O~
O~

O~
O O~

OW

1.00—

0.75-

0,50—

0,25-

Here we have used the time reversal symmetry of the ex-
act solution of (12), i.e. , by proper choosing of the time
origin we have CA. ——C I, . To match the solutions onto

a frequency-versus-energy dependence we use the exact,
relation between the amplitude of the motion and the
energy for energies larger than the barrier height, and
the exact (numerically) relation between the mean posi-
tion of. the particle 4'0 and the energy for energies below
t, he barrier height. In the simplest approximation w»

again assume ko ——2. The corresponding RWA solution
is shown in Fig. 4(a) (dashed line) and Fig. 4(b) (trian-
gles). As it has to be expected, the approximate result is
close to the exact line for small energies (nearly harrnoni«
motion) and high energies (nearly quartic oscillator; «f.
previous example). Significant deviations occur for ener-
gies around the barrier height, where the slowing down ~if

t, he motion appears, thus higher terms in the RWA hav~

to be taken into account. This is done for energies below
the barrier height with kp = 3 [filled circles in Fig. 4(b)]
and energies above the barrier height with kp ——4 [filled
circles in Fig. 4(a)]. Note that due to the symmetry of
the underlying potential V(x) = V( —z) all even Fourier
components C2 vanish for energies above the barrier.
height. As a result of the increased number of coinpo-
nents taken into account we clearly find a rather goo~I

agreement between RWA and the exact result. Thus the
initial idea of the RWA seems to be fruitful —-it should b»
enough to restrict the calculation onto a finite number of
Fourier components in order to achieve quite reasonable
results. However, there are two technical disadvantages
of RWA already at this stage: in order to achieve the
above results, we had to solve nonlinear sets of equations
with already three variables, and we needed some input
information, which was quite as complicated to calculate
as the whole exact result. Nevertheless the success of
RWA at this level is quite impressive. Let us step now t, ~~

the more complex problem of interacting particles.

0-
—0.5

]. , 50

1.25-

0.5

O-e-y 9-a O 0

t

1,0

(E — 0.25)

1.5 2.0
B. Interacting particles

Taking into account the interaction does not compli-
cate the RWA equations essentially. In fact every variable
4 in (16)—(19) carries now a second label of the lattice
cite number, and due to the interaction terms with t,he
structure

1.00— +(24 irn 4 (i —1)m. 4'((+1} ) (20)

0.75-

0.50—

0.25—

-0.25 -0.20 —0.15 -0.10 -0.05

(E—0.25)

FIG. 4. Fundamental frequency cu versus energy for a par-
ticle motion in potential (3). (a) Solid line, exact result;
dashed line, RWA kp = 2; filled circles, RWA kp = 4. (b)
Solid line, exact result; triangles, RWA ko ——2; circles, RWA
ko ——3.

appear on the right hand side of these equations. The es-
sential complication is the increasing number of variables
and equations one has to solve. For example, assuming
ko ——3 leads to six coupled equations for seven variables
in the case of the NLE solution as described at the cud
of Sec. II and shown in Figs. 2 and and 3. Even one ex-
ternal condition leaves us with the problem to solve a set
of equations with six variables. That is a rather di%cult,
numerical task, not at least because these equations pro-
duce a huge number of solutions, and one has to decide
which one to select. Of course, one can use iteration pro-
cedures [6], but since the structure of the equations is not
very simple, the meaning of such procedures is diFicult
to understand.

There exist also other numerical methods to obtain
periodic localized solutions on a lattice. Especially we
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IV. THE INTEGRABILITY CONCEPT

A. Basic ideas

From the last paragraph in Sec. III (see also [17]) we

found the surprising result that the NLE might be de-
scribed by two frequencies rather than by one. What
can be the mathematical reason for that? To proceed

300—

250-
X

~ 200

~ 150

~ 100

50—

40
Vi

~ 30

~+ 20
Ua
c

e 10

0 )
0 0.5 1.0 1.5 2.0 2.5 3.0

FREQUENCY

0

FREQUENCY

FIG. 5. Fourier transformed 7~[Q~(t & 1000)](cu) for 4,
C = 0.1, N = 3000, and the same initial conditions as in
Fig. 2 with I = 0 (central particle). Inset: the same with
I = +1 (nearest neighbors).

want to mention the results of Campbell and Peyrard
[15]. They replaced the continuous time variable by a set
of discrete time points (as usually done in every molecu-
lar dynamics simulation) and transformed the periodicity
of the original solution in the continuous time variable
into a periodicity on the discrete time grid. Then the
equations of motion were rewritten in terms of a high
dimensional Hamiltonian (phase-space volume preserv-

ing) iterated map. Finally periodic NLE solutions for
C systems were found starting with a nearby solution
(from a continuum asymptotic expansion) and using a
generalized Newton's iterative method. This method is
also rather complicated and as in the RWA case (because
of the nonlinearity of the problem) one needs an ansatz
close enough to the wanted result.

To knish this section, we show a Fourier transformation
of the motion of the central particle in the NLE as found
in Fig. 2 [17]. The result is shown in Fig. 5. We see
clearly that there are two frequencies determining the
motion of the central particle uq ——0.822 and ~2 ——1.34.
All peak positions in Fig. 5 can be explained through
linear combinations of these two frequencies. To save the
RWA, we now have to include the second frequency into
the ansatz. This makes the number of variables again
higher. Still we have no physical motivation for the new
ansatz. Thus we feel we have no other choice than to
give up the RWA concept and look for alternative ways of
analysis. As it will be shown in the next section, a fruitful
way is to follow methods of geometrical descriptions of
classical mechanics.

in the understanding of the phenomenon, we plot in the
inset in Fig. 5 the Fourier transformation of the motion
of the nearest neighbor(s) to the central particle. As ex-
pected, we not only observe the two-frequency spectrum,
but surprisingly the peak with the highest intensity is not
at wq as for the central particle, but at u2. It looks like
every particle has its major frequency. Because of the
symmetry of the initial condition the two nearest neigh-
bors move in phase. Thus we are left with an effective
two-degree-of-freedom problem (cf. inset in Fig.2).

Now it is a small step to recognize that we might be
confronted with a kind of integrability phenomenon. In-
deed, Axing the rest of the particles at their ground state
positions reduces the dynamical problem to a two degree
of freedom system, which might be integrable in parts of
its phase space:

Q. = -V.'.(Q.) —2~(Qo —Q.i),
Q+i = —Vc,4 (Q+g) —C(2Qpg —Qs + 1)

(»)
(22)

(23)

determine the motion of system on the surface of the
torus. Obviously all linear combinations of multiples
of these frequencies appear in the Fourier spectrum of
the original particle displacements. That is exactly what
we observe. The conclusions from above imply another
consequence, namely, that an assymetric NLE (with re-
spect to the central particle) should be possible too, i.e.,
that the two nearest neighbors perform not-in-phase mo-
tions, even with different amplitudes. That would mean
that, in the language of actions, we lift a degeneracy by
choosing asymmetric initial conditions and have to ex-
pect three, instead of two, fundamental frequencies, i.e.,
the frequency ur2 splits into two I'requencies w2 g (A)3. To
check this statement we performed a simulation with an
asymmetric initial condition, which differs from the pre-

We will call these types of few-degree-of-freedom sys-
tems reduced problems. As we have shown [17], the in-

tegrablity conjecture is indeed true. We performed a
Poincare intersection between the trajectory and the sub-
space (Qo, Qo, Q~q ———1, Q+& ) 0). Not only did we

find the existence of regular motion on a two-dimensional
torus, we also found nearly identical tori intersections
for the reduced and full problems [17]. Thus we arrive
at two conclusions: (i) the NLE existence is a result of
(at least local) integrability properties of the underlying
many-particle system; (ii) the NLE can be reproduced
within a reduced problem, where all particles perform-
ing small-amplitude oscillations are Axed at their ground
state positions, thereby reducing the number of relevant
degrees of freedom.

With the integrability property in mind, it is clear that
there have to appear two frequencies. If the reduced
problem is integrable (in some part of phase space), there
should appear two actions I„,n = 1, 2, as functions of the
original variables, so that the Hamiltonian of the reduced
problem can be expressed through the two action vari-
ables only, and these actions become integrals of motion.
The corresponding two frequencies
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vious symmetric initial condition by additionally choos-
ing Qi(t = 0) g rl. Indeed we found that (i) the lo-
cal asymmetry is conserved throughout the evolution of
the system, and (ii) as the Fourier spectrum of the cen-
tral particle motion and the two nearest-neighbors mo-
tions show, we now find three frequencies: ~i ——0.83.
~z = 1.32, and ~s = 1.35 [17).

Let us summarize the results up to now: the NLEs
correspond to (nearly) regular trajectories in the phase
space of the system under investigation; essentially a few
degrees of freedom are excited; the trajectory (solution) is
very close to a trajectory (under same initial conditions)
of a reduced problem, reHecting the fact of localization
and the excitation of only a few degrees of freedom.

B. The correspondence conjecture

To proceed in the description of the NLEs, we study
the properties of the reduced problem more carefully. For
that we first perform a Poincare mapping for the entire
available phase space of the reduced problem fixing the
energy (for details about methods in nonlinear dynamics
see [22]). The result is shown in Fig. 6. We observe sev-
eral isolated regular islands embedded in a sea of chaotic
trajectories. Our NLE, as described in Sec. IVA, corre-
sponds to torus intersection in island 2. There is evidence
that all regular solutions from island 2 correspond to NLE
solutions in the full problem. All trajectories from island
2 have the property ~Qo —

g
" )) ~Q~i —rl ". This

amplitude ratio is an indication that a solution of the
reduced problem is close to a corresponding %LE solu-
tion of the full problem. We demonstrate our finding
in Fig. 7, where we plot e~5~ versus energy for two ini-
tial conditions in the infinite system which correspond to
two trajectories from island 2—-including the fixed point
trajectory (point in island 2). Now we come close to an
interesting result, namely, the existence of periodic loral-

ized solutions. These trajectories correspond to elliptic
fixed points in Poincare maps of the reduced probleni.
Thus the solutions of numerical methods surh as RWA
(cf. Sec. III) could yield exactly those fixed point solu-
tions. However, we observe a much richer structure of
multiple frequency NLEs which are smoothly connecte~l
to the fixed point solution.

Let us turn our interest to island 1 in Fig. 6. Agaiii
the amplitude ratio of the solutions from this island iii-
dicate that those solutions survive as NLEs in the fiilf

system. That this is indeed so, we show in Fig. 7 for
two trajectories from island 1—the larger torus and th~"

fixed point solution. Thus we arrive at the fact, that our
geometrical method of studying Poincare maps enables
iis to predict and find NLE solutions of the full systeni.
Indeed the RWA or even the method used by Campbe11
ancl Peyrard (cf. Sec. III) can be now specified to l&&

useful for calculating certain fixed point solutions. Th~

necessary ingredient for those methods is thesymnif. tI y
()f the fixed points; in other words one has to be close"

enough to a certain fixed point. To explain this point iil

inore detail, we plot in Figs. 8(a) and 8(b) the Qi(t) de-

pendence for the central I = 0 and the nearest-neighboi
l ==- +1 particles in the full system, using the fixed point
solutions from islands 1 and 2 of the reduced probleni as
initial conditions, respectively. The fixed point solution
froin island 1 is rharacterized by ir&-phase motion of th~

central and nearest-neighbor particles, i.e. , inaxiina, ai&(i

ininiina of the elongations for both particles appear I,t th~
same time [Fig. 8(a)]. For the fixed point solution fruin
island 2 we find nearly period doubling for the; ce»tr'Il
partirle niotion coinpared to the nearest-neighbor part, I-

rle inotion. However, still both elongatioris are periodic
wit, ll tile sanle tliile pei'lod [Fig. 8(b)].

6"hat kind of trajectories do we find in island 3'~ Th(
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FIG. 6. Poincare intersection between the trajectory and
the subspace (Qi, Qr, Qo ——1, Qs & 0} for the symmetric
reduced three-particle problem 4, C = 0.1 (see text), and
energy E = 0.580315.

FIG. 7. e&s&(t) dependence for C, C =— 0.1, and
3000. Long dashed line, initial condition from Fig. 2 (torus
in island 2 in Fig. 6); short-long dashed line, fixed point in

island 2 in Fig. 6; short dashed line, larger torus in island 1 in
Fig. 6; dash-dotted line, Axed point in island 1 in Fig. 6; solid
line, torus in island 3 in Fig. 6; long-short-short dashed line,
chaotic trajectory in Fig. 6; and horizontal (highest) solid line,
total energy of all simulations.
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amplitude ratio does not indicate localization. Thus we

expect a decay of those solutions in the full system. In
Fig. 7 we see that these regular solutions of the reduced
problem indeed decay in the full system. Finally we have
to study the properties of the chaotic solutions. Since
the amplitude ratios again do not indicate localization,
we expect delocalized states in the full system. In Fig.
7 it is shown that the chaotic solutions indeed decay.
But there is one puzzling detail —both the solution kom
island 3 and the chaotic solution decay in the full system
until their energy comes to a value around 0.36; then we

observe stabilization. No remarkable decay is observed
for longer times. Certainly this energy value reQects some
intrinsic property of our system. We will return to this
problem later on and find the explanation.

Now we can formulate our correspondence conjecture.
If we study NLE properties, we can de6ne a reduced prob-
lem. The reduced problem will be not integrable. But
it will have certain undestroyed regular orbits on tori in
isolated subspaces (islands) of its phase space. Certain
islands will correspond to NLE solutions in the full prob-
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FIG. 8. Displacement of central (dashed line) and nearest-
neighbor (solid line) particles versus time for 4, C = 0.1, and
N = 3000 with initial conditions corresponding to (s) fixed
point in island 1 in Fig. 6 snd (b) fixed point in island 2
in Fig. 6. Note that the measurement is performed after a
waiting period of t = 1000.

lem. An indication for that is the value of the amplitude
ratio of the central and nearest-neighbor particles for tra-
jectories from that island. Every trajectory from such an
island of the reduced problem corresponds to a NLE so-
lution of the full system. Since the trajectory evolves on
a torus in the reduced problem, it generically leads to
a multiple &equency NLE in the full system. The ellip-
tic fixed points in such an island correspond to periodic
(one-frequency) NLEs. They can be calculated using ap-
proximation techniques such as, e.g. , RWA. Certain other
islands of the reduced problem as well as the chaotic tra-
jectories do not correspond to NLE solutions in the full
system. They quickly decay because of energy radiation.

C. NLE properties

To study properties of NLEs we first analyze the
Poincare map for the reduced problem with symmetric
initial conditions over a large energy range. For small
energies E ( 0.35 we find no chaotic trajectories, so
that nearly the whole reachable phase space consists out
of regular trajectories [Fig. 9(a) for E = 0.3]. Near
the "stochasticity" threshold E, = 0.35 a (still small)
fraction of chaotic trajectories is observed [Fig. 9(b) for
E = 0.35]. The threshold value E, = 0.35 is close to
the depth of the ground state minimum of the poten-
tial describing Eqs. (21) and (22). In Fig. 9(c) we show
the potential energy contour plot of (21) and (22). An
analysis of the extrema yields four minima 1—4, a max-
imum 5, and several saddle points [cf. Fig. 9(c)]. The
saddle point with the lowest energy E = 0.38 is point
6. The ground state is given by minimum l. Increasing
the energy starting with 1, one first hits the saddle point
6. Since there is a separatrix running through point 6
and tori are most likely destroyed near such separatri-
ces, the appearance of the stochasticity threshold around
E = 0.35 becomes understandable. Above the stochas-
ticity threshold E, 0.35 the regular regions are sepa-
rated into isolated islands. Between these islands chaotic
motion occurs (cf. Fig. 6). At the same time we ob-
serve bifurcation eKects, i.e., period doubling. The corre-
sponding tori are multiple folded. At energies around 0.4
no regular islands are found —all trajectories seem to be
chaotic. Around energies of 0.5 we again find regular is-
lands. Finally around energies of 2.2 the character of the
periodic orbits (fixed points in the Poincare map) changes
from in phase motion of the central and nearest-neighbor
particles to out of phase motion. The above discussion
does not imply the nonexistence of chaotic motion below
the stochasticity threshold. It is the observable fraction
of chaotic trajectories that we refer to.

As we have shown, certain regular islands of the
Poincare map of the reduced problem yield NLEs in the
full system. The properties of those solutions can be
characterized by analyzing the corresponding periodic or-
bits (fixed points in the map). Especially the stability of
the many frequency solutions in the full system will de-
pend on the stability of the periodic orbits. Thus we de-
termine the periodic orbits for different energies E & 3.
The fundamental frequency ui is shown in Fig. 10 (tri-
angles) as a function of the energy. Next we simulate the
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is shown. The mentioned energy threshold E, = 0.1 is
clearly seen. Note that around the stochasticity thresh-
old E, = 0.36 of the reduced problem 0 (E) has a step.
Also at higher energies E 2—4 an instability occurs
again. This instability is due to a coupling of NLEs to
small amplitude phonons (see Sec. V).

1.0—

0.8—

D. Approximation scheme o 0.4—

Now that we have shown that the NLE we are deal-
ing with are a result of local (quasi-)integrability of the
system under consideration, we want to discuss an ap-
proximation scheme to account for the basic features of
the NLE.

In the continuum limit one can try to solve the corre-
sponding partial differential equations. That was done
in numerous publications. The other logical limit is
when the amplitude of oscillation of neighbor particles
differs strongly, i.e. , lQ~ t —

gl
" )) lQ~ —

rll
" ))

lQ~+q —gl ", t ) 1. Surprisingly this condition does not
restrict the system to the order-disorder limit. The above
discussed numerical results already 6t into this condition,
although we are dealing with an intermediate interaction.
We now carry out an approximation scheme to account
for Erequencies and existence regions.

Let us assume that we are dealing with a NLE such
that lQo —

rll
" )) lQyq —gl ". Then a starting point

could be to consider the equation of motion for the cen-
tral particle neglecting the small-amplitude fluctuations
of the nearest neighbors. We arrive at the effective one-
particle problem

~ dV,g0—
O

where the effective potential V,p is given by the expres-
sion

V,g(z) = V(x) + C(z —g) (26)

G1V
hQ, = —„

Q1=n+~Q1

—2CbQg + CQo (27)

This equation describes a driven nonlinear oscillator,
where CQo is the driving term If the am. plitude of the
nearest neighbor is small enough, the nonlinearity coming
from V(Q&) can be approximately handled by replacing
the original anharmonic potential by a harmonic one with
amplitude-dependent frequency. Nevertheless we are still
confronted with a complicated problem, since the driv-
ing term is not a harmonic function. But we have seen
in Sec. III that neglecting the higher harmonics for the

Using the amplitude of the central particle as an input
parameter, one can solve Eqs. (25) and (26) with respect
to the fundamental frequency uq. The result is shown in
Fig. 10 (solid line). We find remarkable coincidence with
the frequency versus energy dependence of the regular
orbits of the reduced problem (triangles).

To account for the second frequency let us consider
the equation of motion for the nearest neighbor Qq using

IQ —
nl "» IQ —~l

0.2—

15 20 25

i.—25

I I I

30 35

FIG. 12. Normalized energy distribution e& "/eo " ver-

sus particle number for C, N = 3000. Solid line, C = 0.1,
E = 0.326; short dashed line, C = 0.3, E = 0.816; long
dashed line, C = 0.5, E = 2.0; dash-dotted line, C = 1.0,
E = 3.56.

motion of a particle in a nonlinear potential can be a
rather good approximation. Thus Anally assuming that
the driving term in (27) is a harmonic function with fre-

quency ~z, we are able to solve the equation of motion
for QI. Using the full amplitude of the nearest neigh-
bor as an input parameter, one can solve for the second
frequency urz [17].

E. NLE shapes

In this section we will study several stability properties
of NLE. First we analyze the stability of NLE with re-
spect to small-amplitude phonons, which can be viewed
as a realization of external (with respect to the NLE)
parametric resonances. Then we show the existence of
internal parametric resonances, i.e., the NLE becomes
instable due to a transition from regular to chaotic mo-

In this subsection we want to briefly show our results
with respect to the NLE shapes. For that we start a given
simulation, wait a time period of 1000, and then perform
a measurement during a time interval of 150. We measure
the local energies and amplitudes for every particle inde-
pendently and store their maximum values. These values
as a function of the lattice site are then printed and can
be viewed as (not normalized) distribution functions, es-

pecially in the case of the local energies. The values at
each lattice site are, however, uncorrelated with respect
to the time evolution, so that, e.g. , the sum over the max-
imum local energy distribution function will not coincide
with the real NLE energy (if it exists). Typical shapes for

and C = 0.1,0.3, 0.5, 1.0 are shown in Fig. 12. We see
that a clearly defined NLE exists for different C values,
and we observe that the width of the NLE increases as
C increases. Note that we have not shown all results of
simulations but only the typical ones with respect to the
NLE. In fact we picked out the solutions with maximum
localization property.

V. STABILITY ANALYSIS
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tion. Finally we apply these results to the explanation of
the existence of several energy thresholds.

A. External parametric resonance
Let us assume that we found an exact NLE solutioII

Q~(t). To study the stability of such a, solution with rv. —

spect to small-amplitude oscillations (phonons) we con-
sider a small deviation from this solution Q~(t) + At(t),
illsert this ansatz in the original equations of niotioII.
arid linearize with respect to A. Finally we transforrii
t}ie equatiolls into q space and find

Aq+~,'Aq+ QAq Qq, +, QQq Qq, , + (28)

where the constants o., are defined through the deriva, —

tives of the potential at the ground state position (num-
bers unimportant here). Unfortunately we are not, able
to make statements about the stability of waves in (28)
if the NLE is described by more than one fundanierital
frequency. However, it is possible to proceed for the fixed
point solutions, i.e. , the periodic orbits. We introduce a
vector

(29)

Then we can rewrite (28):

& =M((Q (t)) &) (30)

The linear matrix M has several interesting propert, ies.
The trace of the matrix is zero. The matrix is also peri-
odic in time with period Tj ——27r/cuq. Let, us introduce a
rIla, p pl ilg A:

AA(t) = A(t + T, ) (31)

Following Arnol'd [23], a solution A(t) is stable (and pe-
riodic with Tq) if the mapping A is stable. The mapping
A is linear and volume preserving and the necessary con-
dition of stability of a solution of (30) becomes

~tr.4~ & 2X (32)

Since Q~(t) is a localized solution, its transformed coun-
terpart Qq(t) is finite for every q, whereas a wave solution
would be X times larger. Thus the 1/N, 1/X, . . . terms
in (28) let the additive perturbation terms in the cliffer-
ential equations of (28) and (30) become very small for
large enough X. Then it is possible to study the sta, vility
of the inapping A neglecting the perturbation. Since the
iriapping matrix in that case becomes block-diagonal. t, (le
sufhcient condition of stability reduces to

(kg~g + k2(u2 + + k„~„)/kq (34)

will be equal to a phonon frequency uq at least for a
certain value of q. Then we would expect energy radi-
ation because of parametric resonance. Our simulation
results con6rm that conjecture —for all many-frequency
NLEs weak energy radiation is observed. Thus we come
to the conclusion that many-frequency NLEs are, strictly
speaking, unstable, although the time scale of their de-
cay (lifetime) can be very large compared to the internal
oscillation periods 27r/ak. However, if we let, the phono&&

band width going to zero, then we expect these. lifetiiIIes
t&i becorrie infinite. E ertainly this limiting case is triv-
i jl irI the rase of the discrete Klein-Gordon systems w~

consider iii this work. But our stability analysis applies
to any discrete system, assuming the existence of (many-
frequency) NLEs and small-amplitude phonons. Tluls
we expect our limit of vanishing bandwidth to becoiiie

odist,

able

external parametric resonance sets in. The same happens
for higher energies, where the frequency of the periodic
orbits again crosses the phonon band. As expected, we

do not find NLE solutions in the full syst, em for these
energies (cf.. Fig. 11).

Although we cannot present analytical evidence for
external parametric resonance in the case of many-
frequency NLEs, we can make some rather obvious con-
jectures. If the NLE is described by a finite set of fre-
quencies uz, ~2, . . . , ~„,generically there will always exist
a set of integers k~, k2, . . . , k„,kq such that the expression

n=0, 1, 2,
'j 2

(33)

This stability condition implies the existence of instabil-
ity bands on the frequency axis of the NLE because of the
finite dispersion. We show this result in Fig. 13, where
the dividing line between stable and unstable regions is
drawn in the parameter space (C/4m&, w/ufo) with wo

being the lower band edge frequency.
Now it becomes clear why we find a threshold energy

in the creation of NLEs (cf. Fig. 11). As is seen in
Fig. 10, for small amplitudes (energies) the frequency
of the periodic orbit is in the phonon band and thus the

i

Writ/ i

j Cy

/

o

I"IG. 13. Stability phase diagram of periodic i4LEs.
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relevant for other classes of systems as, e.g. , the Fermi-
Pasta-Ulam systems are. 0.60—

B. Internal resonance

As mentioned in Sec. VA, there are no internal reso-
nances for many-frequency NLEs in the generic case. But
we remind the reader that we are dealing with nonlin-
ear systems and we always have (at least weak) energy
radiation of many-frequency NLEs because of external
parametric resonance with phonons. Then the energy
of the NLEs will adiabatically slowly decrease. Thus all
parameters of the NLE (actions, frequencies) are also adi-
abatically slowly tuned. In the language of our Poincare
mappings this means that the trajectory drifts across the
torus family for different energies. Looking at Fig. 6 we

have three possibilities: (i) the trajectory drifts towards
the center of the regular region to a periodic orbit—
then we expect generically asymptotic stabilization of
the NLE; (ii) the trajectory drifts towards the boundary
of the regular region —then it comes close to a resonant
torus defined by the vanishing of expression (34) for a
certain set of integers ki, k2, . . . , k„; (iii) the trajectory
stays somewhere in the regular region (no drift to cen-
ter or boundary of the regular region) —then the energy
radiation would continue until the NLE dissappears.

Possibility (iii) seems to be nongeneric, thus we are
left with (i) and (ii). Case (ii) implies that because of
the weak energy radiation of the many-frequency NLE
it tunes itself towards an internal parametric resonance.
What do we expect in that case'? From the Kol'mogorov-
Arnol'd-Moser (KAM) theorem (cf., e.g. , [22]) we know
that slightly perturbing an integrable system leads to
stochastic motion in paase-space regions around certain
resonant tori. Thus once our NLE hits the resonant con-
dition (or in fact comes close enough to it) the internal
dynamics of the particles becomes chaotic and aperiodic.
That means that instead of discrete spectra we find con-
tinuous spectra for the Fourier transformed particle mo-
tion. That means that the overlap of nonzero parts of the
spectrum with the phonon band dramatically increases
leading to an increased energy radiation. Indeed in Fig.
14 (short dashed line) we see the time dependence of
the NLE energy for the scenario as described above. We
checked numerically that as the energy is radiated in the
first part of the evolution, the frequencies ui (decreases
with time) and u2 (increases with time) are self-tuned
towards a resonance 2~q ——~2. At the time threshold
t —6000, where we observe an increase of the energy ra-
diation per time of the order of 100, the spectra become
continuous. The remaining puzzle is the following: Why
are all unstable trajectories (NLEs with internal para-
metric resonances, other instable trajectories as seen in
Fig. 7) stabilized, if the energy becomes lower than a
threshold value of approximately 0.36? The answer seems
to be the existence of a stochasticity threshold in the en-
ergy of the reduced problem (cf. Sec. IV C). Indeed, if the
energy of the NLE becomes lower than the stochasticity
threshold value of approximately 0.36, then the spectra
have to become discrete again, thus the energy radiation
can abruptly slow down (if the main frequencies ur& do

0.55—

0.50—

0.40—

I

I

1

I

I

I

I

I

I

I)
I

I

I

0.35-

0.30—

not overlap with the phonon band).
One comment should be added to explain the valid-

ity of the stability analysis. We have studied stability
of assumed existing periodic (one-frequency) NLEs with
respect to certain perturbations such as, e.g. , phonons.
A rigorous stability analysis implies much more eEort
and was outside of our initial purpose. As Campbell and
Peyrard have shown [15], one has to find the periodic
solution (NLE) on a large enough lattice and then to cal-
culate the eigenvalues of the mapping A [cf. (31)] for
any perturbation. Only if all eigenvalues are of modulus
1 can we conclude that the periodic NLE is stable. In-
deed Campbell and Peyrard found for the C system that
the periodic NLE solutions (fixed points in the Poincare
mapping) are stable.

VI. OTHER KLEIN-GORDON SYSTEMS

A. 4 system

This systein is described by the potential (2). It is not
very difFerent from the 4 system if one considers only
one-well motions. Indeed we again find many-frequency
stationary NLEs which can be described by a reduced
problem. A representative Poincare map is shown in Fig.
15 for energy 0.2734916 and C = O.l. It is interesting to
note that many-frequency NLEs were found in this sys-
tem already in [16], where the authors have interpreted
the additional peaks in the spectra as due to band edge
phonons. The reason they attributed the corresponding
peaks in the spectra to band edge phonons is that in the
4 system the frequency u2 separates from the phonon
band edge only for energies very close to the global in-
stability of the model.

B. Double quadratic system

In that case the Hamiltonian is given in (4). The DQ
system has to be considered as a very special case, prob-
ably the exception of the rule within the Klein-Gordon

0.25 0.50 0.75 1.00 1.25 1.50
10 4(Time)

FIG. 14. Same as in Fig. 7 but longer time scale. Note
the rapid decrease of e(5) as given by the short dashed line
around t = 6000.
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of the additional frequencies with the phonons. Thus the
energy stored in the additional degrees of freedom of the
NLE should be radiated away. Then v e are left with a
periodic orbit (fixpoint solution). In Fig. 16 we show
the Poincare map of the reduced problem for an energy
above the threshold E = 1.4 (C = O.I). We observe
regular islands separated by chaotic trajectories. Such
phase space structures were found for similar piecewisc
parabolic potentials by Kob and Schilling [25]. Regular
region 1 in Fig. 16 corresponds to localization of energy.
However. in the full system all initial conditions from this
regiilar region collapse onto a periodic orbit with smaller
energy (still above the threshold value). In other words,
we find only one-frequency stationary NLEs in the full

system. It reminds us of the properties of at, tractors in
n&niciinservative systems (22].

1
FIG. 15. Same as in Fig. 6 but for 4'.
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FIG. 16. Same as in Fig. 6 but for double quadratic model.

class. Its kink properties, e.g. , substantially differ from
other Klein-Gordon kinks (cf. [24]). That, holds also for
the NLE properties. Let us apply our integrability con-
jecture. We construct the reduced problem and find that
there should be again a threshold in the NLE energy.
Below the threshold no NLEs are excitable. The thresh-
old is simply defined by the fact that for amplitudes of
the central particle to small to overcome the barrier the
whole system behaves like a harmonic chain. However,
the increase of the energy above that threshold allows the
central particle to overcome the barrier. Then we expect
a sudden drop of the frequency wi into the gap (at least
for small enough values of C), as it comes out of the ef-

fective potential construction. For large enough energies
the frequency ~q will come into the band again and stay
there for all higher energies. Since the frequency ~2 can
be connected with the motion of the nearest neighbors
we expect those additional frequencies to stay always in

the phonon band (because of the small amplitudes of t, he

neighbors). That means that, we always have resonance

VII. DISCUSSION

As our study shows, it is possible to describe very lo-

calized oscillating excitations on a discrete lattice. Thc
method consists of constructing a reduced problem of
a few degrees of freedom and analyzing its phase-space
structure with the help of geometrical methods (Poincare
mappings). We have shown that it, is possible to find
correspondence between certain regular regions of the re-
duced problem and long-lived localized excitations on an
infinite lattice. Furthermore we have carried out the sta-
bility analysis of the elliptic fixed points of the regular
islands with respect to small-amplitude phonons. Since
the elliptic fixed points are always inside the regular re-
gions, one also can expect, from that result generic state-
nsents about NLEs which correspond to motion on tori
surrounding the elliptic fixed point solutions. Naturally
the NLEs corresponding to motion on tori are charac. —

t,erized by more than one frequency. We followed the
evolution of the energy distribution in the infinite lat-
tice and thus were able to express numerically the en-

ergy distribution within the NLE by means of a, normal-
ized entropy. As it, follows from the stability analysis.
generically multiple-frequency NLEs are always weakiy
radiating energy due t, o interaction with phonons. This
1cads to several interesting relaxation patterns. We find
t, ice existence of an energy threshold to create NLEs as
well as a, stochasticity (energy) threshold which separates

completely regular phase space from isolated regular is-
lands separated by a chaotic sca. All those values bccon&e

linportant, if one coiisiders dynamic (relaxational) and

thermodynamic propert, ies of lattices with finite te~nper-
atures (energies per particle). Especially t.he existence
of multiple frequency NLEs implies that thc statistical
weight of those excitations shouM be much larger than
the statistical weight of t, he single-frequency NLEs (tliv
elliptic fixed points in the Poincare map).

All of the above statements werc studied for diH'crent

rriodels belonging to thc r.lass of onc-dirncnsional Klcin-
Gordon lattices. Wc found excellent agreements for our
findings with numerical data. I'rom our method it follow»
t, hat no principal problcnss appear in higher dimensions.
It, is only a rnatter of constructing the corre~ t, reduce&i

prohlcin,
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More difBculties could appear if one switches to model
classes with total momentum conservation. At least for
several FPU systems it is known that NLEs can move
nearly freely [5]. Then we expect a geometrical misfit
of the fact having many-frequency stationary NLEs and
moving NLEs as we will show in a forthcoming paper.
One could also pose the question whether in the Klein-
Gordon class moving NLEs are possible. In the energy
ranges considered in this contribution we never observed
moving NLEs. However, it could be possible to excite
moving NLEs at higher energies (cf. Fig. 14 in [26]).
The question "are they moving or not?" was considered
by several groups [27, 28]. Essentially the idea was to
take over the fruitful methods to derive Peierls-Nabarro
potentials for moving kinks in discrete lattices. Those
Peierls-Nabarro potentials are the result of the discretiza-
tion of the corresponding PDE and cause self-pinning of
kinks. In the continuum limit, i.e. , going over from the
CODE to the PDE, the Peierls-Nabarro potential van-

ishes and the continuous symmetry group is restored-
the kinks can move freely, no pinning occurs. However,
it is well known that very discrete oscillating NLEs can
freely move through the integrable Ablowitz-Ladik lat-
tice. As some numerical work indicates, their movability
is destroyed by adding nonintegrable perturbations [27,
28). But we would be careful in overestimating those nu
merical results. The FPU systems are believed to be non-
integrable, nevertheless moving NLEs seem to exist. Also
it is not known what kind of symmetry a lattice needs in
order to support moving NLEs. Certainly it seems to be
too simple to use the discretization procedure to derive
Peielrs-Nabarro potentials as it was done for kinks. Not
only that, two of us have shown recently that, strictly
speaking, there is no possibility to connect the CODE
and PDE smoothly by means of perturbation methods
[24]. One also has to remember that our oscillating NLEs
have internal degrees of freedom which essentially char-
acterize them. The coupling of these degrees of freedom
to the lattice has to be taken into account.

Let us apply our method to some special discrete sys-
tems of the FPU type. First we discuss the FPU23 sys-
tem, where the polynomial of the nearest-neighbor in-
teraction potential is of third order. Constructing the
eH'ective potential in that case, we 6nd the fundamental
frequency being always in the acousticlike phonon band.
Thus no NLE solutions are expected in this case. Indeed
no such solutions were found in numerical experiments
[29]. Another instructive case is the related Toda lat-
tice with exponential nearest-neighbor interaction [12].
Again the fundamental frequency of the effective poten-
tial would be always in the phonon band, thus no NLEs
are expected to exist. This is especially interesting be-
cause of the fact that the Toda lattice is completely inte-
grable. Again numerical search failed to find NLEs [29,
30]. Finally let us consider a FPU lattice with pure quar-
tic nearest-neighbor springs. In that case there exist no
small-amplitude linear phonons. Thus we would conclude
that NLEs can exist at all energies. Indeed Page [8] has
confirmed the existence of a NLE for a certain energy.
But because of the homogeneity of the potential energy
in the particle coordinates it follows that a solution of

the system at a certain energy will be also a solution of
the system for any other energy provided that time and
coordinates are scaled properly [31]. Since the coordinate
scaling is homogenous, the localization character of the
NLE solution as found by Page will be unchanged. These
examples show how powerful our method is in forecasting
properties of lattices with respect to NLE solutions.

Why is the whole issue of NLEs so interesting? Well,
the main reason for the occurrence of NLE is the non-
linearity of the system, which expresses itself by an en-

ergy dependence of oscillation frequencies of the parti-
cles. The rest can be understood in analogy (although
all analogies have their weaknesses) to a harmonic lattice
with mass defects. The mass defects essentially lead to a
variation of frequencies with lattice sites. That is enough
to suppress energy exchange and to produce the well-
known localization phenomena in those systems. Now
nearly everywhere in modeling reality we are confronted
with the necessity to consider nonlinear systems. If they
are in addition discrete, then we would expect NLEs to
appear at least under certain circumstances, but more
or less independent of the system. The NLEs discussed
in the present work are properties of certain integrable
systems partially destroyed by the nonintegrable pertur-
bations. In other words, there exists an intrinsic source
for localization of vibrational energy in nearly every non-
linear lattice.

One can pose the question whether the NLE solutions
can exist in lattices at finite temperatures (or energies
per particle). So far our studies of the NLEs were done
on in6nitely small energies per particle considering the
thermodynamic limit X ~ oo and could be considered
as a consequence of the KAM theorem implying that
the energy per particle was smaller than the threshold
above which essentially all regular tori are destroyed [22].
This threshold decreases exponentially with the number
of particles ([32] and references therein). The improve-
ment of KAM theory by Nekhoroshev [33,34] deals with
finite-time stability of regular orbits (instead of infinite-
time stability as in the KAM theory) and also yields a
threshold which quickly drops to zero in the thermody-
namic limit [32]. Thus from this side we could expect our
NLEs to vanish at finite temperatures in infinite lattices.
However, the NLE solutions are localized, thus the en-

ergy density still remains Gnite at least at certain lattice
sites. If we consider a lattice of densely packed NLEs and
remember that the energy radiation and thus the NLE-
NLE interaction can be very weak, the motion of the
whole system close to regular orbits should be possible.
In that case also the temperature would be finite. Finally,
exactly because the NLEs can be very localized (on a few
particles) the KAM and Nekhoroshev thresholds for ev-

ery subsystem (cf. the discussed reduced problem) will
be finite and large thus allowing us to expect NLEs in
infinite lattices at rather high temperatures.

Previous simulations of discrete Klein-Gordon systems
with Morse on-site potentials and of C lattices at 6-
nite temperatures have shown the appearance of NLEs
in high density (cf. Fig. 4 in [35] and Fig. 14 in [26], re-
spectively). This fact is not a proof of our conjecture, but
already two models where NLEs seem to be the proper
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quasiparticles to describe the excitational spectrum as
well as the relaxational properties of the model is excit-
ing. There are attempts to understand the dynamical
process of creation of NLEs [36]. It might be that under-

lying finite-time singularities of PDE are important [37],
where one finds energy localization due to the presence
of those singularities.

It is interesting to note that Birnir has recently shown
that breathers in the sine-Gordon PDE are of isolated
character, namely, they remain as solutions of the per-
turbed sine-Gordon PDE only under two isolated per-
turbations [38]. In the case of discrete lattices as studied
in the present work we cannot find any evidence for an
analogous isolated character of the NLE solutions. More-
over in our opinion the perturbations which destroy the
NLE solutions are of the isolated type. Thus breatherlike
oscillating NLEs seem to be very diH'erent &om their con-
tinuum counterparts with respect to their applicability.

Finally we want to emphasize that the developed ge-
ometrical method to describe NLEs in discrete systems

can be of use if one studies connections between different
model classes as well as the continuum limit. That would
shed light onto the connection between CODE and PDE.

We think that the localization effects considered in this
paper can be of importance not only in one-dimensional
classical Hamiltonian lattices. There are interesting ques-
tions concerning higher dimensions, quantum lattices,
connections to glass-like behavior of monocrystals at low

temperatures, phase transitions in discrete systems, heat
transport, and certainly other topics where we expect
NLEs can essentially contribute to the understanding of
properties of nonlinear systems.
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