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Generation of envelope and hole solitons in an experimental transmission line

P. Marquie, ' J. M. Bilbault, and M. Remoissenet

C'Received 23 July 1993I

We study the generation of nonlinear modulated waves in an experimental electrical transmission line.

Our theoretical analysis, based on the nonlinear Schrodinger equation, predicts three frequency regions

with di8'erent behavior concerning the modulational instability of a plane wave. These predictions are

confirmed by our experiments which show that, between two modulationally stable frequency bands

where hole solitons can be generated, there is a third band, where spontaneous or induced modulational

instability occurs and where envelope solitons exist, The experimental shapes of both hole and envelope

solitons are well fitted by the theoretical waveforms, which take into account the damping due to the

components.

PACS number(s): 03.40.Kf, 84.40.Mk

I. INTRODUCTION

In nonlinear dispersive media, the propagation of
modulated waves, such as envelope (bright) solitons or
hole (dark) solitons, has been the subject of considerable
interest for many years. In nonlinear optics [1—6], the re-

cent important progress about fiber loss allows the im-

provement of practical results concerning the distortion-
less signal transmission in ultrahigh-speed communica-
tions.

On the other hand, discrete electrical transmission
lines are very convenient tools to study the wave propa-
gation in one-dimension (1D) nonlinear dispersive media

[7]. In particular, they provide a useful way to check
how the nonlinear excitations behave inside the nonlinear
medium and to model the exotic properties of new sys-
tems [8]. Several authors have shown that the electrical
transmission lines allow the formation of modulational
instability [9—10] and the eventual formation of envelope
solitons [11—13]; the existence of hole solitons was also
studied [12—14]. Nevertheless, although these experi-
ments are interesting, they are rather qualitative and
there is a need to investigate systematically the remark-
able properties of nonlinear modulated waves.

It is the main purpose of this paper to present a careful
and quantitative experimental analysis concerning modu-
lational instability and the generation of either envelope
or hole solitons on the same transmission line, depending
on an appropriate choice of the carrier wave frequency.
The outline of the paper is as follows. In Sec. II wc

present the characteristics of our nonlinear electrical net-
work. %'e show that the system of nonlinear equations
governing the physics of the network can be reduced to a

nonlinear Schrodinger (NLS) equation. In Sec. III we de-
scribe the experiments and present the results concerning
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the formation of hole solitons; the modulational instabili-

ty of ao initial plane wave and the related generation of
envelope solitons are studied. The inhuence of dissipa-
tion is then investigated in Sec. IV. In the final section,
we give some concluding remarks,

II. THEORY

A. Modulated waves and the nonlinear Schrodinger model

%e consider a nonlinear network with Ã cells, as illus-

trated in Fig. l. Each cell contains a linear inductance
L

&
in series and a linear inductance I.z in parallel with a

nonlinear capacitance C. This capacitance consists of a
reverse-biased diode. It is biased by a constant voltage
Vo and depends on the voltage V„atcell n such as

dL
C(Vo+ V„)= —=Co[1—2aV„+3f3V„+ ],
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Flax. i. Schematic representation of the experimental ar-

rangement. The network is composed of 45 cells identical with

that presented above. Each diode BB112with nonlinear capaci-
tance is biased by 2 V through a resistance of 5 MQ. Linear
decoupling capacitances Cd„, are used to bjock the dc biased
current but have no eftect at the considered frequency range.
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co =co +4u sin-k0 0 (2.3)

The linear dispersion curve corresponding to (2.3) is
shown in Fig. 2, where fo =coo/2nis the lo. wer cutoff fre-
quency introduced by the parallel inductance L2, and

1.5-
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where the coefficients a and P are positive. In (2.1), we
keep nonlinear coeScients up to the second order for the
following reasons. First, the polynomial approximation
of the C-V curve and corresponding fit are justified if the
voltage amplitude is small enough: V„(2U. Second, in
this voltage range, to reduce the equation of motion [see
(2.2) hereafter] to an NLS equation (2.9), it is sufficient to
take into account these two terms, only, to balance the
first-order dispersion term.

The inductances L
&

and L2 have, respectively, a resis-
tance r and a conductance g. In a previous article [15]we
have shown that the dissipation due to r was negligible
with respect to that due to g; therefore we do not take it
into account in our calculations. From Kirchhoff's laws,
we derive the system of nonlinear discrete equations

d V„dV„+ ri)o V„+u ogL, + u o (2V„—V„+&

—V„ 1 )
dt2 dt

d2V2 d2V3
=a —P, n =1,2, . . . , N (2.2)

dt dt

with uo =1/L, Co and co&=1/L2Co.
In the linear ( V„«1)and nondissipative (g=0) ap-

proximation, from (2.2) we get the linear dispersion rela-
tion of a typical bandpass filter

fmax
= max 1 1 4

2 L C L, C
(2.4)

is the cutoff frequency introduced by the lattice effects.
The corresponding linear group velocity and dispersion
coefficient are

u 0sink
U

Bk N

r} Co

t}k'

Q 0cosk Ug
(2.5)

+e [Vo(X,r)+ V~(X, r)e "e]+cc. (2.6)

with 8= ( k& n co~ t ). —The dc and second-harmonic
terms, respectively, Vo(X, r) and V2(X, r), are added to
the fundamental one, V, (X,r), in order to take into ac-
count the asymmetry of the charge-voltage relation.

Now, from the observation of the dispersion curve
(Fig. 2) let us make the following simplijications, which
are ofcrucial importance in the present investigation

(i) First, the dc term Vo(X, ~) will vanish due to the ex-
istence of the low-frequency forbidden band.

(ii) Second, when examining the S-shaped dispersion
curve, one remarks that twice the frequency does not cor-
respond to twice the wave vector [17]. This implies that
the V2(X, r)e J term does not represent the real second
harmonic. Owing to nonlinearity, this signal exists and
does not propagate because it does not satisfy the disper-
sion relation (2.3). Thus we must replace Eq. (2.6) by

It is important to note that there exists a frequency
f =f, making the dispersion coefficient become zero (see
Fig. 2).

We focus on modulated waves with a slowly varying
envelope in time and space with regard to a given carrier
wave with angular frequency ro=co =2rrf~ and wave
number k =k . Then, in order to use the reductive per-
turbation method [16], we introduce the slow envelope
variables X =e(n —v t) and r =e t, where e is a small pa-
rameter and n is the cell number. Moreover, the solution
of (2.2) is assumed to have the following general form:

V„(t)=eV, (X,r)e Je

1.0

C5'

Ci~c

0.5

ABLE

fz
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I

fmax/2

fo

V„(t)=eV, (X,r)e j&i

+e [V2(X,r}e '+V2(X, r)e ']+c.c., (2.7)

with 8, =8=(k n ro t } and —82=(Kn 2' t), where —K
is the wave number that satisfies the dispersion relation
for co=2co .

(iii) Third, when f~)f,„/2, all the harmonics have
their frequency lying above the cutoff frequency f,„.In
this case, (2.7) reduces to

~0 S ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ I ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~0. I ~ ~ ~ ~ ~ ~ ~ ~ ~

V„(t ) =eV, (X,r }e '+ c.c. (2.8)

1 2 3
Wave vector (rad/cell)

FIG. 2. Theoretical and experimental linear dispersion
curves. The allowed band [fo,f „]is divided into three re-
gions concerning the stability of the system, relative to the sign
of PQ.

In summary, when using the reductive perturbation
method in the semidiscrete limit, we have to consider
(2.7) for fo &f &f,„/2, and (2.8) forf,„/2&f &f,„.Focusing on the first case, we substi-
tute (2.7) in (2.2). Then, assuming g =e g&, to order e
we get the nonlinear Schrodinger equation governing the
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slow envelope evolution

BV] 0 V)'+P, +-Jr+, +Q~v, 'v, =o,
BL

{2.9)

negative dispersion, and regions of positive and negative
nonhnearity are reported in Fig. 2.

B. Hole and envelope soliton solutions

where

u ocosk~ —
v~

2 2

I' =
2')p

Q=Qi=~,

k
4e2 a2+4u sin

3m&+ 16u osin—
, (2.10)

We now turn our attention to the soliton solutions of
the NLS equation. It is well known that a plane-wave
solution of (2.9) is modulationally stable if PQ (0. On
the contrary, for PQ &0, the system is modulationally
unstable in the Benjamin-Feir sense [18] if the wave vec-
tor K and the angular frequency 0 of the perturbation
satisfy the following conditions:

1 1/2

0&K &K„=A, 20

'
2C. 0 & 0 & A„=2~F,„=vK,„. (2.12)

represent dispersion, nonlinearity, and dissipation, re-
spectively.

In the second case, we assume a solution of the form
(2.8) and get another NLS equation similar to (2.9), ex-

cept for the nonlinear coefficient, which is

Q =Q~= ', P~, . -
Importantly, when Q, is negative, Q~ is positive and only
depends on the nonlinear coeIIicient I3, i.e., the electrical
network behaves as if the capacitance-voltage relation
(2.1) would be quadratic only. Regions of positive and

& 1/2

~max =2~~max =
vg Kmax (2. 13)

Next, when PQ (0, as it is in regions I and III, we
have a hole soliton solution [19]given by

As time goes on, the modulation increases and the con-
tinuous wave breaks into a periodic pulse or envelope sol-
iton train. The wave vector K,„and the angular fre-

quency A,„ofthe modulation corresponding to the
maximum of instability are given by

V(n, t)=2Ao 1 —a sech
2P

)/2

ado (n —
u~t)

i 1/2

cos[k„n to t —9(n, t—)], (2.14)

where 2 go is the real amplitude at
l
n ~~, a is a parameter related to the depth of modulation, and 6(n, t) is the phase

function given by

8(n, t)=
2P

' 1/2

Ho+I —a (n —u t)+arctan
~

tanh
&1—a' 2I'

1/2

a Ao(n —ust);+ —(3—a ) A ot .

{2.15)

The spatial width of the soliton defined at half height is

2

o

2P
sech ' +a —2+1 —a +2

20!
(2.16)

and to first order, this soliton travels at group velocity v .
On the other hand, for PQ )0 (region II), Eq. (2.9) admits envelope or bright soliton solutions [19]of the form

V(n, t)=23 secho 2I'

1/2

Ao{n —v t) cos{k n —~ t3, {2.17)

which to first order travel at group velocity v . As for the hole soliton, one defines the spatial width at half height
1/2

L, =2 sech '( —,
'

) .
QAO

{2.18)

In summary, we have three diferent regions concerning the modulational instability of a plane wave and the possible
soliton solutions:
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max
g» PQ, & 0~stable~hole solitons, region I

fu ' fmax

2
,f, , PQ2 &O~unstable~envelope solitons, region II .

[f„f,„],PQ2 & 0~stable~hole solitons, region III

(2.19)

The nonlinear behavior of the electrical network is also
summarized in Fig. 2.

III. EXPERIMENTAL STUDY

Our experiments are carried out on a nonlinear electri-
cal network (Fig. 1) with N =45 identical cells. The non-
linear capacitance consists of a varicap diode (BB112),
biased by a constant voltage V0=2 V. Under these con-
ditions one has CO=320+10 pF, a=0.21 V ', and

P=0.0197 V . The linear inductances are
L& =220+5 pH and L2 =470+10 pH, whereas the total
Ohmic losses are, respectively: r =5 0 and

g =1.3X10 0 '. The line is matched by a variable
resistor. The waves are created by using a programmable
arbitrary function generator [20]. The waveforms can be
observed and stored by using a numerical oscilloscope
(Lecroy 9450) with fast-Fourier-transform processing.
The oscilloscope probes have high impedance (10 MQ)
and small capacitance (15 pF) in order to avoid parasitic
reflections.

In the linear or very-small-amplitude approximation,
the dispersion curve which is that of a bandpass filter is
measured as follows. At the input of the line we apply a
sinusoidal voltage of low amplitude V;„„,=100 mV sup-
plied by a generator with internal resistance 50 Q. Re-
sults are plotted in Fig. 2: the agreement with the
theoretical dispersion curve given by relation (2.3) is quite
good. The measured lower cutoff frequency is

fo
=435+ 10 kHz and the higher cutoff frequency is

fm,„=1280+30 kHz.

A. Scanning of the stable and unstable regions

In order to check our theoretical predictions (2.19), we
investigate the stability of a plane wave of larger ampli-
tude, say AD=0. 56 V, over the whole frequency range:
f0 &f &f,„.Our theory predicts instability forf,„l2&f &f, . Experimentally, for fo &f &620
kHz=f, „/2, no instability is detected. On the con-
trary, an instability develops for 620 kHz &f & 720
kHz=f„ leading to a self-modulation of the wave as
represented for cell number n =9 on the oscillograms
shown in Figs. 3(a) and 3(b). This instability occurs spon-
taneously; it is induced by the electrical noise that is
present along the electrical network. It is important here
to make sure that the observed instability is not due to
both propagating and counterpropagating waves. In this
case, the modulational instability conditions would be
quite different [21]. Then, the load resistance has to be
carefully adjusted in order to minimize the reflected

waves. From the Fourier spectrum [Fig. 3(c)], the mea-
sured frequency of the envelope modulation is F =70
kHz, a value that is quite smaller than the theoretical one
F,„=178kHz provided by relation (2.13). Neverthe-
less, it lies in the instability domain 0 &F &F„=252kHz
predicted by (2.12).

On the other hand, we can also consider the instability
that can be induced by a coherent and weak external
modulation [22]. Namely, we launch a sinusoidal wave
with frequency f =670 kHz slightly amplitude modulat-
ed (19%) as shown in Fig. 4(a). For an appropriate value
of the modulation frequency, instability develops leading
to the increase of the modulation. Namely, at cell num-
ber n = 12, and for Ao =0.19 V, the modulation increases
and becomes maximum (34%) when the envelope fre-
quency F is about 60 kHz, as represented in Fig. 4(b).
The frequency F, measured from the Fourier spectrum
shown in Fig. 4(c), agrees very well with the theoretical
value F,„=61kHz calculated from (2.13). Consequent-

ly, our experimental results are in good agreement with
our theoretical predictions (2.19) in spite of the approxi-
mations we have made. Finally, for 720 kHz &f &f,„,

I''!!iIiliIii'I!''!"''!"'I ' IIIIli" i'
'
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FIG. 3. Spontaneous modulational instability: the continu-
ous plane wave provided by the generator breaks into a periodic
pulse train under the action of electronic noise. (a) Initial plane
wave at fr=670 kHz, with 4-V amplitude peak to peak.
Abscissa: 10 JMs/div. Ordinate: 4 V/div. (b) Signal at cell num-
ber n =9. Abscissa: 10 ps/div. Ordinate: 2 V/div. (c) Fast-
Fourier transform (FFT) of the signal at cell number n =9. The
carrier frequency (central peak) is 670 kHz and its amplitude is
2Ao =1.13 V. The side bands due to modulation are +70 kHz
away. Ordinate: 450 mV/div.
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FIG. 4. Induced modulational instability. (a) Initial wave at
the input of the line with a 19% rate of modulation. The carrier
wave frequency is f =670 kHz while the modulation frequency
is F =60 kHz. Abscissa: 10 ps/div. Ordinate: 500 mV/div.
(b) Modulated wave at cell number n =12. Here, the rate of
modulation is 34%. Abscissa: 10 ps/div. Ordinate; 500
mV/div. (c) FFT of the signal at cell number n =-12. The car-
rier frequency (central peak) is 670 kHz and its amplitude is
21„=0.38 V. The side bands due to modulation are +60 kHz
away. Ordinate: 165 rnV/div.

by contrast to (2.19) which predicts stability, some fre-

quency windows are detected that present instabilities.
This may be due to discreteness effects which are partial-
ly taken into account in our semidiscrete approach yield-

ing the NLS equation. This complex problem is not ex-
amined here and is left for further investigations. We
now analyze carefully the behavior of the network in re-
gions I and II.

FIG. 5. Oscillogram of a hole soliton. (a) Initial condition
supplied by a generator. Abscissa: 10 ps/div. Ordinate: 1

V/div. (b) Waveform at cell number n =41. Abscissa: 10
ps/div. Ordinate: 200 mV/div.

istence of a second harmonic that renders the envelope
asymmetric and was not taken into account in the
theoretical calculations (2.14).

By launching an initial wave packet with its carrier
wave frequency f in region I, we have checked that an

envelope soliton cannot form along the network. Name-

ly, the wave packet spreads out very quickly. This result
is consistent with the fact that theory predicts the ex-
istence of hole solitons only.

C. Region II: Envelope solitons

Theory predicts that envelope solitons can exist in this
region. In fact, they can be created by launching an ini-

B. Region I: Hole solitons
~ ~

~ ~ ~++++++~~.

In this region, from (2.19), we expect hole solitons. In

fact, in spite of dissipative effects, a hole soliton can be

generated in the network by launching a hole-shaped ini-

tial signal. In Figs. 5(a) and 5(b) we present the oscillo-

grams corresponding to the hole-shaped wave supplied by
the generator with a carrier wave frequency f~ =600 kHz

and the hole soliton at the 41th cell. Theoretically, for

f =600 kHz, one finds P =6.15X10 rads
P

Q = —2.8X10 V rads ', and Us=2. 4 cellos '. Then,
for 2 A 0

=310 mV at cell number n =41, the width at
half height calculated by relation (2.16) is L„=22cells.
These theoretical predictions are verified by our experi-
mental results; indeed, one measures a propagation veloc-
ity Ue p Ug 2.4+0. 1 cell ps ', and the experimental
width at half height is L&,„,=24+3 cells.

In Fig. 6 the shape of the experimental hole soliton
shown in Fig. 5(b) is compared with the theoretical
waveform (2.14) for 2 A o

=310 mV and a =0.934. The
fitting is good, except for the difference between the
theoretical curve and the negative part of the experimen-
tal envelope. In fact, this discrepancy is due to the ex-

+++++++++

60
Tirrse (p.s)

FIG. 6. Theoretical and experimental waveforms of the hole
soliton presented in Fig. 5(b).
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tial wave packet which becomes an envelope soliton. The
oscillograms showing the initial wave packet with

f =670 kHz and the envelope soliton at cell number
n =41 are presented, respectively, in Figs. 7(a) and 7(b).
The measured propagation velocity and temporal width
at half height are, respectively, v„,=2.5+0. 1 cellps
and T=8.2+0.5 ps. So, one gets the experimental spa-
tial width at half height L, ,„pt v pt

T=21+3 cells. The
velocity of the soliton corresponds to the theoretical
group velocity (2.5) calculated for f„=670kHz that is
v =2, 5 cell ps '. Again, the experimental width at half
height agrees with the theoretical one: L, =24 cells, cal-
culated from relation (2.18) with P =2. 10 rad s

g =1.25X10 V rads ', and the amplitude 2AO=400
mV for n =41. The experimental envelope shown in Fig.
7(b) is well fitted by the theoretical expression (2.17) as is
presented in Fig. 8, if one eliminates from the data the
influence of the linear tail that follows the soliton.

On the other hand, if we try to launch an initial wave
that is hole shaped, in order to generate a hole soliton, it
is strongly perturbed. Specifically, after a few sections,
the modulation depth decreases and the hole spreads out.
Again, in this case our result is consistent with theory,
which predicts the existence of envelope sohtons only.

Now, let us make the following remarks. First, for
hole solitons, good agreement between theoretical predic-
tions and experiments is also obtained in the lower part
of region III. However, when the carrier-wave frequency
lies in one of the strong dispersion regions, i.e., the lower
part of region I and the higher part of region III, the gen-
eration of hole solitons becomes impossible. In fact, it
suggests to use a new approach to fully take into account
the discreteness effects.

Second, in our experiments, we verify that envelope
solitons have a constant phase. On the contrary, the
phase function (2.15) of the hole soliton is supposed to
present a jump at the soliton center [23]. In fact, we no-
tice experimenta11y a nonconstant phase versus time or

FIG. 7. Oscillograms of an envelope soliton. (a) Initial con-
dition created by the generator. Abscissa: 10 ps/div. Ordinate:
1 V/div. (b) Pulse at cell number n =41. Abscissa: 10 ps/div.
Ordinate: 200 mV/div.

~ ~ ~ ~ ~ l I 0 ~ I I ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ s ~ ~ ~ I I ~ ~ ~ 1 ~ ~ ~ ~ I ~ I ~
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200-

-200—

-400—

~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ . ~ « I ~ ~ -. ~ . ~ ~ ~ ~ I ~ ~ ~ . . ~ ~ ~ ~ I ~ »
10 20 30

Time (ps)
40

FIG. 8. Theoretical and experimental waveforms of the en-

velope soliton presented in Fig. 7(b).

space, but it does not present the predicted shape. The
shortness of the line compared to the soliton size could be
the reason why the soliton properties are modified.

IV. INFLUENCE OF DISSIPATION

Until now, we have ignored the influence of dissipation
for the study of modulational instability as well as for the
generation of hole or envelope solitons. Nevertheless, ex-
perimental results agree relatively well with the theoreti-
cal predictions of Sec. II, namely, for the existence of
three frequency bands as predicted by (2.19). However,
dissipation exists because one can measure a decay of sol-
iton amplitudes.

Concerning envelope solitons, theory predicts that, if
in NLS Eq. (2.9) dissipation is taken into account (see,
e.g., Hasegawa [19]), we have to replace Ao by—2I"n /v
Aoe ' in (2.17) and (2.18). Consequently, the am-
plitude of the envelope soliton decreases exponentially
twice as for a linear wave, while its spatial width in-

2I n/v
creases as e

To check this prediction, we consider an envelope soli-
ton with a carrier-wave frequency f =670 kHz and we
carefully study how its amplitude decays along the line,
as illustrated in Fig. 9(a). Note the dispersion of the ex-
perimental points due to standing waves that originate
from weak inhomogeneities along the line. A least-
squares fit (continuous line) gives a damping constant
y=0.019 cell '. Then, let us consider the propagation
of a plane wave with a small amplitude and a frequency
f =670 kHz [Fig. (9b)]. This linear wave decays ex-
ponentially versus the cell number with a damping con-
stant y' =0.010 cell '. This value agrees with the
theoretical linear decay in the laboratory frame
I /v =g/2C0v =0.008 ceil ', obtained from the linear-
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FIG. 9. Dissipation influence along the line for an envelope
soliton (a) and a linear plane wave (b). The carrier wave fre-
quency is f =670 kHz for both.

V. CONCLUSION

ized version of (2.9).
Thus, our results confirm the theoretical prediction

[19];that is, the damping constant of the envelope soliton
is twice more important in the nonlinear case with
respect to the linear one, i.e., y'=2y=2I /v . On the
other hand, no significant spreading of the width at half
height is detected. This can be due to the shortness of
the network as compared with the size of the solitons.

Focusing finally on hole solitons, we know from the
literature [24—28] that the spreading due to dissipation is
the same as for the linear case; that is, the spatial width

I n lu
increases as e '. Nevertheless, in this case, we have
been unable to detect the increase of the spatial width,
probably due to the size of the soliton with respect to the
length of the lattice. In summary, dissipation acts on the
amplitude of the soliton but not on its profile, and it
would be interesting now to built a longer and less dissi-
pative line, allowing us to study how the soliton profile
evolves under dissipation.

transmission line. Theoretically, we have shown that the
system of nonlinear equations governing the physics of
the electrical network can be reduced to an NLS equa-
tion. From this analysis three different regions can be
predicted: between two modulationally stable regions
where hole solitons can be generated there exists a third
region where spontaneous or induced modulational insta-
bility can occur and where envelope solitons can be gen-
erated.

Next, we have experimentally found the three regions
predicted by the theory. In regions I and III, that is, for
435 kHz &f & 620 kHz and 720 kHz & f~ & 1280 kHz,
respectively, no instability is detected and it is possible to
generate hole solitons. The experimental shape of these
solitons is well fitted by the theoretical waveform, in spite
of the approximations we have made. On the contrary,
in region II, that is, for 620 kHz& f &720 kHz, spon-
taneous or induced modulational instability occurs, and
the characteristic wave number and frequency measured
for the induced modulational instability agree very well
with those predicted by the theory. Furthermore, en-
velope solitons can be generated in this region, and again,
the fitting of the experimental envelope by the theoretical
waveform is good.

The dissipation effects have been discussed. We have
found a good agreement between theoretical predictions
and experiments concerning the influence of the dissipa-
tion on the envelope soliton amplitude, that is, the damp-
ing constant is twice more important in the nonlinear
case with respect to the linear one. On the other hand, it
has not been possible to measure the influence of dissipa-
tion on the profile of the soliton, the length of the net-
work being too short with respect to the size of the soli-
ton. Our results suggest that the losses must be reduced
in order to improve the propagation of solitons. This is
currently under investigation.

Finally, our results confirm that our electrica1
transmission line is a very interesting model for studying
the specific properties of 10 nonlinear systems. Both
types of nonlinear localized modulated waves, envelope
and hole solitons, can be generated in the same system by
means of an appropriate choice of the carrier wave fre-
quency.
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