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Trapped electromagnetic modes in a vraveguide wvith a small discontinuity
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We demonstrate that a small discontinuity (such as an enlargement or a hole) on a smooth
waveguide can result in the appearance of trapped modes localized in the vicinity of the disconti-
nuity. The frequencies of these modes lie slightly below the cutoff frequencies of the corresponding
propagating modes in the waveguide. We And the distribution of the electromagnetic field in the
modes and calculate their damping rate due to a finite conductivity of the walls. The contribution
of the trapped modes to the longitudinal impedance is calculated.

PACS number(s): 41.75.—i 41.20.—q

I. INTRODUCTION

Previous computer studies of the impedance of a cav-
ity coupled to a beam pipe indicated that the longitudi-
nal impedance of a small chamber enlargement exhibits
sharp narrow peaks at frequencies close to the cutofF fre-
quencies of the waveguide [1—3). No theoretical explana-
tion has been given for this phenomenon. Only recently
Balbekov treated this effect in terms of equivalent circuits
associated with a small enlargement, and calculated the
parameters of the peaks [4].

In this paper, we want to demonstrate that from the
point of view of electromagnetic theory these peaks can
be attributed to trapped modes localized near a small dis-
continuity at a smooth waveguide. First, we show that
a small axisymmetric enlargement on a waveguide cre-
ates localized transverse magnetic (TM) modes having
the frequencies below the cutofF frequencies of the corre-
sponding propagating modes. Having found the electro-
magnetic field distribution in those modes we are able to
calculate their damping rates due to finite conductivity of
the walls and to find a corresponding contribution to the
longitudinal impedance. We also discuss requirements on
the wall conductivity for these modes to exist.

Another important practical example of a beam-pipe
discontinuity is a small pumping hole. The low-frequency
impedance of a hole (at frequencies well below the cutoff
frequency) has been studied in Refs. [5,6]. Calculation of
t, he impedance at frequencies compared with or above the
cutofF frequency requires knowledge of the eigenmodes of
the waveguide with a hole. As a first step in this direc-
tion, we show that, similar to the case of the axisym-
metric enlargement, a hole also creates localized modes.
A physical mechanism responsible for appearance of the
localized modes in both cases is the interaction of the
induced magnetic moment of the discontinuity with a
slowly propagating mode near the cutofF frequency.

The paper is organized as follows. In Sec. II we con-
sider the case of an axisymmetric enlargement and de-
velop a method based on the use of the Lorentz reci-
procity theorem for evaluating the frequency of the
trapped mode. In Sec. III, we apply this method to the
case of a small hole in the wall, assuming that the hole

size is much smaller than the pipe radius. Consideration
in Secs. II and III is restricted to the case of axisymmetric
TM modes only. In Sec. IV, we present the results for the
nonaxisymmetric TM trapped modes for both the cases
of the enlargement and of the hole. Section V is devoted
to consideration of the trapped TE modes and Sec. VI
summarizes our results.

II. AXISYMMETRIC ENLARGEMENT

In this section, we restrict our attention to an axisym-
metric electromagnetic field having nonzero E, compo-
nent, because only this field contributes to the longitu-
dinal impedance. In a cylindrical waveguide with per-
fectly conducting walls, such a field is represented by ax-
isymmetric TM modes with the following components of
the electromagnetic field [we omit the factor exp( —isn't)

throughout this paper]:

ZoH (m)

2

Ji exp pv z

where Zo ——gpo/so ——120m 0 is the impedance of free
space, Jo and Ji are the Bessel functions of the zeroth
and first order, p is the mth root of Jo, rn = 1, 2, . . . .
and 6 is the radius of the waveguide. In Eqs. (1) I „, =

—~2/c, where ~ = pc/6 is t';x,e cutoIF frequency,
and we assume ( l & ~ so that v. is a positive real
number, and the upper (lower) sign corresponds to waves
"propagating" in the positive (negative) = direction.

We will assume that the characteristic dimension of
the discontinuity is much smaller than the pipe radius
6 (see Fig. 1). As a consequence, the frequency of the
trapped mode 0 . 0 ( w, will bc very close to the
cutofF frequency ~,„. DeFining the wave vector k„,
V ru2„—B~ /c associated with 0, one can write down

asyInptotic expressions for the Field of the arith trapped
mode E'„,F, and , '8& choosing the signs in Eqs. (1')
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will utilize the Lorentz reciprocity principle, which states
that for any two solutions of Maxwell's equations without
sources the following equality holds [7]:

dSn(Ei x H2 —Ez x Hi) = 0, (4)

FIG. 1. Cylindrical waveguide with an enlargement. The
dotted line shows the integration surface in the Lorentz reci-

procity theorem.

so that the field goes to zero when ~z~ -+ oo:

2

E, =ege{z) J, ( ) exp( —k ~z~),

Jz ( ) exp( —k iz~i) .Zp Rs
(m)

(2)

Strictly speaking, Eqs. (2) are valid in the limit ~z~ && b;
for ~z~ b one has to add terms with m' ) m on the
right hand side of Eqs. (2), which exponentially decay on
the distance of the order of b. Our theory is based on the
assumption that

where the integration runs over a closed surface S consist-
ing of the surface of the waveguide wall and two plane
end surfaces in the xy plane, Sq and S2, as shown in
Fig. 1. The unit vector n in Eq. (4) is normal to the
surface S and directed outward. We now let Eq, H~ be
the field of the trapped mode, and E2, H2 be the TM
mode having the frequency 0 of the trapped mode and
exponentially decaying proportional to exp( —k z) in the
positive direction. This casts Eq. (4) into

Moving the surface S2 far enough Rom the discontinuity,
we can make its contribution to the integral (5) vanishing
because both 6elds exponentially decay when z ~ oo.
As for the surface S~, we choose to place it in the region
where one can use the asymptotic expansion (2) for the
trapped mode. A simple integration over Sq yields

2s.iO p2 k
Pm (6)

in other words, the trapped mode is spread along the axis
of the pipe over the distance k i )) b The a. symptotic
dependencies given by Eqs. (2) as functions of z (for a
given r) are shown in Fig. 2. Both 8, and Rs 'turn
out to be continuous at z = 0. Noting that the character-
istic scale on which they change is large compared with
b, we can conclude that in the region where Eqs. (2) are
not formally applicable one can still use the 6rst and the
last of them to represent the components 8, and 'Rs

(see Fig. 2). The error arising from using these equations
in the region ~z~ ( b is small, of the order of k b As for.
the E'„,it departs appreciably &om its asymptotic form
in this region (see Fig. 2). However, as this component is

relatively small (f„k bE, ), it will not be needed
in what follows.

To find the eigenfrequency of the trapped mode we

E~H~

Turning to the integration over the wall surface, note 6rst
that due to the perfect conductivity of the wall we have

the boundary condition 8( x n = 0, which makes the
first term in Eq. (5) vanish. The remaining term also
vanishes at the cylindrical part of the waveguide, r = 6,
because there E& ~ x n = O. Hence the only contribution
from the wall surface comes from the region of the wave-

guide enlargement and has the form —fdSn E( ) x
R( . As was noted above, the magnetic field in the
trapped mode with desired accuracy is given by the
asymptotic formula (2) (where one has to put r = b

and z = 0 because of the assumed smallness of the en-

largement). For the z component of E( ) we use the
first of Eqs. (1) with z = 0 and expand the Bessel func-
tion in the small ratio (r —b)/b, namely, Jp(p r/b)
—p~ Ji(p~)(r —b)/b We also neg. lect E„as a small
quantity. Performing the integration one 6nds

27ri 0 p A
(7)

E,

where A is the area of the cross section of the enlargement
in the rz plane. Note that A enters Eq. (7) with its sign;
e.g. , for an iris that protrudes into the pipe, A would
have a negative sign.

Combining Eqs. (6) and (7) gives an equation for k

FIG. 2. The 6elds in a trapped mode. Solid lines show
asyniptotics given by Eqs. (2); dashed lines are for the exact
solutions {qualitatively).

PmA
m

which can easily be solved for the frequency 0
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As mentioned above, in the case of an iris A ( 0 and

Eq. (8) cannot be satisfied because its left and right hand
sides have different signs. This means that the trapped
mode arises only if the integrated waveguide cross section
increases due to the presence of the discontinuity.

To check our analytical results, namely, Eq. (9), we

have carried out numerical computations of the lowest

eigenfrequency in a long cylindrical resonator with a
small pillbox by means of the code sUPERFIsH [8]. The
waveguide cutoff frequency wi corresponds to the eigen-
frequency of the Eoio mode in the smooth (without pill-
box) resonator with the same radius. The presence of
a small pillbox shifts this eigenfrequency down. To ex-
clude the inQuence of the side walls and make possible
the comparison with the theory, one has to choose length
I, of the resonator to be large, I )) A,'i = b /(piA).
It means that the resonator length is larger than that of
the region where the trapped mode is localized. We have
used b = 2 cm, A 0.1 —0.5 cm, and I from 30 cm
to 100 cm to satisfy the inequality above. In Fig. 3 the
frequency shift is plotted versus the area of the pillbox
cross section. It is seen that our numerical and analytical
results are in good agreement. Figure 4 shows the elec-
tric Geld lines for one of the resonator eigenmodes tliat
corresponds to the trapped mode in the waveguide with
the same small pillbox cavity.

The calculations above were performed for a perfectly
conducting pipe. Let us assume now a finite, though
large, conductivity of the walls. As a result of energy
dissipation in the walls, the trapped mode frequency
acquires a negative imaginary part, 0 M 0 —ip) 0. The damping rate p can be easily computed
using the given field profile [Eqs. (2)] as half of the energy
absorbed in the walls per unit time divided by the total
energy in the mode [9]. This gives the following result:

b
Pm

2g
7

where 8 = g2/(goo'u ) is the skin depth in the pipe
wall whose conductivity is 0.

5

~o 30
~C5

2-

FIG. 4. Electric field lines in a trapped mode.

At this point, we have to note that the damping with
the decrement p can also be treated as a frequency
spread p associated with the trapped mode. Should
this spread be compared to or larger than the gap be-
tween 0 and the cutoff frequency of the mode u, the
frequency content of the mode would include harmonics
above the cutoff frequency. These harmonics are able to
propagate along the pipe, destroying the initially trapped
mode. Hence we expect that the mode should disap-
pear when p becomes comparable to or greater than
(w —0 ). A more detailed study should predict an
exact ratio of p /(cu —0 ), above which the trapped
mode ceases to exist.

Calculating the longitudinal impedance as that of a
cavity with given eigenmodes (for example, see Ref. [10]),
one can find the longitudinal impedance produced by the
trapped mode:

where the shunt impedance 8 is

4Zp pm A

vrbb' J2(p, )
(12)

We have to emphasize here that Eq. (11) describes
only the contribution of the peak to the longitudinal
impedance; the propagating modes in the pipe are not
included. It is important that in the limit of perfect con-
ductivity, 8 ~ 0, Eq. (11) gives an infinitely high and
narrow peak. This kind of resonance near cutoff frequen-
cies of the waveguide with a small pillbox and perfectly
conducting walls has been observed in Ref. [1] in nu-

merical computations using the Beld-matching technique.
An integral equation method [2] has shown similar reso-

nances slightly below cutoffs, with the same dependence
of R,„on the wall conductivity a (R cc b oc ~o)
as predicted by Eq. (12). Finally, in a recent paper [4]
based on the equivalent-circuit method, the equations for

the resonant frequency and impedance have been derived

that agree with our Eq. (9) and with Eq. (12) within a
numerical factor.

III. TRAPPED MODE DUE TO A HOLE

0.0
1

0.2
A (cm)

I

0.4 0.6

FIG. 3. Frequency shift versus the pillbox area

(Df = fo —f, where fo is the cutoR' frequency and f is the

frequency of the trapped mode). The solid line corresponds
to Eq. (9).

As another application of the method developed in the

preceding section we will show here that a small hole

in the pipe wall also creates localized axisymmetric TM
modes. We assume that the dimensions of the hole are

much smaller than the pipe radius. Again, we begin from

consideration of a perfectly conducting waveguide.
Most of the derivation of the preceding section, in-
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eluding Eqs. (1)—(5), is applicable to the case of the hole
without any changes. The integration in Eq. (5) now

goes over the cylindrical surface r = b bounded by the
end surfaces Sq and S2. The contribution &om the end
surfaces is the same as given by Eq. (6); however, instead
of Eq. (7) one has to perform the integration in Eq. (5)
over the hole.

Considering the integrand in Eq. (5) at the hole, note
that the first term vanishes because E( ) x n = 0 at
r = b. Hence the integral reduces to jdSn. E' x H~

The magnetic field H~ l has the azimuthal component,
n is directed along the radius, and the integral can be
written in the following form: H& jdSf, (W.e put

H& in &ont of the integral, neglecting its variation over
the hole. ) The distribution of the tangential electric field
in the hole can be related to the surface density of the
magnetic current Kg, introduced formally in the problem
of diffraction by small holes [11],t = —Ks /2. This
allows one to reduce the integral to

H( ) dS~( )
8 8

dition to the damping due to a Gnite conductivity of the
walls. This damping can be estimated as follows. As-
sume that the radiated Geld propagates freely away &om
the waveguide, and use for the estimate of the radiated
energy the formula Zp(u/c) M&/24vr for the energy loss
of an oscillating magnetic dipole in the empty space. (We
have included an additional factor of 1/2 in this formula,
counting only the radiation that goes outside the wave-
guide. ) Dividing this quantity by the double total en-
ergy in the mode we can Gnd the damping rate p, p in
the following form:

(d p Qgk3 2

QI'cL8

In addition to the radiation into the outer space the
trapped mode also loses energy via coupling effects by
inducing propagating modes having cutoH' frequency be-
low 0 . This coupling can be considered as radiation
into the waveguide with a damping rate which, within
a numerical factor, can also be estimated as that given
by Eq. (17). Comparing p, ~ with the frequency of the
trapped mode we Gnd that

Now, noting that jdSK& —— imppMs, —where Ms is
the 8 component of the induced magnetic moment of the
hole, and introducing the magnetic susceptibility of the
hole o.g as Mg ——o.pe, one Gnds that the expression

aO p J (y, )ns
2Zpe3b2

(14)

should substitute Eq. (7) in the case of the hole. Com-
paring Eq. (14) with Eq. (7), we conclude that all of the
results of Sec. II remain valid for the hole if we put the
quantity as/(47rb) in Eqs. (7)—(12) instead of the area of
the enlargement cross section A:

Am
0!g

4mb
(15)

It is interesting that the area A can also be treated
as related to the magnetic susceptibility of the enlarge-
ment. Indeed, if we equate the magnetic energy in the
enlargement mppbAHO to the energy of a magnetic mo-
ment M immersed into magnetic field Hs, ppMHs/2,
we Gnd that the magnetic moment of the enlargement is
M = 2vrbAHg. This gives for the susceptibility of the
enlargement 27rbA, which agrees with the relation (15)
within a factor of 2.

According to Eqs. (9) and (15), the frequency of the
trapped mode created by the hole is

(i6)

Magnetic susceptibility of elliptic holes can be found
in Ref. [7]. For a round hole, ap = Sas/S, and the fre-
quency gap (&u —0 ) is proportional to (a/b)p. The
same scaling law is also valid for other hole shapes if a is
understood as a characteristic dimension of the hole.

Radiation through the hole in the outer space creates
another channel of damping of the trapped mode in ad-

-p-k-b- " '
which reads that for small m the radiation damping
is small compared with the frequency gap between the
mode and cutoff &equency. Hence the radiation does not
destroy the trapped mode due to the broadening of the
resonant frequency, as described in the preceding section.

IV. HIGHER-ORDER TM MODES

In the previous sections, we presented a detailed
derivation of the axisymmetric trapped modes. The same
method can be applied without any changes to the nonax-
isymmetric TM modes having the azimuthal dependence
on 8 as sine or cosine of n0. Below we give without deriva-
tion the Geld distribution and equations for the frequency
of these modes.

The electromagnetic Geld in the trapped mode is now
given by the following expressions:

g(7I, ,m) +n, m J Pn, m~
z b2

x exp( —k„]z~)sin(n0 + P),

eb "
b

x exp( —k„, ]z~) sin(no+ P),
"„"'-'(',")

x exp( —k ]z]) cos(no+ P),

g g(A}m)

(i9)

where the new index n is associated with azimuthal vari-
ation of the Geld, p is the mth root of the Bessel

function J, k = m2 —02 /c, &u is the cut-

off frequency of the (n, m) mode, and 0„ is the fre-
quency of the trapped mode. The arbitrary phase P in
Eqs. (19) re8ects the rotational symmetry of the cylin-
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drical waveguide. The other two components of the field,

F„' and f&"', are small compared with t "' in
parameter k b.

Strictly speaking, Eqs. (19) give the asymptotic field

expressions valid for
~
z~ )) 6; however, as a matter of fact,

they are also valid in the region ~z~ 6, as explained in
Sec. 1I.

For the axisymmetric enlargement, the equation for

k„ takes the form completely analogous to Eq. (8),

With Eq. (22), the integral in Eq. (4) [where Eq, Hq
represent the field of the trapped mode, and K2, H2 are
now the TE mode having the frequency B„ofthe
trapped mode and exponentially decaying proportional
to exp( —k„z) in the positive direction] can be easily
calculated for the surface Sq, yielding

~zB„p,'„k„(1+h„,) (
Zpc &nm

™
p„

n)m b3
(20)

V. TRANSVERSE ELECTRIC TRAPPED MODES

Both small enlargements and holes can also trap TE
modes in the waveguide. The derivation of the trapped
TE modes is fully analogous to that of TM modes and
will be briefly outlined below.

The electromagnetic field in the (n, m) TE mode is

given by

Z H(n-} =0

g(n, m}

p'„(p'„
62 "

6

x exp(pK„z) sin(n0+ P),

cr "
6 )

x exp(pr„z) cos(n0 + P),

x exp(pK z) sin(n0+ P) . (22)

z,ai" -l—
6

" 6

x exp(pr„z) sin(n0 + P),

z,H'" "I = q""" z ("" ")0 g + n

x exp(pr z) cos(n0+ P),
where p„' is the mth root of J„' and v„

p' /62 —w2/c2. The asymptotic expressions for the

components of the trapped mode '8 "'
'R "', and 'R& ' are obtained from Eq. (22) by chang-
ing exp(/r z) —+ exp( —k ~z~) and putting —sgn(z)
instead of ~ in the last two equations.

For the hole, an additional factor 2 appears in the equa-
tion for the k„compared with the axisymmetric case,

2

num g4

The polarization of the trapped mode is associated with
the location of the hole at the wall. Choosing 0 = 0 at
the position of the hole, the trapped mode is polarized

so that P = vr/2 in Eq. (19). It means that Re ' in the
trapped mode reaches the maximum value at the location
of the hole in its azimuthal variation.

2vri A„p,'„k„(1+ 8„s)~.~"-(~.', )J-(v'. , )
Zocb

(24)

Together with Eq. (23) this gives the following equation
for the k„

(25)

Note here that the parameter o. can be found using con-
formal mapping technique as it has been shown in Ref.
[12] for the calculation of the electric polarizability.

For the hole, the calculation similar to that performed
in Sec. IV gives the following result:

/2

k„
p A

2vrb4(1 + b„o)(1 —n'/p"„) (26)

where h„o is the Kronecker symbol.
For the pillbox, the contribution &om the enlargement

surface comes only from the term —fdSn Ei" l x
'R "' . For calculation of this integral we can ne-

glect r and 0 components of the magnetic field because
they are small in the parameter k„b. As a result,

only the E&"' component of the TE mode is left and
since this component vanishes at r = 6, we have to ex-
pand the Bessel function in the small ratio (r —6)/6,

t2

E&
' —'

"&," J„"(p'„)(r—6) sin(n0+P). The mag-

netic field 'R "' at the wall of the enlargement has r
and z components (the 0 component can be neglected as
being small in the parameter k„b), so that the cross-

product 'R "' x n has only a 0 component that can
be expressed through the surface current density ig at
the wall, ('R "' x n)s = is. Now, let us define a
component of the magnetic moment (per unit length of
the pipe circumference) induced by the trapped mode on
the pillbox as M, = (1/2) f is(r —b)d/, where the inte-
gration goes along the pillbox contour in the r-z plane.
This magnetic moment is proportional to the magnetic
field at the pipe wall so that one can introduce the mag-
netic susceptibility a, (per unit length) in the z direction,

M, = Q.,H, '" . As a result, one obtains the following
equation for the enlargement contribution to Eq. (4):
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VI. DISCUSSION

We have proven the existence of trapped modes in a
smooth waveguide with a small discontinuity, such as an
enlargement or a hole. Such discontinuities are typically
present in any vacuum chamber of an accelerator. The
physical mechanism of the trapping is the interaction of
a mode having the frequency close to the cutoff with the
magnetic moment of the discontinuity induced by the
magnetic field in the mode. If the induced magnetic mo-
ment is directed along the magnetic field (the case of
the enlargeinent and the hole), the interaction lowers the
&equency of the mode below cutofF, making the mode
nonpropagating. However, for a discontinuity having the
magnetic moment directed against the magnetic field of
the mode (such as an iris), the interaction does not bring
about a trapped mode. The field in trapped modes ex-
ponentially decays away from the discontinuity on a dis-
tance large compared with the radius of the pipe.

So, with respect to the trapped modes, small enlarge-
ments or holes are very different from discontinuities that
protrude into the chamber. It is interesting to com-
pare this fact with their behavior at low frequencies,
where these two kinds of discontinuities are very similar
since they both produce inductive contributions to the
impedance. The reason for such a difFerence is that the
low-&equency impedance is due to both the induced mag-
netic and electric dipole moments, which have opposite
signs. (See [12] for the case of axisymmetric discontinu-
ities and [5] for holes. ) For a chamber enlargement (e.g. ,

a pillbox) the magnetic contribution to the impedance
is larger than the electric one; for a chamber contrac-
tion (e.g. , an iris) the situation is reversed, but both the
moments change sign. As a result, the imaginary part of
the impedance at low frequencies has a fixed sign. Unlike
that, the appearance of the trapped modes is caused by
the interaction with the induced magnetic moment only
and depends on its sign, as explained above.

The importance of the trapped modes for accelerator
physics is motivated by the fact that they can produce
high and narrow peaks in the coupling impedance. The
formulas derived in the present article refer to the case
of a single discontinuity; however, in reality, trapped
modes can interact with many discontinuities simulta-
neously (for example, in a liner with a regular array of
pumping holes). In this case, the contribution of the
trapped mode into impedance can be substantially am-
plified. A detailed study of this effect will be presented
in a separate paper.
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